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ABSTRACT
The behavior of thin elastic blade and wing subjected to a traveling
disturbance is considered. The blade response to an incoming gust is
predicted, then the pressure around the blade is coupled to the far field
pressure in order to predict the intensity of acoustic radiation as well as the
acoustic wave propagation in far field. The effect of the elasticity of the
blade on the acoustic wave is predicted. The blade vibration induced by
landing acoustic wave is investigated. The two dimensions inviscid flow
aerodynamic theorem associated with the strip theorem are used to model
the flow around the elastic thin wing. Bernoulli-Euler theorem are used in
order to describe the wing motion. The fluid and the wing motions are
coupled via the boundaries condition at the blade surface. The incoming
gust considered here is a monochromatic wave traveling with a given
speed. The problem formulation leads to a forced well known aeroelasticity
Fung equation. The eigenvalue of the homogeneous part are computed
and a formal solution of the forced equation is obtained

1 INTRODUCTION
The aerodynamic response of a rigid wing to an incoming gust dates back to the work of
Possio (1938) and Sear (1941) where a transfer function is discovered establishing
relationship between the amplitude of the incoming gust and the resulting force applied to
the wing. Latter, among others, Goldstein and Atassi (1976), Atassi (1984) in a series of
papers shown, to a second order terms accuracy in their expansion, that the unsteady lift
caused by the gust can be constructed by linear superposition to the Sear lift of three
independent components accounting separately for the effects of wing thickness, wing
camber and the angle of attack. The deformation of the vortical part of the incoming gust by
the wing generates an acoustic sources which has been modeled, among others, by Amiet
(1976), Howe (1978) and experimentally explored by Arbey and Bataille (1983) and Roger
and Moreau (2004). In practice applications, the wing is composed of an elastic material
which may be strained under the action of the external forces. The induced deformation
changes the incidence of the wing and consequently the lift. This induces a coupling between
the wing motion and the external flow as well as the acoustic radiation inherent to this
mechanism. The aim of the present report is to examine such an interaction between the flow,
the acoustic waves and the deformation of the wing.

Interaction between the wing and the surrounded flow is, theoretically and experientially,
investigated by Tang and Dowel (2001) where the wing is modeled by nonlinear beam
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theorem and fluid flow is described by a model driven from the flow around hard wing, It is
found that the wing exhibit a limitcycle oscillation when the flow speed exceeds some
critical value. Watanabe et al. (2002) resolved Navier stokes equation as well as potential
flow to clarify the phenomenon of paper flutter, they conclude that the potential flow is very
convenient for a parametric study of the paper flutter, Campost et al. (1998) study the
correlation between the acoustic pressure and the the deformation of near by panel, they
show that the acoustic pressure may cause a structure fatigue. Patil and Hodges (2001)
studied the limit cycle oscillation induced by the coupling between the flow and the wing,
Sun and Kaji (2002) examined the possibility of controlling the blade flutter by use of no
rigid wall, Ballhaus and Goorjian (1978) Béeard et al. (2002), Brar et al. (1996), Rualli and
Maute (2004) and Jiang and Wong (1998) used numerical method to study the flutter of an
airfoil by indicial and numerical method.

A full numerical simulations of the aeroelaticity phenomenon in turbo machinery are
undertaking by Jacquet-Richardet and Rieutord (1998), Willcox et al. (2002), Cinnella et al.
(2004) and Copeland and Rey (2004), the list of course is not exhaustive. The bridges flutter
phenomenon is studied, among others, by Scanlan and Jones (1999) and Salvatori and
Spinelli (2006). The topic that we are developing in this report may be extended to be
applied, among others fields, to turbo machinery and bridges stabilities. However, in this
work we focus only on the wing flutter and the associated acoustic field and specially on the
explicit derivation of the response function relating the the acoustic wave and the flutter
modes to the incoming gust. To the best knowledges of the author such a transfer function
does not exist in the literature.

