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ABSTRACT

The present paper deals with numerical developments performed in the

finite element code ANSYS in order to carry out coupled fluid-structure

analysis with pressure-based formulation. As a result, enhancement of the

modeling possibilities within ANSYS is carried out for the following fluid and

fluid structure modes: i) fluid sloshing modes, ii) fluid and fluid-structure

modes with pressure-displacement formulation in axi-symmetric geometry

with non axi-symmetric loading, iii) fluid-structure modes with symmetric

formulations for elasto-acoustic and hydro-elastic problems, using the so-

called symmetric  (u, p, ϕ ) and (u, η, ϕ)  formulations. The paper also aims

at providing finite element code users with test cases to refer to, for

application of the new FSI formulations. The paper also serves as an

introduction to the numerical calculation of eigenvalue problems with FSI.

Theoretical bases of the formulations are first exposed; test-cases and

industrial applications are then proposed. It is shown in particular that

computing times are significantly decreased by using a symmetric

formulation instead of a non-symmetric one, allowing modal analysis of

complex structures with fluid coupling for industrial purposes.

Key-words: Fluid-Structure Interaction; Fluid Finite Elements; Modal

Analysis; Symmetric Formulations; Finite Element Code Validation 

INTRODUCTION
The present paper deals with the numerical simulation of “fluid-structure interaction”
problems (Axisa, 2006a ; Morand-Ohayon, 1995): it is concerned with the elastic behavior
of a structure in contact with an inviscid fluid that vibrates about a stagnant state. Problems
involving a deformable structure coupled with a fluid with non stationary flow are referred
to as “flow induced vibration” coupled problems (Axisa, 2006b ; Païdoussis, 1998 ;
Païdoussis, 2003). In the latter case, numerical simulation of the coupled problem requires
the calculation of the structure displacement field and the fluid pressure and velocity fields
in the space-time domain. Moreover, some problems need solving non linear equations for
the fluid and/or structure domains (Schäfer-Teschauer, 2001). In the former case, the
structure and fluid are supposed to have linear behavior and are then described within the
framework of elastic vibrations. As a consequence, numerical calculation of the coupled
problem can then be performed in the frequency domain. Many numerical methods, mostly
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finite element and boundary element methods have been proposed to take these FSI effects
into account in various engineering domains (Mackerle, 1999). Such methods have been
firmly validated from the theoretical, numerical and even experimental points of view, and
their application to industrial problems for design purposes is still an actual concern (Sigrist,
2006).

The ANSYS code (Khonke, 1986), of wide use in industry and academia, did not allow
up to now to perform dynamic analysis of coupled fluid-structure systems using efficient
calculation procedures, because the formulation of the coupled problem in ANSYS involves
non-symmetric matrices (Woyak, 1995). Formulations involving symmetric matrices are
known to be less costly from the computational point of view. They also allow the use of
modal decomposition techniques for the dynamic analysis of coupled systems, since
eigenmodes calculated with symmetric operators fulfill orthogonality conditions required by
the modal approach (Bathe, 1982).

The present paper exposes numerical developments undertaken in order to enhance the
existing fluid elements in the ANSYS code in order to tackle fluid-structure interaction
modeling for industrial applications. These numerical developments bring out new
functionalities in future releases of the code, with the view to computing:
• Fluid sloshing modes with pressure-based formulation,
• Fluid and fluid-structure modes with pressure-displacement formulation in axi-

symmetric geometry with non axi-symmetric loading,
• Fluid-structure modes with symmetric formulations for elasto-acoustic and hydro-

elastic problems, using the so-called symmetric (u, p, ϕ ) and (u, η, ϕ) formulations
(Morand-Ohayon, 1995).

The paper gives validation test cases which have been studied before these new
formulations be available in future release of the code. The paper also aim at providing users
of the ANSYS code - as well as other finite element code - with test cases to refer to, for
application of the new FSI formulations. The paper also serves as an introduction to the
numerical calculation of eigenvalue problems with FSI for industrial application. Theoretical
bases of the above mentioned formulations are exposed in the second subsection, elementary
validation test-cases are proposed in the third subsection and an industrial application is
presented in the last subsection.

Practical applications of the presented developments within the ANSYS code cover a
wide range of industrial problems for instance in automotive, aeronautic and shipbuilding
industries. In the particular field of nuclear power engineering, the present developments will
make it possible to use the ANSYS code for the calculation of the dynamic response of
structures to seismic solicitation with FSI modeling, using modal methods, such approaches
being of paramount importance in seismic design (Sigrist-Broc, 2006).

