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ABSTRACT

The aim of this work is to predict numerically the turbulent flow through a

straight square duct using Reynolds Average Navier-Stokes equations

(RANS) by the widely used k – ε and a near wall turbulence k – ε − fµ models.

To handle wall proximity and no-equilibrium effects, the first model is

modified by incorporating damping functions fµ via the eddy viscosity

relation. The predicted results for the streamwise, spanwise velocities and

the Reynolds stress components are compared to those given by the k – ε
model and by the direct numerical simulation (DNS) data of Gavrilakis 

(J. Fluid Mech., 1992). In light of these results, the proposed k – ε − fµ model

is found to be generally satisfactory for predicting the considered flow.

Key words: Computational fluid mechanics; Reynolds Average Navier-

Stokes k-epsilon turbulence models; finite-volume CFD algorithm; duct flow.

1. INTRODUCTION
The prediction of turbulent flows involving secondary motions and using numerical
simulations of the Reynolds Average Navier-Stokes (RANS) equations has great
practical value in fluid mechanics and many applications can be found in centrifugal
machinery design. In these simulations, the aim is to obtain accurate values of pressure
and velocity for the flow field. Among the various RANS models for turbulence, the
two-equation turbulence k − ε models have found their broad applications of feasibility
in the majority of engineering practice for the predictions of the complex turbulent
flows. By far the most popular turbulence model is the standard k − ε model which is
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based on the linear stress-strain relation initially proposed by Boussinesq. This type of
closure has been revealed robust and efficient with respect to CPU time than more high-
order models [1,2].

In this work, the numerical investigation of a low Reynolds number turbulent flow
through a straight square duct is carried out in order to describe its turbulent characteristics.
In spite of appearances, this flow is difficult to carry out numerically and/or experimentally.
This configuration has been frequently chosen by many authors [3,4,5,6,7] since it is a
relatively simple geometry which provides a good case test to improve turbulence models.
Note that this flow is anisotropic and involves a secondary flow in the cross-stream plane,
which is absent in the case of a plane channel. This secondary flow convects mean flow
momentum from the centre of the duct to the corners. This causes a bulging of the
streamwise velocity contours towards the corners. By studying the origin of the secondary
flow for the square duct, Mompean [8] and Huser et al. [9], using DNS data of this problem,
concluded that the streamwise vorticity is responsible for the generation of the secondary

flow. The equation of mean vorticity in the streamwise direction, ,
reads as:

(1)

where V
–

and W
–

are the mean spanwise and normal velocities, v2– and w2—
are the turbulent

normal stresses, vw— is the cross-stream correlation and v is the Kinematic viscosity. 
From this formulation, the three terms on the right side of the above equation can be

interpreted as the vorticity production (which is linked to the anisotropy of the cross-stream
normal stresses), the production term due to the cross-stream correlation vw— and the vorticity
viscous dissipation. As the Reynolds number of the flow increases, the viscous dissipation
term tends to be negligible and other terms become relevant. According to these authors, it
seems therefore possible that the streamwise vorticity has its origin in the inequality of the 
normal Reynolds stresses combined with a presence of lateral wall gradient. In other words, the

vorticity production term, ,plays a crucial role in the generation of
secondary flows.

It is well known that traditional two-equation models are incapable of describing such
flows. While, traditional two-equation models, the standard k − ε model, fail to predict the
near wall behaviour and anisotropy of the normal Reynolds stresses, it is shown in this paper
that these standard k − ε eddy viscosity models can be improved via the introduction of
damping functions of Van Driest type to produce the anisotropy. Previous studies have been
carried out and provided interesting results, see Gavrilakis [10], Huser & Biringen [11] and
Xu and Pollard [4] for a low Reynolds number turbulent flow. In this work, the predicted
results are compared with the DNS data of Gavrilakis [10], the LES prediction of Xu [4] and
the experimental data of Nishino [7] at a Reynolds number 4800 based on the duct hydraulic
diameter and on the bulk velocity. As the turbulent characteristics are in good agreement with
the DNS and experiment, this provides the motivation for the study of this flow from further
models as non-equilibrium models [12] and nonlinear turbulence models [13,14].