The knowledge of the response of a streamlined body to an induced disturbance is a
necessary step in the design of aeronautics and airspace machines. In order to predict the
behavior of the system, constituted by the aerodynamic objects and the flow that it generates,
subjected to an exterior disturbances, it is necessary to examine the interaction between the
flow and the streamlined bodies under consideration. A careful examination of the behavior
of the system requires solving the fluid equations and the solid equations while observing the
continuity of the physical parameters, i.e. velocity and stress, at the interface fluid/solid.
These procedure requires to update the domain of the fluid and the solid at each time step, if
a numerical procedure is used for instant. Defining the fluid domain and the solid domain at
each time step is essential when the deformation is large in comparison to the characteristic
length of the system. Fortunately, in aeronautics and aerospace design often the deformation
of the system has to be limited to small disturbances and small displacements to avoid
failure. Therefore, the linearized equations lead often to a satisfactory results.

The set of equations suitable for the elasticity problem depend on flow Mach number, the
rheological proprieties of the material used in the design and relative magnitude of the
deformation of the solid under consideration. For large Mach number, the suitable equation
for the description of the flow field are Boltzmann equation. In fact, the existence of shock-
wave and the dissociation of the gaze molecules associated with it creates a medium out of
thermodynamic equilibrium and the Navier-Stokes equations fails to describe the  fluid
motion. For Mach number regime included in the range, to say 0.7 ≤ M ≤ 2, the compressible
Navier-Stokes equations are convenient for the description of the fluid motion but a careful
treatment of the shock-wave is required. For low Mach number, incompressible Navier-
Stocks equations and the continuity equation approximate well the flow field generated by
the aerodynamic tools.

The equation describing the solid deformation depend on the nature of the material under
consideration and the magnitude of the deformation. Generally speaking, the equations of
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motion contain two sort of non linear terms. The first kind of non linear behavior is due to
an eventual large displacement of the solid particles during their motion which is known as
geometric nonlinearity. The second kind of nonlinearity is due to the constitutive equation
describing stress-strain relationship. In addition, such a stress-strain relation might exhibit
spatial dependence for composite material for instance. Fortunately, for the aeronautics and
aerospace application, the linearized stress-strain relation and the small deformation
constitute, often, a good basis for exploring and describing fluid flow and deformable solid
structure interaction phenomenon. 

To solve the coupled fluid and solid equations, while taking into account to the moving
boundary conditions located at the interface formed by the contact between the fluid and the
solid, is a hard task. In fact, the displacement of the domain demand a moving grid strategy.
That is, the grid has to be updated at each time step, which requires data interpolation at each
time step. Besides, the interpolation technique may lead to the instability of the numerical
scheme.

In this work, we limit our self to potential flow with singularities distributed continuously
on the blade camber to describe the fluid motion. The solid motion is described using
Bernoulli-Euler approximation. Thus, we consider the blade as cantilever beam having two
degree of freedom. These approximations allow us to find a solution of the six order partial
differential forced equation in closed analytical form. The obtained solution gives detailed
information about the blade response to an incoming gust. Specially, it possible to clarify
how the whole range of the proper modes of the coupled blade-flow system are excited by
the incoming gust and quantify the amplification rate or attenuation rate of each frequency
after being excited. The obtained solution allows us to compute the pressure around the wing.
Then, the computed pressure is used as a boundary condition for the far field pressure
equation. Solving the far field pressure equation, one can see the effect of the elasticity of the
wing on the acoustic wave and vice-versa.

2 STEADY AERODYNAMIC LOAD
We summarize in this section the very known elementary results concerning the
aerodynamics of loaded thin wing of infinite span wise length as it has been drawn up by
Katz and Plotkin. The frame of reference and the thin wing are sketched in figure (1). In this
theorem the velocity potential and the velocity around the wing are

The x and z components of the velocity and the pressure at the surface of the wing read

(1)

where γ stands for a density of vorticity distributed along the cord. The lift dL acting onto the
length dx per unity of length in y direction of the wing is
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(2)

Thus, the lift applied to a strip of unity length of the wing reads

(3)

At the surface of the wing the impermeability condition implies that the velocity component
in z direction is

(4)

Y = Y (x) being the equation of the surface of the wing. As usual in classical aerodynamics
theorem we introduce a new variable θ. For

