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ABSTRACT

Due to the growing demands from industries, the multiphysics simulation

plays a more and more important role in the design of MEMS devices. This

paper presents a fast convergence scheme which implements multiphysics

simulation by coupling phenomena-specific single-physics solvers. The

proposed scheme is based on the traditional staggered/relaxation

approach but employs the Steffensen’s acceleration technique to speed up

the convergence procedure. The performance of the proposed scheme is

compared with three traditional techniques: the staggered/relaxation, the

multilevel Newton and the quasi-Newton methods through several

examples. The results show that this scheme is promising.

1. INTRODUCTION
The rapid development of Micro-Electro-Mechanical System (MEMS) industry has growing
demands for efficient, robust and easily used design tools for MEMS devices. However, the
design of MEMS is a challenging task since the fundamental actuating and sensing
mechanisms are always based on the interactions of multiphysics phenomena [1]. In the past
two decades, these interactions were accounted by low-fidelity models. Whereas more
recently, thanks to the advancement of computer powers, the utility of high-fidelity models
for the design of MEMS has been widely recognized, and several tools such as FEMLAB [2]
and ANSYS Multiphysics [3], also have been produced based on Finite Element (FE)
techniques. Nevertheless, a desirable MEMS design tool should have the following features:
1) Account for closely-coupled multiphysics phenomena at high-fidelity level; 2) Avoid the
sole usage of FE techniques because it is not always the best choice for all the physical
phenomena, for example, the Boundary Element (BE) method is much more efficient than
FE for electrostatic computations; 3) Utilize existing, commercially available phenomena-
specific tools. Therefore, implementing multiphysics simulation for MEMS using phenomena-
specific single-physics solvers is essential.

Int. Jnl. of Multiphysics Volume 1 · Number 3 · 2007 337

07_IJM0707.qxd  20/9/07  10:17 am  Page 337



Several numerical coupling techniques have been developed for multiphysics simulation
of MEMS devices. The widely used staggered/relaxation method is very convenient and easy
to program, furthermore, it is a black-box based method and therefore can be easily extended
to include more coupled physical phenomena without the modification on commercial
single-physics solvers [4]. However, many numerical examples indicated that the
staggered/relaxation method is extremely slow and sometimes fails to converge for strong
coupling or nonlinear problems [5]. The Newton method can be very quick and efficient
compared to the staggered/relaxation method, but it has no black-box capability and, hence,
is not easy to be connected with existing field-specific analysis tools [6]. The multilevel
Newton method permits the robust convergence properties of the Newton method to be
realized in black-box architecture and, has been proven to be very accurate, efficient and
convergent even when there is strong coupling between physical fields, but it has
considerable computing loads within each iteration step [7]. Furthermore, some other
techniques such as quasi-Newton method [8] also seem to be suitable for multiphysics
simulations of MEMS, but have not been investigated adequately yet under the context of
using phenomena-specific single-physics solvers.

The objective of this paper is to introduce a novel fast convergence scheme which
implements multiphysics simulation of MEMS by coupling black-box based phenomena-
specific solvers for involved physics. This scheme is based on the traditional
staggered/relaxation method but employs the Steffensen’s acceleration technique to speed up
the convergence procedure therefore giving good convergence performance while keeping
the advantages of the staggered/relaxation method.

The organization of this paper is as follows. In the next section the problem formulation
of multiphysics simulation is presented, in the context of MEMS electrostatic actuators. Then
section 3 provides an overview of conventional numerical coupling techniques, i.e. the
staggered/relaxation, the multilevel Newton and the quasi-Newton methods. Section 4
introduces the proposed fast convergence scheme, including the principle and the
implementing procedure. In section 5, this scheme is applied to several electrostatic actuator
examples by coupling phenomena-specific single-physics FE/BE solvers, and the numerical
results are compared with those of conventional methods reviewed in section 3. The
conclusion is given in the last section.

2. MEMS ELECTROSTATIC ACTUATORS
The fundamental actuating and sensing mechanisms of MEMS devices are always based on
the interactions of multiphysics phenomena. For example, the electromechanical couplings
in MEMS comb drives and, the interaction between electrostatic, mechanical and fluidic
fields in microresonator-based gyroscopes [9]. This multiphysics nature of MEMS devices
makes the problem formulation much more complicated than the conventional single-
physics problem.