The paper is organised as follows: the turbulence model k − ε and the introduction of
damping functions are briefly reported within section 2; the finite volume numerical method
is presented in section 3. In section 4, the main results of this work are presented, discussed
and finally some conclusions are drawn.
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2. GOVERNING EQUATIONS
To predict the turbulent flow, the statistical approach is used applying the Reynolds decomposition,
which consists in splitting velocity and pressure into an average and a fluctuating part. As in all
studies of Reynolds stress modelling, any flow variable φ can be decomposed as follows:

(2)

where φ– is the mean turbulent value and ϕ is the fluctuating component.
The equations governing the mean velocity Ui

–
and the mean pressure P

–
are obtained from

the RANS equations for an incompressible flow:

(3)

(4)

where ρ is the fluid density and is the Reynolds stress tensor.
In order to achieve closure of this system of equations, a Reynolds stress model that lies

τij to the global history of the mean velocity field must be supplemented. A variety of
expressions have all independently established that, to the lowest order, τij can be represented
by the standard eddy viscosity form [15,16]:

(5)

where k is the turbulent kinetic energy, vt is the eddy viscosity,
is the mean strain rate tensor and δij is the Kronecker tensor.

Note that in this approach, the problem was reduced from deriving equations describing
the evolution of τij to deriving equations for k with an appropriate eddy viscosity vt. In this
study, the eddy viscosity is expressed as:

(6)

where ε is the dissipation rate of the turbulent kinetic energy k and Cµ is a model constant.
In the two-equation k – ε context, the turbulent kinetic energy transport equation is

derived from the contraction of the Reynolds stress transport equation, and is given by:

(7)

where the right-hand side represents the transport of k by the combined effects of turbulent 

transport and viscous diffusion , the turbulent production

and the isotropic turbulent dissipation ε.
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As for the transport equation of the dissipation rate ε, a rather general expression from
which many of the forms can be derived. The modelling of this equation is based on
analogies with the k equation and on phenomenological considerations. In its most
commonly used form, this equation can be written as [17]:

(8)

The Eqns. (7)-(8) contain five constants Cµ, Cε1, Cε2, σk and σε whose values are usually
obtained from calibrations with homogeneous shear flows and from the decay rate of
homogeneous and isotropic turbulence. The most commonly used values of these constants are:

; ; ; ; .

This k – ε model is most commonly used in turbulent shear flow computations with a great
deal of success. In the two-equation k – ε models, Eqns. (7) and (8) in their high-Reynolds
number form, do not provide the correct asymptotic behaviour in the wall region. In order to
handle near wall effects, damping functions fµ are associated with the eddy viscosity
definition (see for example [18,19]):

(9)

with (10)

where the constants ‘a’ and ‘b’ can take various values for each element of the Reynolds
stress tensor τij . Previous works have been done using a priori test and interesting results
have been obtained, see references [20] and [21]. It is this assumption that we adopted in this
paper. These corrections allow to incorporate viscous molecular diffusion in the vicinity of
solid boundaries. The variables y+ and z+ are the wall co-ordinates based on the friction
velocity and the cinematic viscosity v, y+ = uτ y/v and z+ = uτ z/v.

3. NUMERICAL METHOD
The method used to solve the set of equations (3)-(4)-(7)-(8) is the classical finite volume
method (FVM). The conservation equations are integrated over a control volume, and the
Gauss theorem is used to transform the volume integrals into surface integrals.

3.1. SPACE DISCRETIZATION
To describe the numerical algorithm, the RANS equations can be written in the form:

(11)

where can be any of the above variables and the overbar represents the 
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the various transport processes. For a Cartesian system , the expressions of the various
terms of the equation (11) can be given by (see Table 1). The key step of the finite volume
method is the integration of the transport equation (11) over a control volume of boundary
γ (see Figure 1). Then, applying the Gauss divergence theorem, the resulting equation can be
written as follows:

(12)∂
∂ ∫ + ∫ + ∫ = ∫
t

d J U nd J nd S
k k
φ γ γϕγ ϕγ ϕΩΩ Ω

ur r
.

Ωk

( , , )x y z
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Table 1

Equation Φ Jφ Sφ
Masse 1 0 0
conservation
Momentum Eqn.
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The equation (12) gives the assessment of any scalar flow property φ in the control volume Ωk.
This equation is the base of the space discretization of FVM. There is no need for all
variables to share the same grid; a staggered mesh may turn out to be advantageous. This
arrangement is shown in Figures 2 and 3. To solve the differential equation, a finite volume
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numerical method has been employed. The pressure, the turbulent kinetic energy, k, the
dissipation, ε, and the normal Reynolds stress components are treated in the center of 
the control volumes; the velocities are computed in the center of the faces and the cross
components of the Reynolds tensor are attached to nodes located at the mid-edges. The
biggest advantage of the staggered arrangement is the strong coupling between the velocities
and pressure. This helps the avoid some types of the convergence problems and oscillations
in pressure and velocity fields.