(5)

we expand γ as follows

(6)

Following Katz and Plotkin (2001), we substitute the last equation in the second equation of
the set of Eq. (1) and recall the integral of Glauert to show that at the surface of wing

(7)

Equation (4) then implies that

(8)

The orthogonality of the trigonometric functions leads to

(9)

The force applied by the fluid onto the wing, i.e. lift of the wing, and the aerodynamic
moment at the leading edge (point o in figure (1)) are

(10)
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(11)

The point of application of the aerodynamic forces is given by the equation
M(xcp) = M(0) + xcpL = 0

Using Eq. (10)-(11) we eliminate L and M(0), knowing that M(xcp) = 0, gives

(12)

The moment relative to the elastic axis is

(13)

Figure 1  A sketch of the blade in (x, z)-plane

3 UNSTEADY AERODYNAMIC LOAD
In this section the wing is allowed to have two degrees of freedom, namely h and α, a
translation and rotation around the elastic axis. In a frame attached to the wing, figure (1), h
measured in the opposed direction of z and the rotation measured by α is about the elastic
axis, α is oriented by y axis. h and α depend on y. As the system of differential equations is
linear, it is enough that we consider only one Fourier component of the incoming gust. Thus,

(14)

A is the ratio of the amplitude of the incoming gust to the main flow, ω is the frequency of
the incoming gust. The fluid velocity at the wing is now
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(15)

as the problem is linear, we can subtracts the steady part of the solution, considering by that
the undisturbed equilibrium dynamic position as a state of reference, and limit our self to

(16)

At the surface of the wing x = c
2 (1 – cos θ), therefore, the precedent equation becomes

(17)

where k is the reduced frequency, k =  ωc2U . Taking account to the well known following
relation

(18)

the velocity at the wing becomes

(19)

Therefore, the identification of the coefficients of the trigonometric functions in Eq.(7) and
in Eq. (19), the coefficients An could be found which in unsteady case read

(20)

(21)

(22)

3.1 LIFT AND MOMENT IN THE UNSTEADY CASE
The lift of the wing and the aerodynamic moment at the leading edge (point o) in the
unsteady case can be obtained in a similar way that has been done in the steady case. Thus
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(23)

(24)
the moment about the elastic axis is

(25)

more explicitly

(26)
The equation of motion of a cantilever2 wing are

(27)

(28)

In our equations, the term L and M contain the forcing terms represented by the Bessel
functions. These terms are absent in the equation formulated by Fung (1993). Eliminating L
and M leads to an explicit form of the cantilever wing equations, namely

(29)
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(30)

We consider here a cantilever. This is a beam clamped in one side and free to move in the
other side. Thus, the boundary conditions are

(31)

(32)

3.2 DIMENSIONLESS EQUATIONS
Let the distance be scaled by c, the time by cU , the mass by ρc2 ×1m, then EI and GJ will be
scaled by 12 c4ρU2. Let introduce h* = hc , t

* = Utc
, x*0 = 

x0
c , x*α = xα

c , y* = yc
, k = cω

U and so
on. Then eliminating the star for brevity, the dynamic equations become

(33)

(34)

Let introduce Laplace transform of h and β

(35)

where we have supposed that the cantilever wing is at undisturbed position at t = 0. Therefore
h and β and their derivatives are null at t = 0. Performing Laplace transform, the equations
of motion become

(36)
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(37)

4 PARTICULAR NON HOMOGENEOUS SOLUTION
The forcing terms in Eq. (36)-(37) do not depend on y. Therefore, a particular non
homogeneous solution, to say (

~
hp’ β~p) , may be sought as a function independent of y, thus

(38)

(39)

Let ∆p be the determinant of the system which reads

(40)

A careful inspection of the precedent equation shows that ∆p is a polynomial of degree four
in s. Therefore, it posses four roots each of them is a pole for the general solution in Laplace
plane. It is obvious that those roots do not depend on the elasticity modulus, rather, they
depend on the mass and the inertia of the wing and the location of its elastic axis and inertia
axis. For the compactness of writing of the particular non homogeneous solution, we note 

using the precedent notation, the particular solution could be cost in the form
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5 HOMOGENEOUS SOLUTION
Dropping the forcing terms from the dynamic equations, i.e. Eq. (36)-(37), leads to a
homogeneous system of differential equations. Let the solution of the homogeneous system
of equations be (