1. FLUID-STRUCTURE INTERACTION MODELING WITH FLUID
PRESSURE-BASED AND DISPLACEMENT-BASED FORMULATIONS
1.1. LINEAR FLUID MODELING WITH PRESSURE-BASED OR
DISPLACEMENT BASED EQUATIONS
In the general case, the fluid flow is described by the Navier-Stokes equations which read:

(1)
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(2)

where v = (vi) and p are the fluid velocity and pressure field. ρ and µ stand for the fluid
density and viscosity respectively. The mass and momentum conservation equations are to
be solved together with the fluid state equation which reads:

(3)

In the framework of fluid-structure interaction problems, the fluid is supposed to be
inviscid and initially at rest in a steady state characterized by a pressure field p0 (x) a velocity
field v0 = 0 and constant density ρ0. In a linear description of the fluid behavior, fluctuations
of pressure, velocity and density about the steady state is accounted for using the following
decomposition:

(4)

where fluctuating part of the pressure and density are denoted p’ and ρ’ respectively.
Linearization of the fluid state law equation reads:

(5)

where is the velocity of the pressure waves within the fluid media.

The pressure and density fields as written in Eq. (4) are substituted in Eqs. (1) and (2), in
which the viscosity term has been discarded. Retaining the first order terms and taking into
account Eq. (5) then yields:

(6)

(7)

Taking the divergence of Eq. (7) and combining with a time derivation of Eq. (6) yields:

(8)

which describes the propagation of acoustic waves within the fluid.
In the linear approach, the fluid can also be described with a displacement field ξ, the

velocity field being . Pressure can be calculated from displacement: 
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time integration of Eq. (6) indeed yields:

(9)

Boundary condition describing the coupling with a moving wall is expressed with the non
slip condition:

(10)

where d is the wall displacement. Taking Eq. (7) into account, the boundary condition can
also be formulated in terms of pressure:

(11)

where n is the unit normal to the moving wall.
Boundary condition describing a fluid free surface is simply written:

(12)

in the case of non weighting fluid, i.e. when gravity effects are discarded.
Gravity (or “sloshing”) effects are accounted for with the condition:

(13)

where η is the free surface elevation, that is the fluid displacement in the direction normal
to the fluid free surface. Using a second order time derivation of Eq. (13) and taking into
account Eq. (7) finally yields an equivalent boundary condition for fluid sloshing in terms of
fluid pressure:

(14)

where n is the unit ascending normal to the free surface, so that gravity field is g = – gn.
The pressure and displacement formulation of the elastic fluid behavior as described by

the previous equations corresponds to the modeling approach in the ANSYS code, except for
sloshing modeling which is not implemented in the code. Coupling of the fluid with the
structure is then described as follows.

1.2. COUPLED FLUID-STRUCTURE PROBLEM WITH PRESSURE-BASED
FLUID FORMULATION
The general equations of the coupled fluid-structure problem using a pressure-based
formulation for the fluid are written in the frequency domain. Figure 1 gives a generic
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representation of the coupled problem. Let Ωs be the structure domain with boundary 
∂Ωs = ∂Ωsσ � ∂Ωso � Γ where ∂Ωsσ is the boundary part with imposed forces, ∂Ωso is the
boundary part with imposed displacement and Γ is the fluid-structure interface. ns is the
outward normal on  ∂Ωs n is the inward normal on Γ. u is the structure displacement, σ(u)
is the stress tensor. ρs stands for structure density. The structure problem equations in
displacement formulation read:

(15)

(16)

(17)

(18)

Let ΩF be the fluid domain with ∂ΩF = ∂ΩFo � ∂Ωso � Γ, where ∂ΩFπ is the boundary
part with imposed normal gradient pressure (rigid wall or symmetry plane), ∂ΩFo the
boundary part with imposed pressure (pressure release surface or anti-symmetry plane) and
Γ is the structure-fluid interface. nF is the outward normal on ∂ΩF , n is the outward normal
on Γ. In order to alleviate the notation, the fluid fluctuating pressure field is now denoted p
instead of p`. In the same manner, fluid density and velocity waves are denoted ρF and c
respectively (instead of ρo). Using the linear equations developed in the previous subsection,
the pressure-base fluid equations in the frequency domain read:

(19)

(20)

(21)

(22)

Coupling conditions between the structure and fluid problems are given by Eqs. (18) and
(22). Equation (18) expresses the continuity of the normal component of the stress tensor at
the fluid-structure interface. On Γ, fluid acts on structure via an imposed pressure that creates
a structure loading in the normal direction at the structure boundary . Equation (22) expresses
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the continuity of the displacement normal component. On Γ, structure acts on fluid via an
imposed displacement in the normal direction at the fluid boundary.