The integrals volume of the temporal and source term of the equation (12) are
approximated by adopting an Eulerian scheme and using the theorem of the average. The
advection terms for the momentum equation arising from the finite volume integration are
approximated by the quadratic upstream interpolation scheme for the convective kinetics
(QUICK) scheme of Leonard [21]. This scheme is second order accurate in space. More
details about the numerical procedure are given in [22,23].

3.2. TEMPORAL DISCRETIZATION
The stationary solution was obtained by a time-marching algorithm. For a first order time
scheme, the system (3)-(4)-(7)-(8) is written as:

(13)

(14)

(15)

(16)

where the superscript n is the previous time step and n + 1 is the next one.
The convective, diffusive, production and dissipation terms of the different transport

equations are treated by an explicit Euler scheme. The advection terms in the k – ε equation
are discretized in space using the first order upwind scheme. The diffusion terms are
discretized with a second-order cell-centred scheme. The pressure is treated by an implicit
scheme, where the decoupling procedure for the pressure is derived from the Marker and Cell
(MAC) algorithm proposed by Harlow and Welch [24]. The method of solution consists in
substituting the equation for the velocity at the new time n + 1 within the discretized equation
for mass conservation at the same time level. With this method, the pressure at the next time
step n +1 is obtained by the resolution of the discretized Poisson equation. Then, the
velocities are calculated from the momentum equations. Since the linear system for the
pressure equation is symmetric and positive definite, it can be solved by the Cholesky
procedure or by a preconditioned conjugate method. Note that the principle of mass flux
continuity is imposed indirectly via the solution of this equation. Convergence was declared
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computational domain was less than 10–4. This maximum error is for each variable
determined as:

where N is the number of control volumes.
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3.3 COMPUTATIONAL DOMAIN AND BOUNDARY CONDITIONS
The geometrical configuration the square duct with the reference axes is shown in figure 4.
The x-axis designates the streamwise direction. The normal direction is parallel to the y-axis
and the spanwise direction is parallel to the z-axis. The cross-section is divided into four
quadrants. Because of symmetry, only quadrant of the square need to be calculated with
symmetry conditions at the center (see figure 5).

For the first time-step, at the inlet of the duct, a constant profile was given to U
–
, k and ε.

The secondary velocities were initialised as nil (V
– = 0 and W

– = 0) all over the domain. The
k and ε inlet values were obtained from the DNS data using the r.m.s velocities
( ) and the eddy viscosity, that was about four times the molecular viscosity.
At the outlet, a homogeneous Neumann boundary condition was used for all variables. In the
next time-step, the calculated outlet values were used for the inlet condition. The same
procedure is used for the following time-steps up to the convergence.

The calculations were carried out using 41×41 grid points, regularly spaced in the cross-
section and five grid points in the streamwise direction. The outcome with this grid was
found to be satisfactory. The grid convergence was checked using 21×21 grid points in the
cross-section, the maximum difference observed between the two calculations were less than
1% in the streamwise velocity near the corner (z/h = 0.1). A test case with 20 grid points in
the streamwise direction and 21×21 in the cross-section was made in order to check the grid
independence in the streamwise direction, and no relevant difference was observed because
the maximum difference was about 2% for the spanwise velocity at z/h = 0.16.

The boundary condition values for k and ε, at the first grid point near the wall, was
calculated taking into account the fact that this point was in the viscous sub-layer (always

). Also, due to the use of a staggered grid, the value of k and ε are not defined at the
wall. In this paper, we consider the following boundary conditions for the equation of k and
ε, which have been used by Patel et al. [19]:

or , and or 

When this is done, it is necessary to modify the model itself near the wall. It is argued that
the effects that need to be modelled are due to the low Reynolds number near the wall and a
number of low Reynolds number modifications of the k – ε model have been proposed; see
Patel et al. [19] and Wilcox [25] for a review of these modifications.
A condition for symmetry, homogeneous Neumann, was used for all the variables along the
wall bisectors of the square duct.

4. RESULTS
This section shows the results for a turbulent flow in a square duct quadrant using the linear
k – ε model with and without damping functions fµ. Direct Numerical Simulation (DNS) of
Gavrilakis [10] is used to compare some turbulence characteristics.
The developed turbulent flow through a straight square duct has been simulated. The DNS
has been carried out for the Reynolds number based on the hydraulic diameter of the duct
(2h) and the mean flow velocity U

–
m is 4800. The Reynolds number based on the friction

velocity uτ , is Reτ = uτ 2h /v = 320. The velocity ratio U
–

0/U
–

m for this configuration was 1.33,
U
–

0 being the mean centreline velocity. The maximum Kolmogorov scale is 1.5v/uτ. In the
following, the presentation of the characteristics of the flow are confined to one duct
quadrant.
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Figure 6 shows the contours of streamwise velocity for one quadrant, obtained with the
standard k – ε model, the k – ε – f µ model and the DNS. By the examination of this figure,
we remark that the flow is symmetric according the corner bisector. The predictions are in
good agreement with DNS data. The model k – ε is unable to predict the effect of vortex
induced by the secondary flow on the contours.

