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ABSTRACT

An elastodynamic fracture model has been implemented in the explicit
finite element software DYNA3D that predicts energy release rates of
stationary, through-thickness, 3-D cracks in linearly elastic materials. This
work is part of an on-going effort to investigate implementation of
automated fracture models in DYNAGSD. It follows the implementation of a
linear elastic fracture model that is capable of simulating automatic crack
propagation without user intervention. The current model uses a path-
independent volume integral expression obtained by modifying an
expression developed earlier for 2-D crack problems to compute the
dynamic energy release rate. It is implemented for 3-D solid (brick)
elements. Domain integral method is used to develop the volume integral
expression. Domain integral form of the expression is particularly well-
suited for applications with the finite element method as it overcomes the
difficulty associated with defining contours around the crack tip. Also, it
does not involve elements around the crack front, thereby leading to better
accuracy when using the finite element method for crack analysis. The
implementation of the model has two basic steps - search for elements in
a chosen integration volume, and numerical evaluation of the integral
expression. The integration volume to be used is input by means of two
values - one for number of rings of elements around the crack front to be
ignored, and the other for outer limit of the volume. Some mechanical field
quantities in the integral expression are not available in DYNA3D’s brick
element implementation. These values are determined for the integration
volume elements and stored as additional history variables, if needed,
during the numerical evaluation phase. Numerical examples to verify the
accuracy of the current model are presented.
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Automated dynamic fracture procedure for explicit

Advancements in non-destructive examination techniques have made it increasingly obvious
that all structures contain cracks or crack-like flaws. Hence, fracture mechanics has become
a significant part of the structural design process and thereby an active subject of research.
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Linear elastic fracture mechanics (LEFM) is the branch of fracture mechanics that deals
with behavior of bodies of nominally elastic materials containing cracks subjected to quasi-
static loading conditions. LEFM ceases to be valid when significant plastic deformation
precedes failure or time becomes an important variable or both. For example, inertia effects
are important when the load changes abruptly or the crack grows rapidly and LEFM has been
found to be inadequate for such problems. As a result, significant advances have been made
in incorporating other types of material behavior and dynamic analysis in fracture
mechanics.

Many experimental approaches have been devised to study the process of dynamic
fracture. However, due to short spans of the fracture events, it is difficult to directly measure
higher-order physical quantities like energy distribution, instantaneous energy release rate,
and dynamic stress field close to the crack tip. This drawback can be overcome by using
computational approaches. Therefore, the advancement of dynamic fracture mechanics relies
heavily on parallel advances in computational methods for dynamic fracture simulation [1].
A detailed review of the impact of computational technology on furthering the understanding
of fundamental fracture phenomena can be found in [2].

Among the widely used computational methods, the finite element method is well
established as a powerful and versatile numerical technique for solving solid mechanics
problems. Together with the latest computing technology, it is very well suited for advanced
fracture mechanics problems. However, in the analysis of dynamic crack phenomena by
means of computational methods, such as the finite element method, a fundamental difficulty
is encountered in efforts to compute values of crack tip energy flux versus time or amount of
crack growth. The difficulty arises from the fact that, on the one hand, the crack tip energy
flux is defined in terms of values of field quantities for points arbitrarily close to the crack
tip while, on the other hand, it is precisely for points near the crack tip for which the accurate
calculation of field quantities is most difficult [3]. A detailed review of the major advances
in finite element theory and implementation which addresses the problems of fracture
mechanics can be found in [4].

The first crack tip contour integral expression for elastodynamic energy release rate was
proposed by Atkinson and Eshelby [5], who argued that the form for dynamic growth should
be the same as the quasi-static growth with the elastic energy density replaced by the total
mechanical energy density, that is, the elastic energy plus the kinetic energy [3]. Kostrov and
Nikitin [6] and Freund [7] subsequently derived the equivalent integral expression for
dynamic energy release rate in terms of crack tip stress and deformation fields directly from
the field equations of elastodynamics. Nakamura et al. [3] developed an integral expression
for crack tip energy flux in terms of near tip mechanical fields which is applicable to a broad
range of material response. More significantly, they showed that many seemingly different
path-independent integrals that were developed earlier can be extracted from their expression
by invoking appropriate restrictions on material response and crack tip motion. They also
gave a couple of modified forms of their expression that are more suitable for analysis of
dynamic crack phenomena by means of computational methods. One such expression is a
domain integral which circumvents the difficulty associated with the accurate calculation of
field quantities for points arbitrarily close to the crack tip. Li et al. [8], and Moran and Shih
[9] also developed domain integrals by converting line integrals to surface integrals in 2-D
problems and surface integrals to volume integrals in 3-D problems, which then enabled the
use of stresses and strains at the element integration points. Charoenphan et al. [10] applied
a similar procedure to the 2-D expression developed by Nakamura et al. [3] and developed a
domain integral expression for the dynamic energy release rate of through-thickness 3-D
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cracks which they then implemented for shell element in the explicit finite element software
DYNA3D for modeling crack growth in composite material shell structures.