Numerical resolution of the coupled problem is obtained with a discretization procedure
of the variationnal formulation of the fluid-structure interaction problem. On the one hand,
the structure problem is written as:

(23)

for any virtual displacement field δu which complies with boundary condition (16). On
the other hand, the fluid problem is written:

(24)

for any virtual pressure field δp satisfying boundary condition (21).
Spatial discretization of Eqs. (23) and (24) is performed with finite elements (Bathe,

1982; Morand-Ohayon, 1995). Mass and stiffness matrices of the fluid and structure problem
are defined as:

(25)

(26)

(27)

(28)

Fluid-structure interaction matrices are used to model coupled terms and are defined as:

(29)

Finally, the coupled problem takes the following form:

(30)
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The displacement-pressure formulation leads to a non-symmetric eigenvalue problem
which can be solved with the non-symmetric Lanczos algorithm (Rajakumar-Rogers, 1991),
which requires important computational time. As a consequence, the modal analysis of
complex structures with fluid-structure interaction modeling is practically out of reach for
industrial applications.

1.3. DISPLACEMENT-BASED FLUID FORMULATION
Using a displacement-based formulation for both fluid and structure problems yields a
symmetric coupled formulation. Using notations of the preceding subsection, equations of
the structure problem remain unchanged, while equations for the fluid problem in the
frequency domain read (see subsection 1.1):

(31)

(32)

(33)

Coupling conditions (18) and (22) are now replaced by the following equations:

(34)

(35)

which express the continuity of the normal component of the stress tensor and
displacement fields at the fluid-structure interface. Variationnal formulation of the problem
reads:

(36)

for any structure virtual displacement field �u and any fluid virtual displacement field δξ
that comply with respectively with boundary conditions (16) and (32), and coupling
condition (34). Finite element discretization of Eq. (36) yields the following eigenvalue
problem:
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(37)

where 
matrices K̂F and M̂F and discretize the bilinear forms and 

respectively. Equation (37) involves symmetric matrices but from the practical point of

view, the use of the (u, ξ) coupled formulation suffers from major drawbacks since it
produces non physical spurious modes which correspond to rotational motions within the
fluid. Moreover, the kinetic and potential energy associated with these spurious modes can
be different from zero: this can significantly affect the numerical results in dynamic analysis
with modal decomposition techniques. Such problems could be overcome either by
discretizing the condition curl(ξ) = 0 for the fluid displacement field (Hamdi et al., 1978), or
by using alternate coupling conditions (Bermudez et al., 1998, 1995 ; Bermudez et al., 1998).
However, none of these approaches can easily be applied to the ANSYS code.

1.4. FLUID AND FLUID-STRUCTURE ANALYSIS WITH THE ANSYS CODE
Table 1 summarizes the various analysis possibilities offered by the ANSYS code in terms
of fluid or fluid-structure problems with the pressure-displacement and displacement-
displacement formulations. The (u, ξ) formulation allows all kind of analysis, including
dynamic analysis with modal decomposition techniques. However, as mentioned above, such
formulation is of difficult use from the engineering standpoint. Besides, physical
interpretation of fluid modes in terms of displacement is not straightforward in comparison
with the pressure formulation.

Numerical developments are then undertaken in ANSYS in order to use pressure-based
formulation for fluid and fluid-structure analysis with calculation of:
• Fluid sloshing modes with pressure-based formulation,
• Fluid and fluid-structure modes with pressure-displacement formulation in axi-

symmetric geometry with non axi-symmetric loading,
• Fluid-structure modes with symmetric formulations for elasto-acoustic and hydro-

elastic problems.

2. NUMERICAL DEVELOPMENTS WITHIN THE ANSYS CODE
2.1. SLOSHING WITH FLUID PRESSURE-BASED ELEMENTS
Using the notations of Fig. 1, formulation of a fluid sloshing problem in terms of pressure is
given by the following equations (Biswal et al., 2002):

(38)

(39)

(40)
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As sloshing modes are in the low frequency range, fluid compressibility is discarded in
the analysis; therefore, Eq. (38) exhibits the incompressible behavior of the fluid. The free
surface condition is described by Eq. (39), in which the normal vector nF is oriented in the
vertical ascendant direction.

Variationnal formulation of the problem is then:

(41)

for any fluid virtual pressure field �p. Discretization of the free surface terms yields a
fluid mass matrix M`

F defined as follows:

(42)

Calculation of the sloshing modes is performed by solving the eigenvalue problem:

(43)

In the ANSYS code, pressure based fluid elements fluid29 and fluid30 for 2D-axi and 3D
problems are then enhanced to take into account fluid sloshing modes. Validation of sloshing
mode calculation is presented in the next subsection in 3D and 2D-axi symmetric cases.