The profiles of the mean streamwise velocity (U
–
) for several section are shown in Figure

7(a)-(c) respectively, for y /h = 0.1, 0.5 and 1.0. In these figures, we show the comparisons
between the linear k – ε model, the k – ε – f µ model, DNS of Gavrilakis [10] and the
experimental data of Cheesewright et al. [27]. At the section y/h = 0.1, Figure 7(a) shows a
strong distortion on the mean velocity generated by the secondary flow. On the other hand,
the linear k – ε model used was unable to predict this distortion on the mean streamwise velocity
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in this region. After y /h = 0.5, the agreement between the results of the different models and
experiments starts to improve, and is good at the wall bisector (see Figure 7c, y /h = 1.0).

The comparisons between the two models, DNS of Gavrilakis and experimental data [26]

for the spanwise velocity are presented in figure 8(a) and 8(b), respectively, for two

sections, z /h = 0.1 and z /h = 0.8.

There is a good qualitative agreement between the various datasets of DNS, measurements

and k – ε – f µ. At z /h = 0.8, we note that the spanwise velocity is overall well predicted byV( )

V( )
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Figure 8 The dimensionless mean spanwise velocity profiles along two sections:
(a) z/h = 0.1 , (b) z/h = 0.8.
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the k – ε – f µ model, but the level of (V
–

) is underpredicted at the position of strong velocity,
e.g. at y/h � 0.2 (see Figure 8(a)). It is also noted that the difference between the k – ε – f µ
model and the DNS data, in the region of strong velocity, decreases as z /h increases. The
linear k – ε does not give any secondary flow (V

– = 0) for all the values of z /h.
The figure 9 depicts the secondary velocity vectors in the quadrant obtained from DNS, 

k – ε – f µ and k – ε models. The DNS results are shown on the left side of the diagonal, and
the k – ε – f µ or the k – ε results model on the right side (cf. Figure 9(a) and 9(b)
respectively). As can be seen, the k – ε – f µ model is able to capture reasonably the vortices
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Figure 10 The dimensionless spanwise flow contours obtained with the (a) DNS,
(b) k – ε – f µ, (c) k – ε.
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structure. In other words, it is apparent that the cross-flow plane contains a vortex along the
y and z – walls and the secondary vector field seems to be similar to that obtained by
Gavrilakis [26].

In Figure 10(c), we can observed clearly that the spanwise contours obtained by the k – ε
model are not satisfactory. On the other hand, the spanwise contours obtained by the k – ε – f µ
model are compared favourably with those of the DNS data (see Figures 10(a) and 10(b)).

In order to well predict the profiles of the Reynolds stresses, we have introduced the
damping functions f µ (see Eqn. (10)) whose the main role is to describe better the pattern of
the flow in the near-wall regions. According to our simulations, the best values of constants
‘a’ and ‘b’ which allow the reproduction of the Reynolds stresses
and are given in Table 2.− = −

+
uw uw uτ

2
u u u u u ii i i i

+
= ≤ ≤( )τ

2 1 3,
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In Figures 11, 12, 13 and 14, comparisons between the two models and direct numerical

simulation data for the three normal Reynolds stresses , , in four different

sections (y/h = 0.1, 0.3, 0.7 and 1.0) and for the shear stress in two sections ( y/h =

0.7, 1.0 ) along the wall bisector are shown.
The distribution of the primary normal stress along the wall bisector for sections y /h =

0.1, 0.3, 0.7 and 1.0 predicted by the k – ε and the k – ε – f µ models are presented in Figure 11.
We note that the k – ε – f µ model gives a better overall agreement with the DNS data at y /h
= 0.7 and y /h = 1.0. This quantity is rather well predicted in the region starting from
the section y /h = 0.7. We clearly see that the maximum of this quantity given by the 
k – ε – f µ is highly improved. The linear k – ε underpredicts this component in all the
sections. At the section y /h = 1.0, the maximum of the normal stress is underestimateduu

+

z+ f 50

uu
+

−uw
+

ww
+

vv
+

uu
+
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Figure 12 The normal Reynolds stress along the wall bisector at y/h = 0.1, 0.3,
0.7 and 1.0. Comparison of the predictions of the k – ε and k – ε – f µ models with DNS.
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by about 70% by the k – ε model. However, when the k – ε – f µ model is used, this difference
can be reduced up to 35% (cf. Figure 11d).