The primary objective of the present work is to implement the domain integral expression
developed by Charoenphan et al. [10] for 3-D solid (brick) elements in DYNA3D. This work
is part of an on-going effort to investigate the implementation of fracture models in
DYNA3D to simulate automatic crack propagation using brick elements. DYNA3D is an
explicit finite element software used for analyzing the dynamic response of 3-D solids and
structures. It uses element removal techniques to simulate the failure process. The crack
opening profile therefore cannot be modeled. Furthermore, the stress based failure
methodology is not able to describe failure accurately. Therefore, it is important to
implement fracture theories for solving crack propagation problems [11]. The present work
follows the implementation of LEFM models by Tabiei and Wu [11]. Their models have the
capabilities to simulate automatic crack propagation without user intervention. Details of the
implementation of the current model and verification examples to validate it are given in this
report.

INTEGRAL EXPRESSION FOR DYNAMIC ENERGY RELEASE
RATE IN LINEARLY ELASTIC MATERIALS

The energy approach to fracture analysis states that crack extension occurs when the energy
available for crack growth is sufficient to overcome the resistance of the material. Griffith
[12] was the first to propose the energy criterion for fracture, but Irwin [13] is primarily
responsible for developing the present version of this approach: the energy release rate, G ,
which is defined as the rate of change in potential energy with crack area for a linear elastic
material. At the moment of fracture, G = G, the critical energy release rate, which is a
measure of fracture toughness.

dil
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where I1 is potential energy and 4 is crack area [14].

When time becomes an important variable in fracture problems, inertia effects become
significant and dynamic fracture analysis is required for practical and reasonably accurate
solutions. For the application of energy approach to dynamic fracture problems, Nakamura
et al. [3] developed the following 2-D integral expression for dynamic energy release rate of
a plane crack in a linear elastic body advancing in the x, (1) direction (normal to the crack

tip):

G = (U +T)n ~o,nu, T+ [(piiu,, - pivi,, Jia @)

o 4

where U is the strain energy density, 7 is the kinetic energy density, o, are the components
of stress, u, are the components of displacements, p is the mass density of the material, . are
the components of the unit normal vector to a contour I'; around the crack tip which begins
on one crack face and ends on the opposite face, and 4, is the area enclosed by I, another
contour I" around the crack tip but closer, and a portion of crack faces between the end points
of the contours. The contours and area are shown in figure (1). This expression is valid for
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remote contour paths in the absence of body forces in linearly elastic materials. Note that a
comma in the sub-script of a term, in the above expression as well as others in this report,
denotes a partial derivative with respect to the spatial direction represented by the component
that follows, ie., 5, - .
" ox,

Figure 1 Area A, and contours T, ', of equation (2)

A unique feature of this expression is the fact that it does not involve mechanical field
quantities close to the crack tip which makes it particularly well suited for implementation
in the finite element method. However, it is recommended only for problems in which the
ratio v/c, is less than 0.5 where v is the instantaneous crack tip speed and c, is shear wave
speed in the material. Nakamura et al. [3] attributed this condition to the second and fifth
terms in the expression. These terms are typically comparable in magnitude but of opposite
signs leading to their net contribution to the energy release rate being small and a potential
source of computational error. At lower speeds their contribution to the energy release rate is
insignificant relative to the other terms, however, the contribution becomes significant at
higher crack tip speeds.

In 3-D crack problems, an expression similar to (2) for the dynamic energy release rate
can be written as:

G= —;T I[(U + Tblj —O,lU;, }njdA + j(pi’ilui,l - pﬂiui,l )dV 3)
S h

where contour surface S, is a through-thickness cross-sectional area encircling the crack
front, B is thickness of the structure, 61‘]‘ is kronecker delta, m; are the components of the unit
normal vector of S, V| is the volume enclosed by S, excluding the area in the vicinity of the
crack front, and all other terms are same as before. It has to be noted that the above
expression corresponds to a through-thickness crack in a uniform thickness structure.