2.2. HARMONIC AXI-SYMMETRIC FLUID PRESSURE-BASED ELEMENT
In some industrial application, many structures can be modeled using an axi-symmetric
assumption, while dynamic loading on structures can be non axi-symmetric: this is the case
in particular for nuclear pressure vessels subjected to seismic solicitation (Sigrist-Broc,
2006). Harmonic axi-symmetric representation of the problem unknown with a Fourier serie
is then of convenient use. In the ANSYS code, such an approach is possible only with
structure shell or solid elements (Khonke, 1986). As for the fluid pressure elements,
implementation of an harmonic axi-symmetric formulation is obtained as follows. The
pressure unknown is expanded as a Fourier serie according to:

(44)

As stated by Eq. (44), dependency of the pressure with respect to � is taken into account
with the trigonometric functions cos(sθ) and sin(aθ), while dependency with respect to r and
z is accounted for with the pure axi-symmetric component po and symmetric and anti-
symmetric components of the pressure field ps and pa. Discretization of the problem is then
performed in the  (r,z) plane, where the fluid domain is denoted as Ω̂F using four-nodes, one-
degree-of-freedom fluid elements, as depicted by Fig. 2. The associated shape functions are
linear with respect to the r and z directions. On the reference element local coordinates are
denoted by ξ and η. Shape function for node ie [1,4] is:
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(45)

Calculation of the fluid mass matrices is:

(46)

for the compressibility effects, and:

(47)

for the sloshing effects. Calculation of the fluid stiffness matrix corresponding to the
symmetric component of order s ≥ 0 is given by:

(48)

where K
o

F and K
s

F are defined by:

(49)

(50)

Similar expression can be derived for any anti-symmetric component a ≥ 1.
The matrices are assembled with the elementary mass and stiffness matrices which can be

analytically calculated according to the following expressions, using notations of Fig. 2
(Sigrist et al., 2004):

(51)

(52)

(53)
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(54)

In the ANSYS code, 2D-axisymmetric modeling of fluid problems is produced with the
pressure-base fluid element fluid29. The harmonic axi-symmetric case is taken into account
with a specific key-option of the element, that activates the calculation of mass and stiffness
matrices according to Eqs. (47) to (50). Validation of this functionality is presented in the
next subsection.

2.3. SYMMETRIC COUPLED FORMULATIONS FOR HYDRO-ELASTIC AND
ELASTO-ACOUSTIC PROBLEMS
As recalled in subsection 1.2, the displacement-pressure coupled formulation leads to non-
symmetric eigenvalue mass and stiffness matrices, requiring higher computational time in
eigenvalue calculation. Besides, modal decomposition techniques can not be applied in a
straightforward manner with eigenmodes calculated from non-symmetric eigenvalue
problem. Symmetric formulations for fluid-structure interaction problems can be derived, for
instance using three fields formulations (Kanarachos-Antoniadis, 1988) or modal reduction
techniques (Ohayon, 2001). As for the ANSYS code, three field formulations have been
implemented and validated for industrial applications.

a) Elasto-acoustic problem
For elasto-acoustic problems (i.e. problems involving an elastic structure coupled with an
acoustic fluid), the three-field (u,p,ϕ) formulation (Axisa-Gibert, 1982 ; Ohayon-Valid,
1983) yields a symmetric coupled problem, by using the fluid displacement potential defined
as:

(55)

Taking Eq. (7) into account yields:

(56)

Formulation of the coupled problem is then written as follows. The equations of the
structure problem in the frequency domain are unchanged, except for coupling condition (18)
which becomes:

(57)

As for the fluid problem, the acoustic wave propagation is described by the mixed
pressure/displacement potential equations:

(58)
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with free surface condition and rigid wall condition expressed in terms of displacement
potential as:

(59)

(60)

The coupling condition with the elastic structure reads:

(61)

Variationnal formulation of the problem reads:

(62)

(63)

(64)

for any virtual fields δu, δϕ and δp complying with boundary conditions. Finite element
discretization of Eqs. (62) to (64) with finite elements using the same shape functions for
pressure and displacement potential yields the matricial system:

(65)

The mass and stiffness matrices in Eq. (65) are symmetric and involves the structure, fluid
and coupling operators used in the non-symmetric formulation. Elimination of the unknown
Φ in Eq. (65) can be obtained with a condensation procedure. Third line of Eq. (65) yields:

(66)

Whence the condensed symmetric forms in term of pressure and displacement:

(67)
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Formulation (65) involves symmetric sparse matrices, whereas formulation (67) involves
symmetric full matrices. In ANSYS, Eq. (65) is solved as such with the block Lanczos
algorithm, while Eq. (67) is solved after a condensation step using the Guyan procedure.

b) Hydroelastic-sloshing problem
For hydroelastic-sloshing problems (i.e. problems involving an elastic structure coupled with
a incompressible fluid with sloshing effects), the three-field (u,η,ϕ) formulation (Morand-
Ohayon, 1995) yields a symmetric coupled problem, using the fluid free surface elevation η
and the fluid displacement potential.