The profiles of the normal Reynolds stress components and and the tangential

stress along the wall bisector given by the k – ε and k – ε – f µ models are shown in

Figures 12, 13 and 14 respectively. It seems clear that the k – ε model cannot correctly

reproduce all these stresses whereas the k – ε – f µ model gives very good results in particular

for y /h = 0.7 and y /h = 1.0. When considering the secondary normal stress (cf. 

Figure 12), the results from the k – ε – f µ model are in overall agreement with the DNS at

y /h = 0.1, 0.3, 0.7, whereas at y /h = 1.0, some substantial differences remain in particular

for (cf. Figure 12d). As for the k – ε model, it overpredicts this quantity for 

starting from the section y /h = 0.1. Considering the normal stress (see Figure 13), the 

k – ε – f µ model agrees well with the DNS, especially in the region z+ ≥ 40 at y /h = 0.7 and

y /h = 1.0. However, at y /h = 0.3 (see Figure 13b), the two models give completely different
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Figure 13 The normal Reynolds stress along the wall bisector at y/h = 0.1, 0.3,
0.7 and 1.0. Comparison of the predictions of the k – ε and k – ε – f µ models with DNS.
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results from those given by the DNS. At y /h = 0.7 and y /h = 1.0, the k – ε model overpredicts

highly the results.

Figure 14 shows the profile of the primary shear stress obtained by the k – ε and 

k – ε – f µ models. At y /h = 0.7 and y /h = 1.0, the differences among results of the k – ε – f µ
models are not substantial. The results of y /h = 0.7 from the k – ε model, indicate that this

model underpredicts slightly this component for , whereas at y /h = 1.0, they

indicate that the model underpredicts even more this quantity for . It is also

noted that the k – ε – f µ model predicts the right position of the peak of the primary shear

stress at z+ ≈ 25 (cf. Figure 14).
Figure 15 displays the normal Reynolds stresses uu

—+, vv
—+, ww

—+ and the primary shear stress
–uw

—+ profiles along the wall bisector of the square duct at centreline (y/h = 1.0). These values
are compared with the DNS of Gavrilakis [10], the LES of Xu and Pollard [4] and the
experimental data from Nishino and Kasagi [7]. In global sense, the predicted results by the
k – ε – ƒµ model disclose that this model can gives an overall agreement. It is seen that
the discrepancy is rather weak the secondary normal stresses vv

—+, ww
—+ and for the shear stress

–uw
—+ indicating that our methodology may be considered as sufficient.
The distribution of the turbulent kinetic energy from the DNS and the k – ε – f µ model

are compared in Figure 16. The differences among our results and the DNS are not
substantial. The k – ε – f µ model yields better results than the results of the k – ε model (see
Fig. 16c). The figure 16b shows the results of the k – ε – f µ model indicating a qualitatively
good agreement of k with the profile obtained by DNS.

5. CONCLUSION
The purpose of this paper is to describe a study of the turbulent flow in a straight square duct
which involves a secondary flow. The spatial discretization of the RANS equations is
performed by a finite volume method with a staggered variable arrangement.
The linear k – ε model is employed for the prediction of the considered flow. This model has
been modified by using different damping functions. The present corrections were validated
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Figure 14 The dimensionless Reynolds stress along the wall bisector at 
y/h = 0.7 and 1.0. Comparison with DNS.
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by comparing the calculated velocity profiles and the turbulent quantities with the available
direct numerical simulation data given in Ref. [10]. These comparisons yielded the following
conclusions:
• Mean velocity profiles are, in general, in good agreement with the DNS data in

particular when one approaches the center of the duct (y /h = 1.0 or z /h = 1.0).
• Although some discrepancies exist for the turbulent quantities, the k – ε – f µ model

leads to similar results.
• The evaluation of the considered model with DNS data reveals that some anisotropy

close to the wall can be captured.
• The k – ε – f µ model tested in this work yields considerably better predictions than

those obtained by the standard k – ε model.

334 Numerical simulation of turbulent flow through a straight square duct using 
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Figure 15 The dimensionless Reynolds stresses and along

the wall bisector at y/h = 1.0. Comparison of the predictions of the k – ε and k – ε – f µ

models with DNS, LES and experiment.
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