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ABSTRACT

In the present paper the efficiency of acceleration techniques for fluid-

structure interaction computations are investigated. The solution

procedure involves the finite volume flow solver FASTEST, the finite-

element structural solver FEAP, and the coupling interface MpCCI. Within

the employed partitioned solution approach, a geometric multigrid solution

strategy on moving grids for the fluid domain is introduced. In particular, the

order in which the convective fluxes have to be treated within the pressure-

correction smoothing procedure is addressed. For reducing the coupling

iteration steps an adaptive underrelaxaation algorithm is employed. Both

acceleration techniques are investigated separately and in combination

with respect to numerical efficiency. As test configuration a representative

three-dimensional ullsteady coupled problem is considered.

1 INTRODUCTION
Coupled fluid solid problems usually require a high computational effort. Especially in three-
dimensional cases the computation time for the fluid part often increases dramatically with
the number of unknowns when applying simple iterative solution algorithms.

Within the frame of a partitioned approach, on the one hand, both solution algorithms for
the fluid and structure problems may be irmproved and, on the other hand, the coupling
strategy can be optirnized.

In the present investigation a multigrid procedure for moving meshes together with an
adaptive underrelaxation strategy is applied for accelerating the coupled computations. A few
investigations concerning the efficiency of adaptive coupling schellles have been presented
in earlier works. In [9] a comparison between three different methods, the Aitken, the
Tschebyscheff, and the method of deepest descent is presented. In [15] modified Aitken-like
methods are investigated including a study of their speed-up behavior. The works
concentrate on the investigation of the adaptive coupling procedure. The present paper
extends these studies by employing additionally a multigrid method and investigating the
combined acceleration.

Concerning multigrid techniques a huge numbers of works have been published. An
introduction is given in [2] also describing non-linear cases. In [16] multigrid techniques for
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the incompressible Navier-Stokes equations in combination with finite volume
discretizations are presented. However, detailed descriptions of multigrid techniques for
fluid computations on moving meshes as they are needed for coupled fluid-structure
problems can hardly be found in the literature. In the present paper a modified multigrid
algorithm is outlined especially taking into account the correct treatmeIlt of convective
fluxes in case of moving grids.

The investigations are performed on the basis of a three-dimeIlsional unsteady fluid-
structure interaction configuration.

2 GOVERNING EQUATIONS
We consider a problem domain Ω consisting of a fluid part Ωf and a solid part Ωs. For the
fluid domain part Ωf we assume a flow of an incompressible Newtonian fluid. In this case
the basic conservation equations governing transport of mass and momentlml for a fluid
control vollmle Vf with surface Sf are given by

(1)

(2)

where v is the velocit,y vector with respect to Cartesian coordinates x, t is the time, ρf iS
the fluid density, n is the outward normal vector and ff are external volume forces (e.g.,
buoyancy forces). v9 is the velocity with which Sf may move (grid velocity) due to
displacements of solid parts. The Cauchy stress tensor Tf for incompressible Newtonian
fluids is defined by

(3)

with the pressure p,s the dynamic viscosity µf and the identity tensor I.
For the structure we denote a material point in the reference configuration as

X whose position in the current configuration is given by 

(4)

The displacements are evaluated by

(5)

For more details see [14,10]. The basic balance equation for momentum for the solid

u = x − X .

x = χ(X, t) .

Tf = µf

(
∇v + ∇vT

)
− pI

Sf

∂

∂t

∫

Vf

ρfv dVf +
∫

Sf

ρf(v − vg)(v · n) dSf =
∫

Vf

ρfff dVf +
∫

Sf

Tf · n dSf ,

∫

Sf

(v − vg) · n dSf = 0 ,
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domain Ωs can he written as

(6)

where ẍ = ∂2x(X, t)/∂t2 is the acceleration, Ss denotes the second PiolaKirchhoff stress tensor,
ρs is the density of the solid, and fs are external volume forces acting on the solid (e.g.,
gravitational forces). Fs = ∂x/∂X denotes the deformation gradient.

In the present investigation we consider the Saint Venant-Kirchhoff material law

(7)

with the Green-Lagrangian strain tensor

(8)

as kinematic property. λs and µs are the two Larmé constants.