There is one major issue though, with the above expression related to applications with
the finite element method. Ideally, for a finite element model using this expression, the



Int. Jnl. of Multiphysics Volume 1 - Number 1 - 2007 37

surface S| should be defined such that it passes through the element integration points as
stresses and strains are determined most accurately at these points in finite element analyses.
Though this is certainly possible, it leads to other inconveniences. A second option is to pass
it through element boundaries and determine the corresponding values by interpolation
and/or extrapolation from nodal values. This method however, leads to a loss in accuracy.
Another option is to convert the surface integral into a volume integral using the divergence
theorem but this is also not viable as the volume thus obtained would involve elements close
to the crack front which would again induce inaccuracies.

This difficulty is circumvented by using finite domain integrals which were introduced by
Kishimoto, Aoki and Sata [15,16], Atluri [17], and Nishioka and Atluri [18,19] that uses the
concept of virtual crack extension methods. The procedure that converts equation (3) into a
domain integral form more suitable for finite element analysis of 3-D crack problems is
summarized in the next section.

INTEGRAL EXPRESSION FOR DYNAMIC ENERGY RELEASE
RATE IN LINEARLY ELASTIC MATERIALS USING DOMAIN
INTEGRAL METHOD

The dynamic energy release rate expression in equation (3) is converted to a domain integral
form as it is more convenient for use with the finite element method. The domain integral
form is obtained by converting the surface integral in (3) into a volume integral involving
elements on the outer boundary of volume ¥, only as follows.

Consider a uniform thickness 3-D plate with a through-thickness crack, as shown in figure
(2). Surfaces S|, S,, S;, and S, volume V|, direction x,, assumed as the direction in which the
crack is advancing, and unit normal vectors, m, pointing outward from the surfaces, are also
shown.

crack faces

....................... P S, crack front

Figure 2 Integration path for the domain integral evaluation
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Consider now the surface formed by S, U S, U S; U S,. Obviously, the surface integral of
equation (3) evaluated over S, alone will differ from the same evaluated over S, U S, U S,
U S, by the contributions of the additional surfaces S,, S;, and S,. If these contributions are
eliminated, then the integral value along S, and the combined surface will be the same. This
can be achieved as summarized below. Though it appears that the contributions of three
surfaces have to be eliminated, actually, it is only left to eliminate the contribution of S, as
the integrals on surfaces S, and §, vanish since on these surfaces om; =0 and m,= 0.
Defining components m;=q,n;, equation (3) can be written as:

G= % .[[(U + T)élj —Oli ]qandA + I(pﬁz”:,l - pu, )dV S
S "

Now, if g, is chosen as a scalar function that is unit value on S, and zero on §;, the surface
integral on S; will be zero and its contribution is eliminated. Therefore, the expression for
dynamic energy release rate is transformed to:

G= %{ I[(U + T)§1,1 —OyU, ]qlnjdA + J-(piiiui,l — U, )dV} ®)

N

where § is now the surface formed by S, U S, U §; U S, and enclosing the volume V, ¢, is a

0 onS
scalar function defined as: ¢, = {1 S3 , and all the other terms are same as before.
on S,
Finally, applying divergence theorem to equation (5), the energy release rate is written in
its domain integral form as:

G =% I[(U+T)5u —ou, 4,4V + .[(piii”i,l - pui; )dV 6)
l/.l

Vp

where V), is the volume of elements enclosed by S, minus the volume of elements
enclosed by S, and V is the volume of elements on the outer boundary of ¥, with S| as their
outer surface. Figure (3) shows a simple example of integration volumes V, and ¥, that can
be used to determine the dynamic energy release rates for a semi-infinite crack using
equation (6).

crack -t

volime Vy elements

™®

volume V, elements
(shaded)

Figure 3 Example of a finite domain for the domain integral expression for dynamic
energy release rate
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IMPLEMENTATION OF THE MODEL IN DYNA3D

As mentioned earlier, the current model is implemented for the eight-node brick element in
DYNAS3D. This element uses one-point reduced integration by default. For this element,
equation (6) can be discretized as:

1
G=5 3 s{{U+1)8, —o,u, o, T+ S 8l{piiu,, - priyi, 1] @
umber Number
of elements of elements
in Vy in Vg

where J is the element Jacobian relating the element volume in local coordinates to the
volume in global coordinates and all other terms are as given before. The factor of 8
multiplying the terms originally in the integral expression is the weight for the single
integration point, (0,0,0) in local element coordinates.