~
hh ,  

~
βh) which satisfies the following equations

(41)

(42)
associated with the homogeneous boundary conditions

(43)

(44)

5.1 DISPERSION EQUATION
Looking for a solution in the form of a normal mode,

(45)

the homogeneous system becomes

(46)

(47)

We eliminate 
~
h from the two precedent equations to obtain the dispersion relation

(48)

5.2 EIGENVALUES AND EIGENVECTORS OF THE SYSTEM
In the last section, we found that the dispersion equation has 6 roots, to say,

(49)

hence, we can solve for k as function of s. Therefore, the homogeneous solution is
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(50)

The arbitrary coefficients ηj and ζj are such that

(51)

The frequency s has to be chosen in order to satisfy the boundary conditions

(52)

(53)
more explicitly, s is such that the homogeneous system has non trivial solution

(54)

For the existence of non trivial solution, the determinant, Det(M) , of the matrix, M , of the
precedent system, must be null. In other word, the eigenvalues s of the system are such that

(55)

in the precedent equation, kj , j = 1, 2, 3 ... 6 depend on s

6 GENERAL SOLUTION IN LAPLACE PLANE
The general solution is a linear combination of the eigen vectors and the particular solution.
Therefore,

(56)

the constants Cj have to be selected in order to fulfill the boundary conditions, namely

(57)
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(58)

therefor,

(59)

Det(M) is the determinant of the matrix M which is given by Eq. (55). The matrices Mj are
obtained from the matrix M by replacing the column j by the vector ( 

~
hp, 0, 

~βp, 0, 0, 0)
T . The

superscript T stands for the vector transpose. Using the explicit form of the particular non
homogeneous solution, the general solution becomes

(60)
In order to reveal explicitly the singular points of the functions  

~
h and  

~β , we replace the
particular solution by its value. Hence

(61)

(62)

where the matrices Bj is obtained from the matrix M by replacing the column j by the vector
(b1c2 – b2c1, 0, a2c1 – a1c2, 0, 0, 0)

T . It should be noted that in the last equation the functions
Det(Bj), Det(M) and ∆p depend on s. The roots of the functions Det(M) and ∆p are the poles
of the functions 

~
h and  

~β.
To express the displacement and the torsion as function of time, one has to invert Laplace

transform.
The inverse formula are

(63)

where σ is a real number larger than any real part of the eigenvalues s. 
~
h and  

~β are given by
Eq. (61)-(62), respectively. From Eq. (61)-(62), we can see that the poles of the function 

~
h

and 
~β are the forced reduced frequency 2ik, the zeros of ∆p and the zeros of Det(M). We

suppose in the following that there is no resonance phenomena which requires a spacial
treatment which we delay for on other paper. In other words, the zero of Det(M) and the
zeros of ∆p differ from the forced frequency. Thus, the solution is composed of two parts, the
first part is due to the fact that the system is directly effected by the incoming gust (Forcing
term). This part of the solution represented by the pole located at s = 2ik. The other part of
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the solution is due to the eigenvalues of the system excited by the incoming gust which is
represented by the zeros of Det(M) and the zeros of ∆p. So, the solution can be written in the
form

(64)

(65)

In the precedent equations s = 2ik in the terms between two brackets and in the factor ∆-1
p .

So, Det(Bj ), Det(M), a1, c1, a2, c2 and kj have to be computed taking into account to the fact
that s = 2ik. The sum in precedent equations extend over all the eigenvalues of the system
except the forced frequency s = 2ik. sm, in the precedent equations, stand for the eigenvalues
of the homogeneous system and the zeros of ∆p. rm is the radius of a small circle enclosing
the eigenvalue sm. The radius of the circle, rm, must be small enough to ensure the
convergence of Laurent series and to not enclose in the circle more then one eigenvalue. The
result of the integral must be independent of the value of rm as long as rm is smaller than the
radius of the convergence of Laurent series and the circle does not enclose more than one
eigenvalue.