The problem formulation has to be closed by prescribing suitable boundary and interface
conditions. On solid and fluid boundaries ΓS and Γf standard conditions as for individual
solid and fluid problems can be prescribed. For the velocities and the stresses on a fluid-solid
interface Γi we have the conditions

(9)

where vb is the velocity of the interface and Ts = FsSsFsTs
T/ det Fs is the Cauchy stress tensor.

3 NUMERICAL FLUID-STRUCTURE COUPLING SCHEME
The discretization of the problem domain is based on a block-structuring technique. Fluid
and solid parts are assigned to different blocks. Solid blocks are treated by the finite-element
solver FEAP (see [13]). For the fluid blocks, which can be defined as moving or fixed, the
parallel multigrid finite-volume flow solver FASTEST is employed (see [5,12]). Both solvers
involve second-order spatial discretizations and fully implicit second-order time
discretizations.

For the fluid-structure coupling an implicit partitioned approach is employed. In Fig. 1 a
schematic view of the iteration process is given. After the initializations the flow field is
determined in the actual flow geometry. From this the friction and pressure forces on the
interacting walls are computed. These are passed to the structural solver as bolmdary
conditions. The structural solver computes the deformations, with which then the fluid mesh
is modified. Afterwards the flow solver is started again.

v = χ̇ = vb and Tf n = Ts n ,

E =
1

2
(Fs

T Fs − I) ,

Ss = λs trE I + 2µsE

∇ · (FsSs
T ) + ρsfs = ρsχ̈ ,
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Figure 1 Flow cllart of coupled solution procedure.

The fluid-structure interaction (FSI) iteration loop is repeated until a convergence
criterion � is reached, which is defined by the change of the mean displacements

(10)

Where m is the FSI iteration counter, N is the number of interface nodes, and � . �∞ denotes
the maximum norm. Note that an explicit coupling method would be obtained, if only one
FSI iteration is performed.

The data transfer between the flow and solid solvers within the partitioned solution
procedure is performed via an interface realized by the coupling library MpCCI (see [6]) that
controls the data communication and also carries out the interpolations of the data from the
fluid and solid grids. More details are given in [11].

Various test computations have shown that the coupling scheme is rather sensitive with
respect to the deformations especially in the first FSI iterations. Here, situations that are far
away from the physical equilibrium can arise, which may lead to instabilities or even the
divergence of the FSI iterations. In order to counteract this effect an adaptive underrelaxation
is employed.

By using an relaxation factor αm
FSI the actually computed displacements u~ m are linearly

weighted with the values um-1 from the preceding iteration to give the new displacements
um+1:

�FSI =
1

N

N∑
k=1

‖uk,m−1 − uk,m‖∞
‖uk,m‖∞

< ε ,
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(11)

where 0 < αm
FSI ≤ 1. Note that the underrelaxation does not change the final converged

solution. The basic effects of the underrelaxation has already been shown in [11].
For the adaptive determination of αm

FSI different methods are known. We employ here an
approach based on the Aitken method for vectorial equations, which is an extrapolation
approach frequently applied in the context of Newton-Raphson iterations. The basis of this
approach was proposed by Aitken in 1937 [1] and later improved by Irons and Tuck [8]. It
was identified as very efficient for computations in the field of fluid-structure interaction by
Mok [9].

Employing the vahles from two preceding iterations the so-called Aitken factor γm is
extrapolated by:

(12)

with ∆um-1 = um-2 – u~ m-1 and ∆um = um-1 – u~ m. The actual underrelaxation factor αm
FSI then is

defined by

(14)

As first Aitken factor in each time step γ0 the last one from the preceding time step can be
taken. For the first time step some reasonable value can be chosen, e.g., γ0 = 0.

4 MULTIGRID METHODS ON MOVING GRIDS
For a better understanding of the multigrid procedure on moving meshes with all the aspects
that have to be considered, first, the iteration algorithm for coupled computations on single
grids will be described. Afterwards the multigrid method without mesh moving is introduced,
and finally, the extension to multigrid in combiIlatioIl with moving grids is presented.

4.1 SINGLE GRID METHOD ON MOVING MESHES
Considering the momentum equation (2), an additional term for moving meshes

(15)

appears. This can be seen as a flux correction term due to the grid movement that has to

be subtracted from the usual convective flux F = in case of fixed meshes. As

suggested in [3] and [4], involving the space conservation law

(16)
∂

∂t

∫

Vf

dVf −
∫

Sf

vg · n dSf = 0 ,

∫
Sf

ρfv·n dSf

F corr =
∫

Sf

ρfv
g · n dSf ,

αm
FSI = 1 − γm .