For a linear elastic material, strain energy density U and kinetic energy density T can be
written as:

1
U =5(O'ngn TOpEy + 053853 T0p) 1 ++0,37 +O'13713) ®)
T, .
T= Ep(ulul + i + 131l ©)

Substituting equations (8) and (9) in equation (7) and expanding the index notation leads
to the equation:

1 1
G= Z gli{g(o'ngu t0pEy +03E; +0L) 103y +013713)

B Number
of elements
in Vy

1 .. .. ..
+ Ep(ulul +u,u, + “3”3) g9, t {Ulluu +0yU,, +03U; }ql,l - {012”1,1 tOpU, ) + 03Uy, }ql_z

- {‘713“1,1 + 05U, +O33U;, }ql,S 1] + Zg[p(iilul,l +iyUy, + iUy, )‘ p(ulul,l + Uy, + sl )l]
Number

of elements
in Vg

(10)

Note that the vector and tensor quantities in the above expression are in a local coordinate
system and not in the global coordinate system. The local coordinate system is a Cartesian
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system with the axes along the directions normal (1-direction), bi-normal (2-direction) and
tangent (3-direction) to the crack front as shown in figure (4).

Figure 4 Local coordinates at a 3-D crack front

It would seem like the evaluation of the energy release rate expression in equation (10) is
a straight forward process. However, this is not the case as only two of the quantities needed
to evaluate the expression are readily available for the brick element as implemented in
DYNA3D, namely the strain energy density and the stresses. All the other quantities are
determined at each time step and stored as history variables, if needed, when using the
current model and then used. A term-by-term description of the determination of the
quantities is given later in this section.

The current model uses the same methodology to model actual 3-D crack shapes in finite
element models as the earlier LEFM model, [11]. The crack shapes are modeled with edges
and surfaces of brick elements. The cracks are decomposed into a series of “sub-cracks” at
the crack front each of which is defined by three nodes with the identification numbers 1, 2
and 3, with node 2 on the crack front, as shown in figure (5). The input phase subroutines of
DYNA3D have been modified to read the crack input parameters and allocate memory for
the fracture model arrays.

Crack
Surface

eIl e T
' T

Figure 5 Decomposition of a 3-D crack tip

Implementation of the current model has two major steps: determination of elements in
the integration volumes V, and V,, and evaluation of the integral expression after
determining the required quantities of the integration volume elements.

The first stage of the implementation is the determination of elements in V, and V. They
are determined based on two input values, the number of rings of elements around the crack
front that are excluded from the evaluation (elements enclosed by surface §;), henceforth
denoted by nofringsl, and the ring number of the outer most layer of elements in the chosen
volume, henceforth denoted by nofirings2. The input phase subroutines are modified to read
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nofringsl and nofrings2 along with the thickness of the structure as additional inputs from
the input file. New subroutines have been created to find the elements in the integration
volumes, and nodes on the outer surface S, integration path based on nofrings!, nofiings2,
and nodes on the crack front. At the first time step, these elements and nodes are found and
stored in separate arrays.

Starting from the second time step, for each crack in the structure, the required field
quantities are determined for the elements in the integration volumes at their integration
points, (0,0,0) in local element coordinates, and dynamic energy release rate is computed
using equation (10). As mentioned earlier, some of the required field quantities are readily
available in DYNA3D while others are determined in the implementation. A brief description
of the procedure used to determine the various quantities follows.

Density p : Density of the material is available from the finite element model.

Strain energy density U: Strain energy density of all elements are stored in the main data
array of DYNA3D. Values for the integration volume elements are retrieved from this array
for the computation.

Kinetic energy density T: In each element, components of velocity of the integration point,
v/, in global coordinates, are first determined by interpolating nodal velocities using the
shape functions as follows:

Vi =D8vas a=xy.z (11)

where v/ are the components of nodal velocities, and ¢, are the shape functions at the
integration point. The nodal velocities in global coordinates are also not available at the
current time step, only the values lagging by half a time step are available. Therefore, before
using the above relation, the current values are obtained using equation (14) given later in
this section.