7 PRESSURE FLUCTUATION
The pressure at the surface of the wing is described by Eq. (1) and Eq. (6). Thus, the
difference in dimensionless pressure between the two surfaces of the wing is

(66)

where, A0, A1, ... , An are given by Eq. (20)-(22). Applying Bernoulli equation and taking
account to the fact that u << U, the pressure around the wing is

(67)

In cylindrical coordinate

(68)

where r2 > ζ2.

Int. Jnl. of Multiphysics Volume 1 · Number 2 · 2007 165

01-Mahmoud  03/07/07  8:45 am  Page 165



7.1 FAR FIELD PRESSURE FLUCTUATION
It is well known, see Fung (1993), that the far field pressure fluctuation in a frame attached
to the wing satisfies the following wave equation, namely

(69)

Let replace the dimensional variables (t, x, y) by the dimensionless variables (tU/u, x/c, y/c),
then the wave equation becomes

(70)

M = Ua is the Mach number and a is the speed of sound. We introduce the new coordinate

then the solution in cylindrical coordinate  ( ~r, ~ϕ ) reads

(71)

where

Hn
(1), H(2)

n are Hankel functions. Applying Bernoulli equation, the pressure around the wing
is given by Eq.(68) and the pressure in far field is given by Eq. (71). Matching the two
equations at the circumference of a circle of radius  ~rc gives the unknown coefficients in Eq.
(71).

7.2 LOW MACH NUMBER APPROXIMATION
At low Mach number,  ~ϕ ≈ ϕ, ~r ≈ r

a
, δ ≈ 0. The pressure on the surface of a circle of radius

rc which include the wing is

Let expand the pressure in Fourier series, namely

Thus, a0 = 0 and for j ≠ 0, the Fourier coefficient are such that
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7.3 FIRST ORDER APPROXIMATION
For large rc one can approximate the integrand (ξ2 + r2c – 2rcξ sin(ϕ))-1 using Taylor
expansion,

Thus, all aj = 0, but

(72)

and all the bj = 0, but

(73)

and the pressure at the circumference of the circle is

(74)

Matching the coefficients of the trigonometric functions in Eq.(74) and (71), and taking into
account that ϕ ≈ ∼ϕ, the far field pressure has to satisfies

(75)

where ! is the temporal eigenvalue of the wave equation. By identification, ! has to match
the argument of the exponential terms in Eq.(64)-(65) . The general solution is the sum of all
the contribution coming from all the eigenvalues. Therefore,

(76)

where, !0 = 2k, !j = – isj . k is the reduced frequency of the incoming gust and sj are the
eigenvalue of the homogeneous system and the zeros of ∆p. The coefficients (A

j
0 , A

j
1 , A

j
2) are
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the coefficients of the exponential terms having the time as an arguments in the expansion of
(A0, A1, A2) given by Eq. (20)-(22) after elimination of h and β by Eq. (64)-(65).

The asymptotic analysis of the functions H(1)
1 , H(1)

2 and H(2)
1 , H(2)

2 shows that H(1)
1 and H2

(1)

represent an incoming acoustic wave while H1
(2) and H2

(2) represent a radiating out acoustic
wave. If there is no out acoustic source, the terms containing H1

(1) and H2
(1) must be

dropped and the solution becomes

(77)

In some circumstance, for instance one it is to know if the acoustic wave may cause a
material fatigue, it suitable to quantify the effect of an acoustic wave due to a source located
at some distance from the blade. To do so, we neglect the effect of the blade radiation, then
the solution becomes

(78)
In this case, φ(r, ϕ, t) is known and the coefficients A0

j , A1
j, A2

j have to be computed in order
to estimate the force applied by the acoustic wave on the blade.