γm = γm−1 + (γm−1 − 1)
(∆um−1 − ∆um)

T
· ∆um

(∆um−1 − ∆um)2

um+1 = αm
FSI ũm + (1 − αm

FSI)u
m−1 ,
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the flux correction is discretized by

(17)

ensuring mass conservativity. The quantities δVc
n are called swept volurmes and can easily

be calculated out of the change of volurmes due to the rmesh movement. The summation
index c runs over the faces of the control volume, the index n denotes the time level tn, and
∆tn is the time step size.

Thus, if one ensures that the space conservation law is fulfilled at any time the mass
conservation equation can be remained unchanged and the only difference between fixed and
moving meshes is the flux correction term Fcorr in the momentum equation.

Let us denote the routine which assembles the iteration matrix for the momentum
equation as "BUILD–A". BUILD–A takes the flux F from the previous iteration and
assembles the matrix coefficients for the convective part (note that fluxes are considered in
all three spatial dimensions and are denoted as a vector from now on). Now, we first modify
the flux F by subtracting Fcorr so that we can use the new corrected flux F* = F – Fcorr to use
the original

BUILD_A for fixed meshes. This flux correction plays a very important role for applying
the multigrid method to moving meshes.

The following Algolithm 1 shows the solution procedure for the coupled computation on
single grids:

Algorithm 1

(1) Pressure p, velocities u and duxes F are given from the previous iteration or
initialization.

(2) Correction of fluxes: F* = F – Fcorr.
(3) BIHld disclete Illomentum equations (BUILD_A) alld solve for v' employing SlMPLE-

Algorithm.
(4) Solve pressllre r.orrection e.qllation and llpdate (p, v, F).
(5) Goto (2) until convergence of fuid field properties is achieved.
(6) Calculate wall forces and send to the structural solver
(7) Receive displacements from the structural solver.
(8) Compute new grid and swept volumes δVn

c . 
(9) Goto (I) Until FSI-convergence is achieved.
(10) Start new time step.

4.2 MULTIGRID METHODS 0N NON-MOVING MESHES
Employing a simple iterative scheme on a single grid, it turns out, that the high frequencies
of the error are reduced very quickly but the low frequencies decrease gradually. The idea of
multigrid acceleration is to build an interpolated equation for the error on a coarser grid.
Regarding the larger grid spacing the lower error frequencies from the fine grid becomes
higher frequencies and can be reduced much faster due to the smaller number of control
volumes. For further details of multigrid techniques see [2,16,7].

We consider the non-linear system of equations on grid level k

F corr =
∫

Sf

ρfv
g · n dSf ≈ ρf

∑
c

δV n
c

∆tn
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(18)

with the coefficient matrix Ak and the source term Sk , both depending on the solution Φk =
(p,v.F)k. Starting on grid level k with φ0

k from the previous solution or initialization, after n
iterations the variables satisfy the equations only up to a residual Rn

k

(19)

Subtracting equation (19) From (18) leads to

(20)

that can be seen as an equation for corrections to reduce the residual term on the right
hand side and solved therefore on a coarser grid k – 1 with double grid spacing (the non-
linear dependency of A and S now is omitted for simplicity). The assembly of the coarse grid
equation begins with transferring the residual Rk

n to Rconst
k–1 by summing up the corresponding

fine grid residuals. The same procedure is applied to the fluxes. With an appropriate
interpolation operator Ik

k–1 the fine grid variables φn
k = (P,υ)n

k are restricted to the coarse grid
φconst

k–1 = Ik
k-1 φ

n
k. With these restricted properties the coarse grid equation can be written as

(21)

Αconst
k–1 and Sconst

k–1 are computed in the same way as on the fine grid using the restricted fine
grid variables. While the underlined term in (21), remain unchanged during the iteration
process, the other terms change. Only in the very first iteration φ0

k-1 iS equal to φconst
k–1 . After m

coarse grid iterations we obtain φ0
k-1 Rm

k-1, S
m
k-1,  and Am

k-1. If the underlined term of equation
(21) is now joined together with Sm

k-1 and Rm
k-1 is subtracted, the resulting equation has the

same appearance as (19) and the whole process can be recursively repeated for coarser grid
levels k–2, etc.