MEMS family comprises large numbers of categories, among which electrostatic
actuators are the most typical MEMS devices as the effect of electrostatic force is amplified
in the micro-scale world. The behaviors of electrostatic actuators have been widely studied;
therefore they are perfect benchmark for investigating multiphysics simulation problems.

2.1. GOVERNING EQUATIONS
The electrostatic actuator usually involves a mechanical structure which undergoes
deformation when subjected to electrostatics force and conversely, the electrostatics charge

338 Implementations of multiphysics simulation for MEMS by coupling single-physics solvers

07_IJM0707.qxd  20/9/07  10:17 am  Page 338



distribution is also changed due to the structural deformation. The equilibration is obtained
until the mechanical and electrostatic force balance each other. A well known example of the
electrostatic actuator is the MEMS parallel plate capacitor [9]. A schematic setup for
electrostatic actuators is shown in Figure 1.

Generally, the involved physics in MEMS devices are described as continuous field
models which couple the relevant field quantities such as mechanical, thermal, electrical, etc.
in terms of a system of Partial Differential Equations (PDEs) [5]. Consider the electrostatic
actuator illustrated in Figure 1, the governing equation for the mechanical displacement field
can be written as a Navier-Cauchy equilibrium equation [10] of the following form:

(1)

with boundary conditions u = 0 at Γfixed, where u is the structural displacement, P the
electrostatic pressure, ∇ the vector differential operator, µ and λ are the first and second
Lame parameters in terms of Young’s modulus E and Poisson ratio v as

(2)

The electrostatic field is described by the Laplace’s equation [11]

(3)

with boundary conditions ϕ = 0 at Γground and ϕ = V at Γfixed, where ε is the permittivity, ϕ the
electric potential and V the applied voltage. The electric field then yields

(4)

and the electrostatic force acting on the surface of the structure is

(5)

where I is the identity matrix and n the unit vector.
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Figure 1 Schematic setup of the electrostatic actuator.
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The field quantities in the electrostatic field are related with the geometry, therefore
Eqns.(1)~(5) can be regarded as describing the electrostatic actuator by a system of two
PDEs with two coupled field quantities, i.e. u and P.

2.2. ALTERNATIVE FORMULATIONS USING SINGLE-PHYSICS SOLVERS
Let functions RM and RE respectively represent the left-hand side of Eqns.(1) and (5), u and
P respectively represent the state vectors of the mechanical and the electrostatic fields, the
multiphysics problem of the electrostatic actuator is then formulated in a simplified form as

(6)

A field-specific FE solver can be used to solve each PDE in Eqn.(6) for u or P provided
that the state vector of another field is specified. However, by itself, a field-specific FE solver
cannot solve the multiphysics problem for which the goal is to find a complete set of state
vectors that simultaneously solve all equations in Eqn.(6). Therefore, this system of coupled
PDEs can be solved using FE techniques only if problem-specific coupled-field elements
have been implemented. Several FE-based commercial software partially have the ability of
multiphysics simulation. A typical example is the Direct Coupled-Field Analysis function in
ANSYS which include 20 coupled-field elements [12].

However, FE is not always the best choice for all areas of physics. For instance, if the FE
method is used for both the mechanical and the electrostatic fields of the electrostatic actuator,
not only the interior of the mechanical field but also the whole electric field have to be meshed,
which requires a large number of nodes and the resulting system of equations will be
computationally expensive to solve. While using BE for computing the electrostatic field, only
surfaces are discretized and only surface quantities are computed instead of the entire domain,
which is much more efficient than FE. Therefore, by using the most appropriate single-physics
solvers for relevant fields, the efficiency of multiphysics simulation can be greatly improved.

Single-physics solvers, especially commercial tools, are mostly black-box based. For the
simulation of the electrostatic actuator, the mechanical field-specific solvers such as ANSYS
[3] and ABAQUS [13] take the electrostatic force as input and the displacement as output,
and the electrostatic domain-specific solvers such as FASTCAP [14] export surface charge
distribution and the induced electrostatic force according to the deformed geometry and the
applied voltage, as illustrated in Figure 2. In order to utilize these solvers, the two equations
in Eqn.(6) are re-formulated as
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(7)

where functions SM and SE respectively represent the black-box based FE solver for the
mechanical field and the BE solver for the electrostatic field, P and u,V are the input/output
for these solvers. The system in Eqn.(6) is then transformed to