Components of the integration point velocity in local crack coordinates, 3%, are obtained
using the relation: ’

it = 3T Py j=123 (12)

a=x,y,z

where T, are elements of the transformation tensor that relates unit vectors of the global
and local crack coordinate systems.

Finally, kinetic energy density of the element is determined using equation (9) in the
previous section.

Stresses 0,;: Stresses in the elements, in global coordinates, are available in the main array.
Each integration volume element’s values are retrieved and transformed to local crack
coordinates using the following coordinate transformation relation for tensors:

o= 2 D2 TaTp00: ij=123 (13)

a=x,y,z f=x,y,z

where O , O 'aﬁ are elements of the stress tensor in local crack and global coordinates

respectively, and 7, , T, are again elements of the transformation tensor.
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Velocity gradients u, ,: Velocity gradients at the integration points of elements are not
readily available. In each element, they are determined from nodal velocities in global
coordinates lagging by half a time step, which are the only related values available in the
main array. First, the nodal velocities at the current time step are obtained using the relation:

n n ]/2

At
V = +a 2 a=x,),z (14)

n n-1/2 . .
where V,, Vo = are components of nodal velocities at current time step and half a step

behind respectively, a?, are components of nodal accelerations at current time step, and At is
the current time step. Then, elements of the velocity gradient tensor at the integration points,

in global coordinates, Vépﬁ , are obtained using the relation:

8
Vi =D Ve aB=xy.z (15)
j=1

where v/ are the components of nodal velocities in global coordinates, and ¢, p are the
elements of the strain displacement matrix at the integration point. Finally, the required
velocity gradient at the integration point, in local crack coordinates,u, | , is obtained using the
relation:

> YT Tve,;  i=123 (16)

a=x,y,z f=x,y.z

where T, and T, p are again components of the transformation tensor.

Displacement gradients U Knowing the velocity gradients, increments of the

displacement gradients, in local crack coordinates, Aul | » are obtained using the relation:

Auly =al Aty =123 (17)

Then, the total displacement gradient at the current time step is obtained using the
relation:

b=t Al i=123 (18)

where ”ufﬁ , ”‘lulll’”l , are the displacement gradients at the current time step and previous time
step respectively.

As obvious from equation (18), these values are stored as additional history variables for
the elements in the integration volumes.

Accelerations ii : Accelerations at the integration points of elements are determined from
nodal accelerations which are in-turn obtained from resultant nodal forces. The nodal
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acce’ ' g
i = V) O - CR )]s a=ns 19)

a
]

where /iy are components of acceleration of node /, m; is mass of node j, (7, ). (F}.),, ,
¢F%),, are components of external, hourglass, and internal nodal forces at node j, C is a
damping co-efficient, and /- are the components of velocity of node j lagging by half a
time step.

Then, components of acceleration of the integration point of an element in global
coordinates, L'ig’, is obtained using the relation:

8
il =Yg, a=x.yz (20)
Jj=1

where i/ are components of nodal accelerations, and ¢, are the shape functions at the
Integration point.

Finally, acceleration components in local crack coordinates, u’jP , are then obtained using
the relation:

iy = YTy j=123 1)

a=x,y,z

where T, are again elements of the transformation tensor.

Jacobian J: Jacobian for the brick elements is equal to one-eight their volume per their
definition.

Gradients of q: Gradients of the g function with respect to the local crack axes, g, ;, q,,
» q, 3 are obtained by introducing a g' function in the global coordinates as:

e onS$,
7= 0 elsewhere

where é, is the unit vector in the local crack co-ordinate system’s x, (1) direction. It is
assumed to be a nodal property, thereby an 8x3 array for each element, in the
implementation. The value of ' at the integration point of an element is then obtained by
interpolation, using the element shape functions as:

8
qua=Z¢JJq'a; a=Xx,y,z (22)
Jj=1

where 7 q'a are the components of ' at the integration point, ’q'a are the corresponding
components at the nodes, and ¢, are the element shape functions.

. - . . L . .
Gradients of the ¢' components at the integration point, = ¢ 'a, 5 »are then obtained using
the relation:
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8
"qus=2.8,5"00: a.B=xy.z (23)
J=1

where ¢, 5 are the elements of the strain displacement matrix.
Finally, the required gradient values of § in crack coordinates are obtained using
transformation relations for tensors as follows:

g,= > 2T Tpdeys =123 (24)

a=x,y,z f=x,y,z

where ¢, ; are the required gradients of the components of g at the integration point in

crack coordinates, and 7', T[ﬁ are again elements of the transformation tensor.