The corrections are evaluated as

(22)

and prolongated to the finer grid using an appropriate interpolation operator:

(23)

ψk is added to φn
k resulting in an improved solution φimpr

k.    This can be used either to do some
damping iterations necessary due to interpolation errors, or to begin with a new V-cycle
when the finest grid is reached.

ψk = Ik−1
k ψk−1 .

ψk−1 ≈ φm
k−1 − φconst

k−1

Ak−1φ
0
k−1 = Sk−1 + Aconst

k−1 φconst
k−1 − Sconst

k−1 + Rconst
k−1 ,

Ak(Φk)Φk = Sk(Φk) + Ak(φ
n
k)φn

k − Sk(φ
n
k) + Rn

k ,

Ak(φ
n
k)φn

k = Sk(φ
n
k) − Rn

k ,

Ak(Φk)Φk = Sk(Φk) ,
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The following Algorithm 2 summarizes the multigrid solution procedure for fixed meshes
(for simplicity only for 2 grid levels):

Algorithm 2
(1) Pressure p0

k , velocities υ0
k and fluxes F0

k are given from the previous iteration or
initialization.

(2) Do n iterations (2a)-(2c) on grid k:
(a) Build discrete momentum equations (BUILD A) on grid k and solve for υ k̀
employing SIMPLE-Algorithm.
(b) Solve pressure-correction equation and update (p, υ, F),k
(c) Go to (2a).

(3) Perform restriction of (p, υ, F, R),k
n:

(a) Compute  Rk
n on grid k using routine BUILD-A.

(b) R0
k-1 = ∑Rn

k, F
0
k-1 = ∑Fn

k, (p,v)0
k-1 = Ik

k-1(p,v)n
k.

(4) Assemble coarse grid equations with restricted values.
(5) Do m iterations (5a)-(5c) on grid k—1:

(a) Solve momentum equation ον grid k—1.
(b) Solve pressure-correction equation on grid k—1 and update (p, v, F)k–1.
c) Go to (5a).

(6) Compute corrections: ψk–l ≈ (p, v)m
k–1  – (p,v)0

k-1
(7) Prolongate corrections to fine grid ψk = Ik-1

k ψk–l and update (p, v, F)imp
k     .

(8) With the improved fluid field properties on grid k a new V-cycle can be
started, go to 1.

4.3 MULTIGRID METHODS ON MOVING MES~E.S
Now the single grid approach for the flux correction for moving grids as described in section
4.1 is applied to the multigrid solution strategy for fixed meshes as introduced in the previous
section. We employ the fact that the only difference between fixed and moving meshes is the
flux correction F* = F – Fcorr, provided that the space conservation law is fulfilled at any
time.

As in case of moving single grids, (p, v, F)0
k is given from the previous iteration or

initialization. Notice, that the routine BUILD A which assembles the momentum iteration
matrix A is not modified for the extension to moving grids. Therefore, first the correction of
fluxes F* = F – Fcorr has to be performed and afterwards the discrete equation can be built.
The remaining solution procedure on the fine grid is unchanged, i.e., solve momentum
equation, solve pressure-correction equation, and update variables. After n iterations the
preliminary solution (p, v, F)n

k is found. These quantities, and additionally Rn
k , have to be

restricted to the coarser grid. The routine BUILD-A is used to compute Rk. but since BUILD
A has not been modified for moving grids, once again the flux correction has to be applied
to calculate the correct residual on grid k employing BUILD A. Doing so, the flux Fn

k , which
also needs to be restricted, would have been changed. Thus, before flux correction Fn

k must
be saved, then the flux is corrected, Rn

k is calculated with BUILD A, and the saved flux is
transfered back. Now all quantities of the fine grid (p, v, F, R)n

k, may be restricted to the
coarser grid k–1 in the same way as described in the previous section.

Since only corrections are computed on the coarser grid, flux correction has not to be
applied there. The rermaining solution steps, i.e., solve momentuu equation, solve pressure
correction, calculate corrections, and prolongate corrections are identical to the case of fixed
grids. After the improved solution (p, v, F)imp

k     is achieved a new V-cycle can be started.