(8)

where function F is defined as the system residual.
Although Eqns.(6) and (8) are both general formulations of electrostatic actuator

problems, there are still slight differences between them. The previous is a system of PDEs,
while the latter is a system of implicit functions defined by the previous. According to the
Implicit Function Theorem, the latter exists only if the previous has a solution, which means
that a solution of Eqn.(8) must also be a solution of Eqn.(6), while the other direction may
not necessarily be true. However, the multiphysics problem is still solvable by using either
the original formulation in Eqn.(6) or the one in Eqn.(8). In this sense, these two
formulations are equivalent. In this paper, only the latter one, i.e. Eqn.(8) is used because it
provides a mechanism for conveniently connecting together a variety of commercially
available single-physics solvers to form black-box property [1] only through the input/output
relationship without any modification.

3. COVENTIONAL COUPLING APPROACHES
No matter which formulation is used, the multiphysics problem is usually regarded as a
system of nonlinear equations which can be solved by many approaches. In this section, three
conventional numerical coupling techniques, i.e. the staggered/relaxation, the multilevel
Newton and the quasi-Newton methods, will be briefly reviewed in the context of the
electrostatic actuator problem described in Eqn.(8).

3.1. STAGGERED/RELAXATION METHOD
The simplest but also the most popular coupling approach for multiphysics simulations is the
staggered/relaxation method [4] which is based on the nonlinear Gauss-Seidel algorithm [16]
and does not require calculations of derivatives.

As illustrated in Figure 3, for the system in Eqn.(8), this approach adopts the Gauss-Seidel
algorithm to iteratively computes the sequential substitution as

(9)

until the difference between two consecutive iterations is less than a small value. From
engineering perspective, this procedure can be summarized as sequentially applying results
from one single-physics solver as loads of the next one, therefore this approach is also called
the sequential method in some literatures [12].
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3.2. MULTILEVEL NEWTON METHOD
A more robust approach is the multilevel Newton method [7]. It’s based on the Newton
method which is used to solve a system of nonlinear equations [8].

The multilevel Newton method has a two-level nested loop structure as shown in Figure 4.
The outer loop solves Eqn. for [u,P]T by a Newton iterative procedure

(10)
u

P

u

P

u

P

( )

( )

( )

( )

k

k

k

k

+

+













=











+ ∆

∆

1

1 







342 Implementations of multiphysics simulation for MEMS by coupling single-physics solvers

Electrostatic analysis

Compute electrostatic force P(k+1) = SE (u(k), V ) 

Mechanical analysis

Compute structural deformation u(k+1) = SM (P(k+1))

No
Converged?

Yes

Stop

k 
=

 k
 +

 1

Figure 3 The staggered/relaxation method.

 

Inner Krylov loop

Solve
∂SE
∂u(k)

–

∂SM
∂P(k)

–I

I

∆u

∆P

∆u

∆P
= –

u(k) – S M (P(k))

P(k) – S E (u(k),V )
for

Compute
∆u

∆P

u(k+1)

P(k+1)

u(k)

P(k)
= +

No
Converged?

Yes

Stop

O
ut

er
 N

ew
to

n 
lo

op

k 
=

 k
 +

 1

Figure 4 The multilevel Newton method.

07_IJM0707.qxd  20/9/07  10:17 am  Page 342



while the inner loop calculate the Newton step-length [∆u, ∆P]T by solving the formed linear
system

(11)

for [∆u, ∆P]T during each outer Newton iteration. Note here k is the outer Newton iteration
index and kept fixed when inner iteration proceeds.

The key step of the outer loop is to compute [∆u, ∆P]T for each outer iteration, but since
the system Jacobian is

(12)

it will be very difficult to obtain [∆u, ∆P]T directly through Eqn.(11) because the 
off-diagonal derivatives, i.e. ∂SM/∂P(k) and ∂SE/∂u(k), may not be available explicitly, or are
time consuming to be computed even if be available through finite difference. Therefore a
variety of Krylov-subspace methods, here Generalized Minimal RESidual (GMRES) [17], is
used to solve Eqn. for [∆u, ∆P]T by the inner loop.