Equations of the structure problem are given by Eqs.(15) to (17) using pressure loading
on structure through the relation p = ρFgη. Equations of the fluid problem are:

(68)

(69)

Boundary condition for rigid wall and coupling condition with the structure are given by
Eqs. (60) and (61), respectively. Variationnal formulation of the problem is given by Eq. (62)
for the structure and:

(70)

(71)

for the fluid problem. Discretization of the free-surface integrals terms yields the
following operators:

(72)

(73)

The eigenvalue problem finally reads:

(74)
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which has the same form as Eq. (65) for the acoustic problem. Condensation of Φ in Eq.
(74) yields a symmetric formulation in terms of structure displacement and fluid free surface
elevation, with matrix system similar to (67).

3. VALIDATION TEST CASES
3.1. HYDROELASTIC-SLOSHING CASE
Validation of the developments in the ANSYS code for hydroelastic-sloshing calculation is
performed on the elementary test case sketched by Fig. 3. 3D and 2D axi-symmetric
calculation will be compared on the studied case. The geometrical and physical parameters
of the problem are as follows: R = 0.1m, R = αR = 0.2 m, L = H = 0.75m, e = 0.01m, ρs =
7800 kg/m3 , E = 2.1 106 Pa1,υ = 0.3, ρF = 1000 kg/m3, g = 9.81 m/s2. Fluid mesh is produced
with Nr = 10, Nθ = 15 and Nz = 20 elements in the r, θ and z directions respectively.

a) Fluid problem
For the studied case, eigenfrequencies of the fluid sloshing modes can be analytically
computed according to:

(75)

where qn,m is the th mth root of Dn,α (x) = J’
n (x) Y’

n (αx) – J’
n (αx) Y’

n (x) (see appendix
A). Index n stands for the dependence of pressure in the θ direction and index m stands for
the eigenmode order.

2D-axi symmetric, 3D and analytical calculations of eigenfrequencies are compared in
Tab. 2. Figure 4 sketches the corresponding eigenmodes shapes in terms of pressure
distribution for the 2D and 3D model. 2D and 3D calculations give equivalent results, with
no noticeable discrepancy to the analytical solution. The third and fourth frequencies
computed with the 2D-axi or 3D models are nonetheless overestimated with the standard
mesh; convergence is however obtained with the mesh refinement, as represented in Fig. 5
for 2D-axi calculations. Same trends are also observed for other sloshing modes
(corresponding to s > 1 and a > 1).

b) Coupled fluid-structure problem
Calculations are then performed for the coupled fluid-structure problem using 2D axi-
symmetric and 3D models together with symmetric and non symmetric formulations. As the
decoupled frequencies of the structure (elastic modes) and the fluid (sloshing modes) are
close to each other, strong coupling effects are expected. Table 3 gives the computed
frequencies for hydroelastic-sloshing coupled eigenmodes, and compares the various
calculations for symmetric modes of order one (i.e. corresponding to s = 1 in the axi-
symmetric case). 2D-axi and 3D calculations give equivalent results, symmetric and non-
symmetric formulations give identical results. Same conclusion can be drawn for other
coupled modes. Figure 6 sketches the first eigenmodes shape, in terms of displacement,
pressure and free surface elevation: frequency of the decoupled fluid and structure systems
are 1.3000 Hz and 1.0355 Hz respectively, while frequency of the first coupled eigenmode
is 0.7133 Hz, resulting from a low frequency coupling process (Cho-Song, 2001).
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3.2. ELASTO-ACOUSTIC CASE
Validation of the developments in the ANSYS code for elastic-acoustic calculation is
performed on the elementary test case sketched by Fig. 7. The geometrical and physical
parameters of the problem are as follows: R = 0.1m, R = αR = 0.2m, L = H = 0.75m, e =
0.01m, ρs = 7800 kg/m3, E = 2.1 1011 Pa, υ = 0.3,  ρF = 1000 kg/m3, c = 450 m/s. Fluid mesh
is produced using the same parameters as in the hydroelastic-sloshing case.

a) Fluid problem
For the problem sketched by Fig. 7, eigenfrequencies of the fluid acoustic modes (i.e. fluid
modes calculated without taking structure flexibility into account) can be analytically
computed according to:

(76)

where qn,m is the Mth root of Dn (see appendix A) Index n and l stand for frequency
dependency with respect to the θ and z directions, index m stands for the mode rank.