92 Efficiency of fluid-structure interaction simulations with adaptive underrelaxation



The following Algorithm 3 indicates the whole solution procedure for the multigrid
approach on moving meshes for coupled cormputations:

Algorithm 3
(1) Pressure p0

k, velocities v0
k and fluxes F0

k are given from the previous iteration or
initialization.

(2) Do n iterations (2a)-(2d) on grid k:
(a) Correction of fluxes: Fk

* = Fk—Fcorr
k       .

(b) Build discrete momentum equations (BUILD–A) on grid k and solve for v´
k

employing SIMPLE-Algorithm.
(c) Solve pressure-correction equation and update (p, v, F)k.
(d) Go to (2a).

(3) Perform restriction of (p, v, F, R)n
k :

(a) Save fluxes: Fk
save = Fn

k  .
(b) Perform flux correction: Fn

k 
* = Fn

k – Fcorr
k     .

(c) Compute Rn
k using routine BUILD-A with Fn

k *.
(d) Rewrite fluxes: Fn

k = Fsave
k      .

(e) Restrict values:
R0

k-1 = ∑Rn
k, F

0
k-1 = ∑Fn

k, (p,v)0
k-1 = Ik

k-1(p,v)n
k.

(4) Assemble coarse grid equations with restricted values.
(5) Do m iterations (5a)-(5c) on grid k–1:

(a) Solve momentum equation on grid k–1.
(b) Solve pressure-correction equation on grid k–1 and update (p, v, F)k-1.
(c) Go to (5a) .

(6) Compute corrections: ψk–l ≈ (p, v)m
k–1  – (p,v)0

k-1 .
(7) Prolongate corrections to fine grid ψk = Ik-1

k ψk–l and update (p, v, F)imp
k     ..

(8) With the improved fluid field properties on grid k a new V-cycle can be started (go to
1) until convergence is reached for the fluid field properties.

(9) Calculate wall forces and send to the structural solver.
(10) Receive displacements from the structural solver.
(11) Compute new grid and swept volumes δVn

c .
(12) Go to 1 until FSI-convergence is achieved.
(13) Start new time step.

5 TEST CASE
As test case a three dimensional lid driven cubic cavity is considered (see Figure 2). The side
length of the cube is L = 1m. At the bottom a flexible membrane with thickness tmem = 0.1 m
is situated. The membrane is fixed at the edges and the lid moves with a time dependent lid
velocity vlid defined by

vlid (t) = 0.5 (1.5 – cos (2πt/T0)) (24)

with period T0 = 5s. The inlet and outlet have 10% of the total height hin= hout =0.1 m and
are situated in the upper part on the left and right sides, respectively. The inflow velocity
corresponds to the lid velocity.
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Figure 2 Test case configuration

The material parameters for the structl1re and the fluid are defined as:

• Youngs modulus Es = 50000 N/m2

• Poisson ratio vs = 0 3
• Structure density ρs = 100 kg/m
• Fluid density ρf = 100 kg/ln3

• Fluid dynamic viscosity µf = 0.01 kg/(ms)
• static pressure pstatic = 0.1 Pa

Es and vs are related to the Lamé constants in (7) by

(25)

For the investigation three successive refined fluid grids are considered. The multigrid
computations are done with three grid levels for each grid set. The finest grid level of the
multigrid computation also is taken as discretization for the single grid computation. The
settings with the corresponding numbers of control volumes are summarized in Table 1.
Further, two different types of structural underrelaxation are analyzed, i.e., the standard one
with fixed αm

FSI = 0.8 and the adaptive Aitken method as outlined in Section 3 for the medium
grid set.

The structure discretization is fixed for all computations. Here, linear solid brick elements
are used with a discretization of 20 × 2 × 20 for the x-, y-, and z-directions, respectively.

λs =
Esνs

(1 + νs)(1 − 2νs)
and µs =

Es

2(1 + ν)
.

flexible
membrane

 inu   (t)

driven lid

outlet

L

L

0.5 L 2 L

Lx

y

z
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Table I Computational gridb and multigrid levelr.