8 RESULTS
The unsteady two dimension aerodynamic theorem associated with strip theorem are used to
describe the load on an elastic blade or wing. Partial differential equations, describing the
interaction between the flow and the elastic wing subjected to an incoming gust are
established, Eq. (36)-(37). The flow is a potential flow with singularities distributed
continuously on the camber of the wing. The wing is considered as a cantilever obeying to
Euler-Bernoulli approximation. The incoming gust is a traveling monochromatic wave with
a given frequency. Solving mathematically the dynamic equations, Eq.(36)-(37), the
response of the wing to and incoming gust is quantified, Eq. (64)-(65). Then the pressure
near the wing is coupled to the pressure in far field in order to examine the effect of the
elasticity of the wing on the far field acoustic wave.

A numerical procedure is written using FORTRAN language under Linux to find the
eigenvalues of the homogeneous dynamic equations describing the interaction between the
wing and the surrounded fluid, the curve are plotted using “G N U P L O T” graphic
procedure under Linux. In order to find the eigenvalues, a procedure is written to find the
roots of equation 48. This procedure establishes functional relationship between the
frequency and the temporal amplification/dampening rate s and the wave number noted ki, i
= 1, ..., 6. Newton-Raphson method is used to fin the root s of the characteristic equation 55,
namely, Det(M) = 0. At each Newton-Raphson iteration, equation 48 are solved to find the
new values of ki(s). The procedure is repeated until convergence. In order to compute the
response functions, equations 64 and 65 give h and β for a given amplitude A and given
reduced frequency k of the incoming gust. Only the forced part of the solution is taken hare
(The part brackets). Thus we suppose the other eigenvectors are not exited. As a result, the
displacement h and the angle β are obtained as function of the of A and k. Remember that in
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this part of the solution s = 2ik because this is the contribution coming from the pole s = 2ik.
Then the response functions are defined as a transfer function relating the input/output data
i. e. (h/A, β/A) = (R(k);M(k)). The acoustic waves are computed as follow: For an incoming
gust of amplitude A and reduced frequency k, we solve equations equations 61 and 62 for 
(
~
h, 

~
β), then equations 20-22 give A0, A1, A2, then from equation 78 we deduce the pressure

of the acoustic wave for a given s, k, r and ϕ.
In all the numerical experiment undertaking here the dimensionless Young modulus and

shear modulus are taking such that E = G, the dimension less wingspan l = 10, x0 = 1/4 and
xα = 0.1.

Figure 2  Real part of the eigenvalues, sr, versus the imaginary part, si, of the
eigenvalues. C = 1, EI = GJ = 104, Iα = 0.1, l = 10, s = 0.1, xc = 0.25, x0 = 0.1, ρ = 100.

Figure 2 shows the real part versus the imaginary part of the eigenvalues of the system. For
the configuration taking into account here, all the modes are dampened (negative real part of
the eigenvalues s)
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Figure 3: Displacement of the elastic axis and versus time. (a) displacement and (b)
angle at some stations: Solid line yl = 0.25, dashed line  yl = 0.5, dotted line  yl = 0.75.
C = 1, EI = GJ = 106, Iα = 0.1, l = 10, S = 0.1, xc = 0.25, x0 = 0.1, ρ = 100. Only the forced
part of the solution is considered here, the part between brackets in equations 64-
65, in which s = 2ik.

Figure (3) shows the variation of the displacement h of elastic axis and the angle β versus
time at different station at the wing. As expected the displacement and the angle are in phase
and an increase in the angle β leads to an increase in the lift, and consequently to the
elevation of the wing. Note that the amplitude of the displacement h and the angle β are a
monotone function of the distance y. However, h and β might exhibit an oscillation in y
direction if the eigenvalues of the system of high frequency are exited by the incoming gust. 
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Figure 4  The imaginary part, Ri, versus real part, Rr, of the response functions at
some station localized at various blade span wise distance. The response function
in this figure is the ratio of the force applied to the wing to the amplitude of the
incoming gust. The curve is obtained by varying the s. (a): y

l = 0, (b):  y
l = 1

2 , 
(c):  yl =  1. The loop appeared in the response function occurs when the frequency
of the incoming gust is close to the proper frequency of the wing- ow. C = 1, EI =
GJ = 106, Iα = 0.1, l = 10, s = 0.1, xc = 0.25, x0 = 0.1, ρ = 100, Only the forced part of
the solution is considered here, the part between brackets in equations 64-65, in
which s = 2ik.