2D axi-3D eigenfrequencies computations are compared with the analytical solution in
Tab. 4, for the symmetric component s = 1 of pressure field. Figure 8 sketches the
corresponding eigenmodes shapes in terms of pressure distribution for the 2D and 3D model.
2D-axi symmetric calculations are in good agreement with the analytical model and the 3D
numerical model. Same observations are drawn for other acoustic modes (for s > 1 and 
a > 1).

b) Coupled fluid-structure problem
Coupled elasto-acoustic calculations with 2D-axi and 3D finite elements models using
symmetric and non-symmetric formulations are compared in Tab. 5: no noticeable
discrepancies are observed between all computed frequencies (for symmetric modes of order
one). Figure 9 gives the mode shapes for the first decoupled and coupled eigenmodes,
illustrating a high frequency coupling process: decoupled structure and fluid (acoustic)
frequencies are 327,44Hz and 486,53Hz respectively, the elasto-acoustic frequency for the
first mode is 258,14Hz. In the coupled case, Fig. 9 also sketches the fluid pressure and
displacement potential iso-values in the 3D model: it is ten checked that spatial repartition of
p and ϕ are identical, as suggested by Eq. (56) which reads p = ρFω2ϕ in the frequency
domain.

4. INDUSTRIAL APPLICATION
Calculations presented in the preceding subsection validate the numerical developments
carried out in the ANSYS code for modal analysis of coupled problems with pressure-based
fluid elements. In particular, enhancement of the existing fluid elements for calculation of
fluid acoustic and sloshing modes for 2D axi-symmetric problems has been successfully
compared with 3D calculations. Implementation of symmetric coupled formulations has also
been validated. In the latter case, practical interest of such coupled formulations is
highlighted with the following industrial case, as far as computational time is concerned.

4.1. PROPELLER IN A FLUID
The symmetric coupled formulations implemented in ANSYS are then applied to study an
industrial case, in order to perform the modal analysis of a propeller coupled with a fluid.
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The eigenmodes and eigenfrequencies will be calculated with the (u,p) and (u,p,ϕ) coupled
formulations for two cases, performing the analysis of the propeller coupled with a light (air)
and heavy (water) fluid. The water to air frequency ratio deduced from
computations will be compared with experimental data (Sigrist-Le Bras, 2007). Figure 10
sketches the propeller model, the corresponding structure and fluid finite elements. The
propeller diameter is Ø = 1.7 m, the fluid domain diameter is about twice the propeller size.
The structure domain is meshed with finite elements solid183 (four nodes displacement-
formulated elements with quadratic shape functions), while the fluid domain is meshed with
finite elements fluid30 (four nodes pressure-formulated elements with linear shape
functions). The propeller is made in a aluminum-copper alloy (CuAl9Ni5Fe4) physical
properties of such a material are ρs 7700 kg/m3, E = ×1011 Pa and υ = 0.3. Physical properties
of the fluid are ρF = 1kg/m3, c = 330m/s for air and ρF = 1000 kg/m3,  c = 1500 m/s for water.

In the experiments and calculations, the propeller is simply supported on one side of its
flange. Besides, only a bounded fluid domain is taken into account in the analysis. As will
be seen in the modal analysis presented in the next subsection, the first coupled eigenmodes
are low frequency modes, which are characterized by added mass effects. As a consequence,
fluid compressibility and acoustic waves are of negligible influence on the coupling process.
Therefore, a representation of the far pressure field by a bounded fluid domain with the
boundary condition p = 0 is valid for the low frequency range. The fluid free surface is also
represented with the boundary condition p = 0 since gravity waves are also discarded in the
analysis.

4.2. MODAL ANALYSIS WITH SYMMETRIC AND NON-SYMMETRIC
COUPLED FORMULATIONS
Modal analysis of the propeller is then carried out using the non-symmetric and the
symmetric coupled formulations now available with the fluid elements of the ANSYS code.
Table 6 gives the numerical results and compares the computed eigenfrequencies for the
propeller in air and water. In both cases symmetric and non-symmetric formulations are
compared. Figure 11 depicts the mode shapes for eigenmodes #1, #6 and #9, in terms of
structure displacement and fluid pressure field on the propeller. The modal analysis shows
how added mass effects affect the vibratory behavior of the propeller, as far as the first modes
are concerned: frequencies are decreased but no coupling is observed between the propeller
blades.