# of control volumes for
grid set grid level 1 grid level 2 grid level 3
fine 159744 19968 2496
medium 19968 2496 312
coarse 2496 312 39

To give an illustration of the problem solution in Fig. 3 a snapshot of the velocity field
and in Fig. 4 the structural deformations for one period (in steps of 45º time phase angles)
are shown. In Fig. 5 the temporal displacement evolution of the center of the membrane is
depicted. The point denoted as start point of measure indicates the initial point from where
on the computing time measurements are taken. In each case a simulation time of 1.5s from
a predefined flow field is computed. The computer employed for all computations was a Intel
Pentium4 PC with a clock rate of 2539 MHz.

Figure 3  Snapshot of velocity field for test case.

6 RESULTS
The objectivc of this investigation is to quantify the accelerations that can be achieved by the
adaptivc underrelaxation and the multigrid technique. For this the averaged computing times,
numbers of fine grid iterations, and numbers of coupling steps per time steps are compsred
for the different setups.

At first. single grid and multigrid computation with fixed underrelaxation parameter 
αm

FSI = 0.8 are considered. In Table 2 the numbers of fine grid iterations and the computing
times for the different grid sets are summarized together with the corresponding acceleration
factors. One can observe that even on the coarsest grid the multigrid method already is nearly
two times faster as the single grid method. The acceleration factor increases to more than 12
for the fine grid. However, the finer the grid the larger is the portion of time that is spent on
the coarser grid levels.
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Figure 4  Structural deformations for one period in steps of 45° time phase angles.

Table 2 Number of fine grid iterations and computing times for single grid (SG) and
multigrid (MG) method and acceleration factor with fixed 
αm

FSI = 0.8.

fine grid iterations computing time [s]
grid set SG MG SG MG acceleration
coarse 31158 4488 2278 1202 1.90
medium 93205 5487 15294 1943 7.87
fine 221419 9977 260483 21445 12.15
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Figure 5  Displacement of the center of the membrane in y-direction over time, and
start point of measure.

In Fig. 6 the accelerating effect of the multigrid approach is depicted graphically. It shows
the coursc of the residuals of the mass during one time step for the single grid and the
multigrid method for the finest grid. The accelerating effect of the multigrid method clearly
call be seen.

Figure 6  Comparison of residuals of mass conservation for the same whole time
step (finest grid levdl).

Next, the standard and adaptive underrelaxations are compared. The average numbers of
FSI iterations per time step and the computing times for single grid and multigrid methods
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and the corresponding acceleration factors for the medium grid set are indicated in Table 3.
The average numbers of coupling steps per time step hardly vary between the single grid and
multigrid methods. In both cases the number is nearly halved when using the adaptive Aitken
method. The reduction of the number of FSI iterations also has a direct effect on the total
computation time. By using the method with the Aitken accelerator one can reduce the
computation time by nearly a factor of 2 in both cases. Combining both approaches the
computation with multigrid and adaptive Imderrelaxation is more than 14 times faster than
the single grid computation with fixed underrelaxation.

Table 3 Average number of FSI Iterations and computing times for single grid (SG)
and multigrid (MG) and acceleration with fixed and adaptive underrelaxation for
medium grid set.

Computational FSI iterations computation acceleration compared to
setup per time step time[s] SG withαm

FSI =  0.8
SG, αm

FSI =  0.8 14.4 15294 -
SG, αm

FSI =adapt. 7.4 8550 1.79
MG, αm

FSI =  0.8 15.8 1943 7.87
MG, αm

FSI =adapt. 7.6 1057 14.47

7 CONCLUSION
An adaptive underrelaxation approach and a multigrid algorithm on moving meshes have
been studied with respect to their capabilities to reduce the cormputing tirmes for fully
coupled fluid-structure interaction computations.

In the nonlinear multigrid method special care has to be taken to the consistent treatment
of the additional fluxes due to the grid movement. If this is done properly, the method shows
the typical behavior with acceleration factors increasing with the grid size also known from
uncoupled simulations. Acceleration factors up to 12 for the finest grid could be achieved for
a typical fully coupled three-dimensional FSI simulation.

An improvement also can be achieved by employing an adaptive underrelaxa,tion based
on the Aitken method. The acceleration effect is similar for the single grid and multigrid
methods. For both an acceleration factor of nearly 2 could be achieved for the considered test
case. Since both acceleration techniques hardly effect each other, they can be combined to
yield the best performance. Already for the medium sized grid an acceleration factor larger
than 14 could be obtained this way.
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