During the solution procedure, GMRES requires the action of the Jacobian only in the form
of matrix-vector products, which may be approximated by first order finite difference as

(13)

where [ru
(j), rP

(j)]T is the residual of the jth inner iteration, and θ is a small perturbation
defined as a matrix-free parameter. Since only matrix-vector products are required instead of
a matrix, GMRES is usually regarded as the matrix-free method [18]. For more details of
GMRES and other Krylov-subspace methods please refer to [17] and [18].

3.3. QUASI-NEWTON METHODS
Quasi-Newton methods are standard approaches for solving a system of nonlinear equations,
however, their application on black-box based formulation has not been reported before.

Like other Newton type methods, quasi-Newton methods also use the Newton iterative
procedure to solve Eqn.(8) for [u,P]T as:

(14)

Since the system Jacobian F′(u(k),P(k)) is usually difficult to be computed, it (or its inverse
[F′(u(k),P(k))]–1) can be approximated. According to the way of approximating the Jacobian,
quasi-Newton methods have many varieties. In this paper we adopt the most popular
Broyden’s method [8] which approximates the Jacobian and update the approximation when
the nonlinear iteration progresses.
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Broyden’s method is illustrated in Figure 5. Assume [u(k),P(k)]T and B(k) are the current
approximations of the true solution [u*,P*]T and the Jacobian’s inverse [F′(u(k),P(k))]–1

respectively, then the kth nonlinear Newton iteration is

(15)

After the computation of [u(k+1),P(k+1)]T, B(k) is updated to form B(k+1) using the Broyden
update as

(16)

where

(17)
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SCHEME
The staggered/relaxation method is easy to implement for multiphysics problems. However,
it converges very slowly and sometimes fails to converge for tightly coupled or highly
nonlinear problems [6]. This section presents a novel fast convergence scheme which is
based on the staggered/relaxation method but improved by the Steffensen’s acceleration
procedure. Therefore, this scheme does not suffer from the drawbacks of the
staggered/relaxation method.
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4.1. PRINCIPLE
For MEMS electrostatic actuator problems studied in this paper, there exist two phenomena-
specific spatial domains, i.e. the structural domain and the electrostatic domain. These two
domains don’t overlap and interact only through the shared boundary (the electrostatic-
structure interface ΓMech in Figure 1). Since one phenomena-specific single-physics solver is
used in each domain, the key issues involved in the proposed scheme are the coupling
algorithm and the data exchange between two solvers.

4.1.1. Coupling Algorithm
The coupling algorithm is the numerical treatment of the coupling mechanisms among
involved physics, which determines when coupling data is transferred and results in different
coupled procedures. Consider the electrostatic actuator problem in Eqn.(8). Since the
staggered/relaxation method is used, the kth iteration has already been formulated in Eqn.(9).
Insert the first sub-equation of Eqn.(9) into the second one and yield

(18)

Meanwhile, assume that [u*,P*]T is the true solution of Eqn.(8), then u* and P* must satisfy
Eqn.(7), i.e.

(19)

Therefore obtain

(20)

According to Fixed-Point Theorem [19], Eqn.(18) and (20) both imply that there exists a
fixed-point problem

(21)

where gM denotes the fixed-point mapping from u(k) to u(k+1) and may be nonlinear.
Furthermore, the true solution u* is also called a fixed-point of the mapping gM and can be
approximated by the fixed-point iterative procedure
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which is another formulation of Eqn.(18).
Since u(k) is an approximation of the true solution u*, according to the Mean Value

Theorem [23], u* can be expanded at u(k) as
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(24)

Insert Eqn.(24) into (23) and extract u* then obtain

(25)

Equation (25) leads to an iterative procedure for computing u* as

(26)

Note Eqn.(26) produces a new sequence {u(k)} which is different from the one in Eqn.(25),
and P* also can be computed in a similar way. Since yM and zM are obtained through the
nonlinear Gauss-Seidel algorithm in Eqn.(9), the iterative procedure in Eqn.(26) can be
regarded as accelerating the convergence of Gauss-Seidel staggered/relaxation, which is
similar with the fixed-point Steffensen’s acceleration [16]. Therefore, this fast convergence
algorithm is referred by us as Relaxation with Steffensen’s Acceleration (RSA).