From the numerical point of view, there are no discrepancies between the various coupled
formulations, for both cases (air and water). Numerical results are also in good agreement
with the experiments, since the computed water/air frequency ratio is close to the
experimental one.

From the practical point of view, efficiency of the symmetric formulations is clearly
demonstrated when referring to time calculations. Although the size of the problem is almost
the same with the two formulations, computational time is reduced from 28.000s to 595s for
the coupled case in air by using the symmetric formulation and from 800,000s to 2,000s for
the coupled case in water (see Tab. 7): reduction of computational time is rather significant
in the present case, but similar results have been observed on other industrial applications
(Sigrist, 2006).

Although such a result was expected, since symmetric coupled formulations have
precisely been proposed in order to reduce computational costs by using algorithms for
symmetric eigenvalue problem, this application example clearly illustrates how coupled
fluid-structure modal analysis can benefit from the implementation of symmetric
formulations in a finite element code such as ANSYS for industrial purposes.
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CONCLUSION
The modal analysis of coupled fluid-structure systems is not a new topic as such, since
symmetric coupled formulations were developed more than twenty years ago. However,
there is a continuing growing interest to perform modal analysis of complex structures with
fluid-structure interaction with industrial finite element codes. In particular, coupled
formulations with symmetric matrices are not up to now available in some codes, such as the
ANSYS code, which is widely used in industry and academia. In the present paper,
numerical developments have been exposed with the view to implementing symmetric
formulations in the ANSYS code for the modal analysis of industrial problems with FSI
modeling. The basic theory of some symmetric and non-symmetric formulation has first
been recalled and validation of their integration in the ANSYS code has been exposed for
two generic cases as well as for an industrial problem.

The advantages of using a symmetric formulation have clearly been highlighted, in
particular as far as computational time is concerned.

Enhancement of the ANSYS code for the dynamic analysis of fluid-structure interaction
problem is still on progress: next step is devoted to the dynamic analysis of coupled systems
with modal decomposition techniques (temporal or spectral approaches) using the symmetry
properties of the mass and stiffness operators. Validation test cases and industrial
applications will be presented in a next paper.

The resented developments in the ANSYS code have been supported by French Naval
Shipbuilder DCN for its own applications, but future release of the code will include these
new modeling possibilities that will benefit to the entire ANSYS users community in
industry for various engineering applications.
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APPENDIX
Analytical calculation of sloshing and acoustic modes of require the computation of first
roots of function Dα,n (x) = J’n (x) Y’n (αx) – Y’n (x) J’n (αx)  where J’n and Y’n are the
derivates of the first and second kind Bessel functions of order n. Figure 12 gives a graphical
representation of function Dα,n for α = 2 n = 1 . Table 8 gives the first roots of Dα,n in the
range [0,10].
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Figure 1  General representation of a fluid-structure interaction problem

Figure 2  Axi-symmetric pressure-based fluid finite element
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Figure 3  Elementary validation test case. Hydro-elastic coupling with fluid free
surface

Figure 4  Fluid sloshing modes. 3D and 2D-axi symmetric finite element calculation
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Figure 5  Fluid sloshing modes. Convergence of frequencies for sloshing modes #3
and #4 with mesh refinement

Displacement u Pressure p Displacement u Pressure p Elevation η
Elastic mode Sloshing mode Hydro-elastic mode

1.0355 1.3000 Hz 0.7133 Hz

Figure 6 Validation test case. Uncoupled and coupled hydro-elastic mode
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Figure 7  Elementary validation test case. Elasto-acoustic coupling without fluid free
surface

Figure 8  Fluid acoustic modes. 3D and 2D-axi symmetric finite element calculation
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Displacement u Pressure p Displacement u Pressure p Potential �
Elastic mode Acoustic mode Elasto-acoustic mode
327.44 Hz 486.53 Hz 258.14 Hz

Figure 9  Validation test case. Uncoupled and coupled elasto-acoustic mode

Figure 10  Propeller and fluid finite element model
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Figure 11  Propeller eigenmodes in water (coupled calculation with (u,p,ϕ)
symmetric formulation)
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Figure 12  Graphical representation of function x–Dα,n(x) for n = 1, α = 2, and x � [0,10]

Table 1. Coupled fluid-structure analysis with the ANSYS code, using fluid
displacement-based or pressure-based formulations

(u,ξ) coupled formulation(u,p) coupled formulation
Fluid acoustic modes × ×
Fluid sloshing modes × O
2D axi-symmetric geometry × O