MODEL VERIFICATION

Four stationary crack problems are used to validate the current model. Though the domain
integral expression used in this model is capable of predicting energy release rates for cracks
propagating at speeds up to one-half the shear wave speed in the material, currently, it is not
suited for simulations of propagating cracks. The automatic remeshing strategy implemented
by Tabiei and Wu [11] to model the crack growth explicitly uses the strategy of delete-and-
fill process: first, a group of elements in a region around crack front is deleted, then the crack
is extended and finally, the local domain is refilled with new elements. Since this process
involves the instantanecous release of some nodal constraints, spurious high-frequency
oscillations are observed in the finite element solutions making the model unsuitable for
simulations of crack propagation problems.

All geometries in the following examples are meshed with brick elements as the current
model has been implemented for use with brick elements only. A couple of quasi-static
problems used to study the effect of mesh density and prove the path-independence of the
finite domain integrals are presented first followed by a couple of dynamic problems.

1. ENERGY RELEASE RATE FOR A SEMI-INFINITE CRACK UNDER QUASI-
STATIC CONDITIONS
Long duration simulations in explicit dynamic codes are an acceptable way of simulating
quasi-static problems. Hence, for long duration simulations, the dynamic energy release rate
predicted by the current model should converge to the quasi-static solutions. This condition
is used in this example and the next for validation of the current model and to study the effect
of mesh density.

In this example, a mode-I crack in a semi-infinite plate, as shown in figure (6), whose
edges at finite length are displacing at a quasi-static rate under plane-strain conditions, is
considered. Freund [20] determined the energy release rate in this case to be:

2
us E

where G is energy release rate, u, is displacement of the finite edges, 1 is half-width of the
plate, E is Young’s modulus of the material, and v is Poisson’s ratio of the material.
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Three finite element models of a plate of length 2540 mm, width 508 mm, thickness 6.35
mm, Young’s modulus 68.9 GPa, and Poisson’s ratio 0.3, shown in figure (6), are created
with 500, 2000, and 8000 elements. Displacement at each gripped edge is prescribed as a
linearly increasing function of time. For a displacement of 0.635 mm, the analytical solution
is found from equation (25) to be 120.3 KJ/m?. The simulation time for the finite element
analysis is chosen to be 4 milliseconds which is long enough for the response of this problem
to be quasi-static. The energy release rates predicted by the current model are given in Table
(1).

As observed from values in the table, the energy release rates predicted by the current
dynamic model are very close to the analytical solution, with the maximum error being
1.91% for the 200x40x1 (finest) mesh with nofrings! = 5 and nofrings2 = 15 and 18, the
two largest domains. This is a reasonable error considering the fact that there is an
accumulation of errors associated with the various field quantities in the integral expression
with the increase in the number of elements in the integration volumes. Also, since it is a fine
mesh and nofringsl =5 , more elements close to the crack front are used in the computation,
which as mentioned is a major source of error in fracture analysis using the finite element
method. Another point to be noted from the values is that there is very little variation in the
results predicted by the current model with change in integration volumes. The standard
deviations are found to be 0.501076, 0.272261, and 0.666184 for the meshes with 500, 2000,
and 8000 elements respectively. This minimal variation proves the path independence or in
this case domain independence of the current model, which is a significant feature of integral
expressions for the energy release rate.

Figure 6 Mode - | crack in a semi-infinite plate
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Table 1: Energy release rates for a mode-| crack in a semi-infinite plate

Mesh Size nofringsl  nofrings2 Energy % Error
Release Rate (KJ/m?)
1 3 119.754 0.4539
50x10x1 1 4 120.749 0.3732
2 4 120.355 0.0457
3 6 122.176 1.5594
3 7 122.221 1.5968
100x20x1 3 8 122.267 1.6351
4 8 121.983 1.3990
5 8 121.603 1.0831
5 10 122.534 1.8570
5 15 122.594 1.9069
200x40x1 5 18 122.601 1.9127
10 18 122.086 1.4846
15 18 121.043 0.6176