Figure 4 shows the imaginary part of the response function versus the real part when the
reduced frequency, k of the incoming gust varies. In this figure s = ik. The response function
presented here take account to the forced part of the solution only. Thus, we consider only
the term between brackets in Eq. (64)-(65). We disregarded the remaining terms because for
large t they go to zero. However, the disregarded terms are very important in transitional state
when the incoming gust lands on the wing, i.e. for short time. The evaluation of those terms
is in hand. The response functions introduced here are the ratios of the force and moment
applied to the blade, to the amplitude of the incoming gust. The loop appeared in the response
functions, in figure (4) , is due to the fact that the frequency of the incoming gust in this point
is close to the proper frequency of the wing-flow, in this case s = –0.0314 + 3.5158i. Figure
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(4) proves that the elasticity of the wing may not be ignored if the frequency of the incoming
gust is close to the proper frequency of the wing-flow. The response function related to the
moment applied to the wing is shown in fgure (5). The loop appeared in the fgure occurs too
when the frequency of the incoming gust is close to the proper frequency of the wing-flow.
In figures (4) and (5) , s = –0.0314+ 3.5158i.

Figure 5  The imaginary part, Mi, versus real part, Mr, of the response functions at
some station localized at various blade span wise distance. The response function
in this figure is the ratio of the moment applied to the wing to the amplitude of the
incoming gust. The curve is obtained by varying s. (a): yl = 0, (b): yl =  12 , (c): yl = 1.
The loop appeared in the response function occurs when the frequency of the
incoming gust is close to the proper frequency of the wing. C = 1, EI = GJ = 106, Iα =
0.1, l = 10, S = 0.1, xc = 0.25, x0 = 0.1, ρ = 100, Only the forced part of the solution is
considered here, the part between brackets in equations 64-65, in which s = 2ik..

Figure (6) shows the acoustic wave in far field versus the radial distance and the frequency
of the incoming gust. It appears that, the acoustic wave is significantly affected by the
elasticity of the wing if the frequency of the incoming gust is close to the proper frequency
of the wing-flow.
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Figure 6  The acoustic wave in far field versus the radial distance and the reduced
frequency f = k of the incoming gust. One can see the effect of the elasticity of the
wing when the incoming frequency f = k is near the proper frequency of the wing
which is in this case s = –0.0314 + 3.5158i. C = 1, EI = GJ = 106, Iα = 0.1, l = 10, s = 0.1,
xc = 0.25, x0 = 0.1, ρ = 100.

9 CONCLUSION
In this paper, we consider the behavior of an elastic wing under the action of an incoming
gust. The two dimensional non viscous  flow theorem associated with strip theorem are used,
to describe the wing response to an exterior solicitation. The Euler-Bernoulli approximation
are used to describe the wing motion. The flow and the wing motion are coupled via the
boundary condition at the surface of the wing. The resulting equation are solved analytically
and the velocity of the fluid, the displacement of the wing and the pressure in the fluid are
computed. The response functions defined as the ratio of the force and moment applied by
the fluid to the wing to the amplitude of the incoming gust is computed for a range of the
frequency of the incoming gust. The pressure in far field are computed, and the effect of the
elasticity of the wing on the acoustic wave is predicted. It is found that the effect of the
elasticity becomes very important when the frequency of the incoming gust is close to the
proper frequency of coupled system, i.e. wing-flow. This effect appeared as a loop in the
response function when the frequency of the incoming gust is close to the proper frequency
of the coupled wing-flow system. Further, for a small Mach number, we find that the
intensity of the acoustic wave, radiated out by the wing as a response to the incoming gust,
is directly related to the unsteady force and the unsteady moment applied by the incoming
gust onto the wing. The force and the moment applied by an acoustic wave due a source
located at some distance from the wing could be estimated by our solution. As expected, the
fatigue caused by such acoustic wave appears to be important if the acoustic wave has a
frequency close to the frequency of the wing-flow system.
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