3D geometry × ×
Modal analysis × ×
Static analysis × ×

Dynamic analysis, direct method × ×
Dynamic analysis, modal method × O

Table 2. Validation test case. Fluid sloshing modes with pressure-based
formulation. 3D and 2D axi-symmetric results

Frequency Analytical 3D finite 2D axi-symmetric finite 
solution element model element model

f1 1.2973 Hz 1.3000 Hz +0.21% 1.2981 Hz +0.06%
f2 2.8559 Hz 2.9027 Hz +1.64% 2.8978 Hz +1.47%
f3 3.9731 Hz 4.1930 Hz +5.53% 4.1850 Hz +5.33%
f4 4.8511 Hz 5.4810 Hz +12.98% 5.3970 Hz +11.25%
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Table 3. Validation test case. Coupled hydro-elastic modes with symmetric and
non-symmetric formulation. 3D and 2D axi-symmetric results

Frequency 2D-axi 3D
(u,p) (u,η,ϕ) (u,p) (u,η,ϕ)

f1 0.7133 Hz 0.7133 Hz 0.7127 Hz 0.7127 Hz
f2 1.4829 Hz 1.4829 Hz 1.4837 Hz 1.4837 Hz
f3 2.8860 Hz 2.8860 Hz 2.8907 Hz 2.8907 Hz
f4 3.5832 Hz 3.5832 Hz 3.5809 Hz 3.5809 Hz

Table 4. Validation test case. Fluid acoustic modes with pressure-based
formulation. 3D and 2D axi-symmetric results

Frequency Analytical solution 3D finite element model 2D axi-symmetric finite 
element model

f1 1617.0 1621.8 +0.30% 1617.0 0.00%
f2 1901.3 1905.5 +0.23% 1901.5 +0.02%
f3 2571.9 2577.8 +0.23% 2574.8 +0.11%
f4 3408.0 3421.2 +0.39% 3418.9 +0.32%

Table 5. Validation test case. Coupled elasto-acoustic modes with symmetric and
non-symmetric formulation. 3D and 2D axi-symmetric results

Frequency 2D-axi 3D
(u,p) (u,p,ϕ) (u,p) (u,p,ϕ)

f1 258.14 Hz 258.14 Hz 257.82 Hz 257.82 Hz
f2 558.38 Hz 558.38 Hz 559.48 Hz 559.48 Hz
f3 639.47 Hz 639.47 Hz 640.34 Hz 640.34 Hz
f4 791.60 Hz 791.60 Hz 792.48 Hz 792.48 Hz

Table 6. Propeller eigenfrequencies in air and water. Coupled calculation with (u,p)
and (u,p,ϕ) formulations. Numerical and experimental air/water eigenfrequency ratio
comparisons

Frequency Fluid: air Fluid: water β num. β exp.
(u,p) (u,p,ϕ) (u,p) (u,p,ϕ)

f1 64.82 Hz 64.92 Hz 34.67 Hz 34.90 Hz 46.5 % 45.2%
f6 109.98 Hz 110.11 Hz 64.79 Hz 65.07 Hz 41.1 % 39.1%
f9 179.98 Hz 179.24 Hz 119.27 Hz 119.60 Hz 33.7 % 33.2%
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Table 7. Problem size and computational time with (u,p) and (u,p,ϕ) formulations for
coupled eigenfrequencies calculation

(u,p) formulation (u,p,ϕ) formulation
Fluid: air Fluid: water Fluid: air Fluid: water

Number of DOF 236.602 251.171
CPU Time 28.469 s 788.434 s 595 s 2174 s

Table 8. First roots of function Dα,n for n = 1 and α = 2

m 1 2 3 4
qm,n=1 0.677360 3.2824712 6.3532112 9.4713290

Int. Jnl. of Multiphysics Volume 1 · Number 1 · 2007 149





Announcement and Call for Papers

MULTIPHYSICS 2007
12-14 December 2007
Manchester, UK

Multiphyiscs analysis has become increasingly important in 
recent years due to demand in design and understanding of 
complex systems. 

The objective of the conference is to share and explore 
findings on mathematical advances, numerical modelling and 
experimental validation of theoretical and practical systems in 
a wide range of applications. 

Authors are invited to submit abstracts of papers up to 300 
words containing key objectives and conclusions. 

Abstracts should contain the title of the presentation, names 
of authors, their affiliations including the full contact details of 
the corresponding author, and some keywords.

Abstract submissions should be made to
email conference@multiphysics.org
or online www.multiphysics.org
by 31st May 2007

Authors of selected abstracts will be invited to submit full 
length papers for publication in 
‘The International Journal of Multiphysics’.  

www.multiphysics.org

Int. Jnl. of Multiphysics Volume 1 · Number 1 · 2007 151