2. ENERGY RELEASE RATE FOR A CENTRAL HORIZONTAL CRACK IN A
SQUARE PLATE UNDER QUASI-STATIC CONDITIONS

The model for this example is a square plate with a horizontal central crack subjected to
remotely applied uniform traction o = 100MPa . The geometry, material properties and
boundary conditions are shown in figure (7). The exact value of stress intensity factor X, for
this case is 4.72 MPa m'? (Tada [21]) and the corresponding energy release rate is
101.366 J/m? for plane strain. The traction is applied as a ramp load first and then kept
constant after 1 sec. for a total of 2.0 sec. simulation, as shown in figure (8).

o=1.0MPa

tetreteteeaeteeettetsees

Fy
E = 200, 000 MPa
w=03
Thickness = 1.0 m
Flane Strain
Exact K; = 4.72 MPa/m
(Tada. 1973}
16 m
2a=8m
lé m
* 5
o= 1.0MPa

Figure 7 Geometry, material properties, and boundary conditions of central
horizontal crack problem
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1.0 MPa

ol(t)

Y

0 1.0 2.0
time, 8

Figure 8 Load curve for applied traction in central horizontal crack problem

Four different meshes with 1280, 2880, 5120 and 8000 elements are used to study the
mesh sensitivity. Figure (9) shows the energy release rate curves obtained for these meshes.
As expected of finite element analyses, the values converge close to the exact solution with
mesh refinement, the 8000 element mesh converging to a value of approximately 99.26 J/m?,
an error of 2.07%. This shows that mesh refinement will provide convergence of the energy
release rate. Figure (10) shows results of the test for path-independence, the curves obtained
for different sets of values for nofrings! and nofrings2, that is, different integration volumes,
for the 8000 elements model. The different curves are denoted by two numbers with the first
one denoting nofringsl and the second one nofrings2. Better than the previous example, no
difference is seen in the energy release rate values obtained for all the different cases
considered proving the path-independence of the model.
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Figure 9 Central horizontal crack in a square plate: G Vs t for different meshes
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Figure 10 Central horizontal crack in a square plate: test for path independence

3. ENERGY RELEASE RATE FOR A SEMI-INFINITE CRACK SUBJECTED TO
A SINGLE STEP PULSE

In this example again, the case of a semi-infinite crack with an exact solution is used for
validation. Freund [22] obtained the following analytical solution for a semi-infinite crack in
an infinite plane subjected to a tensile stress wave normal to the crack plane. At t = 0, the
stress wave arrives at the crack plane and at a later time ¢ = T, the crack starts to propagate.
The analytical solution for the dynamic stress intensity factor in the interval 0 < ¢ < 7 (i.e.
the crack is stationary) is:

K(t)=Bo,Jeit (26)

where ¢, is the longitudinal wave speed in the medium, ¢, is the magnitude of the tensile
pulse with step function time dependence, and B is a function of Poisson’s ratio given in [22].

For plane strain, the dynamic energy release rate is then related to the dynamic stress
intensity factor as follows:

Gt.v)= Q‘T"z) AV K@) @27)

where v is the crack tip speed, and 4(v) is a universal function of crack tip speed. For a
stationary crack (v = 0), 4 is unity.

To simulate the infinite plane problem for which equation (26) is applicable, the half-
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width of the model, H , must be large enough so that within the period of interest, reflected
waves from the boundaries do not reach the vicinity of the crack tip. In addition, the length
of the model (in x, direction) must be sufficiently large compared to H so that within the
interval of interest, the crack tip region is unaffected by the unloading waves emanating from
the remote edges. As the geometry of the model used in example (1), shown in figure (6), is
large enough to satisfy these geometric constraints, it is again used for this validation
example also with the same mesh densities as given earlier.

A step pulse is applied at ¢ = — H/c, at the edge x, = [ of the model, and the pulse arrives
at the crack plane ( x, = 0 plane) at # = 0 . Other input data are as follows:

. Magnitude of the tensile pulse o, = 1GPa

. Longitudinal wave speed in material (Aluminum alloy) ¢, = 5787 mm/ms ,

. If pulse is applied at edge x, = H = 254 mm , then time taken for longitudinal wave to
reach the other edge (x, = — H ) and reflect = 2H/c, = 0.08778 ms

. Time taken for stress wave to reach crack tip = H/c, = 0.04389 ms

. Simulation time in DYNA3D input file = 0.085 ms

The variation of dynamic energy release rate with time for this problem, obtained using
the three finite element models with 8000, 2000, and 500 elements are shown in figure (11)
along with the exact solution. Two major observations can be made from the curves. First,
overall best results for this stress wave problem are obtained for the model with the finest
mesh i.e. 8000 elements. Second, considering this finite element model’s results only, it can
be observed that errors are very low, less than 5%, after # > 0.4 H/c, and substantially larger
at shorter times.

Both these variations are not unexpected from the current model for this stress wave
problem. Since the energy release rate is evaluated in this model using an integral expression
that involves mechanical field quantities of a subset of elements of the finite element model,
the predicted results depend to a great extent on the number of elements of the integration
domain through which the refracted wave from the crack-tip has traveled - more the number
of elements better are the results. Comparing coarse meshes to finer ones, clearly the number
of elements that the refracted wave has reached is lesser in the case of the former due to the
relatively larger element sizes. Therefore, the finest mesh yields the best results for this
problem. Considering a particular mesh only, at lower times the wave is in elements closer
to the crack-tip and some of these elements, as discussed earlier, are not included in the
computation of the energy release rate. This leads to the inclusion of only few elements
through which the wave has passed in the computation of the energy release rate during these
times leading to higher error in the predicted values.
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Figure 11 Variation of normalized energy release rate with normalized time for a
semi-infinite crack in an infinite plane subject to a single step pulse
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4. ENERGY RELEASE RATE OF A CENTRAL CRACK IN A FINITE
PLATE SUBJECTED TO DYNAMIC LOADING

This example is another test for the current model under dynamic conditions. A rectangular
plate with a central crack under plane strain conditions is examined. The plate, shown in
figure (12), is loaded dynamically in the axial direction by a uniform tension P(?) with
Heaviside-function time dependence as shown in figure (13). The material is linearly elastic
with shear modulus G = 76.923 GPa, Poisson’s ratio v, and mass density p = 5000 Kg/m?.
The thickness of the plate is assumed to be 0.4 mm and the crack length is 2a = 4.8 mm. A
finite element model comprising of 5000 (100x50x1 ) elements and 10324 nodes is used for
the simulation. This problem was solved numerically by Chen [23] using finite differences
and has been frequently used as a reference to validate other methods.

Variation of a normalized energy release rate G/Gref where

N s
o E predicted by the current model and those obtained from
Chen’s [23] results are shown in figure (14). Since both are numerical results, no comments
can be made about the accuracy of the current model based on these reference values. The
energy release rates predicted by the current model are found to be lower than the reference
values in general, especially close to the peak value. Overall, good agreement is observed
between the values validating the current implementation.
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Figure 12 Rectangular plate with a central crack under dynamic loading; a = 0.24
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Figure 13 Dynamic load applied to a rectangular plate with a central crack
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Figure 14 Variation of normalized energy release rate with time for a rectangular
plate with a central crack subjected to a dynamic load

CONCLUSIONS

A dynamic fracture model has been successfully implemented in the explicit finite element
software DYNA3D. This work is part of an on-going effort to investigate the implementation
of automated fracture models in DYNA3D for simulation of crack propagation problems
using 8-node solid (brick) elements. The current model computes the energy release rates of
through-thickness 3-D cracks in linear elastic bodies using brick elements. It uses a domain
integral expression that is well suited for use with the finite element method. The
implementation comprises of two basic parts - search of elements in an user-input integration
domain, and numerical evaluation of the energy release rate expression. Details of the
implementation are provided in this report. Numerical examples of stationary cracks under
different loading conditions are presented to validate the model and prove its accuracy. Only
stationary crack problems are presented since this model is not suitable for analysis of crack
propagation problems at the moment even though the energy release rate expression used in
the model is applicable to crack propagation problems with crack-tip speeds up to one-half
the shear wave speed in the material. When crack propagation problems are simulated, the
energy release rate begins to oscillate at a very high frequency from the first instant when a
crack’s length is incremented. This oscillatory behavior is attributed to instantaneous release
of nodal constraints during explicit modeling of the crack growth and can be overcome by
using a special scheme to release the nodes gradually. Implementation of such a gradual
nodal release technique is currently in progress and details of this work will be presented in
a following report. The work presented in this report is only the preliminary stage in the
author’s effort to implement a dynamic fracture model in DYNA3D that can be used in a
wide range of applications. In addition to the gradual nodal release technique, further
capabilities like the ability to simulate automatic crack propagation in different types of
materials, non-self-similar propagation, etc. will be added to the current model and reported
in the future.
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