Since the RSA scheme is based on the staggered/relaxation method, it has some
relationships with the latter. Recall Eqn.(18)-(22), it has been proved that the nonlinear
Gauss-Seidel procedure in Eqn.(18) or (22) is the fixed-point iteration, gM and gE are the
fixed-point mapping and the true solution u*,P* is the fixed-point. Assume that u,P are
respectively in the neighborhood of u* and P*, according to the Fixed-Point Theorem, the
condition for convergence of the staggered/relaxation method is

(27)

where the constant L ∈(0,1).
Compare the RSA iteration in Eqn.(26) with the staggered/relaxation iteration in Eqn.(22),

it can be found that the RSA procedure is virtually the fixed-point Steffensen’s acceleration
applied on the nonlinear Gauss-Seidel procedure. Therefore, in terms of the Steffensen’s
Acceleration Theorem [16,20], the condition for convergence of the RSA scheme is
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RSA scheme has the ability to speed up the staggered/relaxation method when the latter
converges, and sometimes is still converging even if the latter diverges. This is an
important advantage of the RSA scheme over the conventional staggered/relaxation method.
However, the RSA scheme may experience some numerical instabilities when it approaches
the true solution because both the numerator and the denominator in Eqn.(26) are close to
zero at the same time.

4.1.2. Data Exchange
Due to the numerical discretizations in both structural and electrostatic domains, the data
generated respectively by FE and BE solvers are distributed on different meshes. Therefore
the data exchange within the electrostatic actuator problem is an important issue that must be
accounted. Although in this paper this issue is solved using standard techniques, some details
still need to be addressed for completeness.

In this paper, the structural domain is discretized by standard FE techniques. Applying the
FE formulation to Eqn. leads to the well-known matrix equation for the structural quantities

(29)

where m is the number of discretization nodes, M ∈ 3m×3m the mass matrix, C ∈ 3m×3m the
damping matrix, K ∈ 3m×3m the stiffness matrix, P ∈ 3m×3m the force vector, ü ∈ 3m nodal
accelerations, u̇ ∈ 3m nodal velocities and u∈ 3m nodal displacements.

For the electrostatic domain, the only interested quantities are values at boundaries rather
than those inside the domain, thus only the surface mesh of the electrostatic domain has to be
created and only the geometry of this surface mesh (at the electrostatic-structure interface)
needs to be updated when the structure changes shape. The BE discretization of Eqn.(3) yields

Hϕ = Gϕ· (30)

where n is the number of discretization nodes, H,G ∈ n×n boundary element matrices, ϕ the
nodal vector of the scalar electric potential and ϕ· the nodal vector of the normal derivatives
of the scalar electric potential.

As mentioned in section 2, P in Eqn.(29) relates to ϕ in Eqn.(30), while the two boundary
element matrices H and G in Eqn.(30) relate to structural displacement u in Eqn.(29),
therefore the FE/BE domains are two-way coupled through the coupling data defined on
overlapped meshes at the shared boundary. However from implementation perspective, since
both the structural and the electrostatic models are discretized in a physically different
manner, they do not match at the boundary. This is called “non-matching” and means that the
coupling data do not share the same nodes at their interface.

In the electrostatic actuator problem, the data exchange is relative simple because it is
limited to the boundary conditions on the interface, i.e. the electrostatic pressures given by
the BE solver are applied to structural nodes on the interface, and the nodal displacements of
the interface are computed in the FE solver and transferred to BE mesh. Electrostatic
pressures are adapted to the element sizes to preserve the integral and usually conserve
quantities, which implies that the total pressures must balance on both sides of the interface
and, therefore, a conservative interpolation is required [12]. For a conservative interpolation
it is better to have a fine BE mesh and a coarse FE mesh than the converse, see Figure 6.
Then each BE node Sj ∈ ΓBE for j = 1,...,n, maps onto the “partner” finite element by searching
the closest structural element ΩFE

(e) ∈ ΓFE on the FE mesh (as shown in Figure 6). Since fixed
meshes are used, this mapping procedure is performed only once during the initialization

�
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��
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phase. Thereafter, the FE structural load is interpolated using a conservative load projection
method proposed by Farhat et. al. [21] as

(31)

where PFEi and Ni respectively denote the structural load and finite element shape function
associated with node i of element ΩFE

(e), je is the total number of BE nodes associated with
element ΩFE

(e), ζj,ηj the local coordinates of the BE node Sj in ΩFE
(e) and, PBEj the BE nodal load.

On the other hand, transferring nodal displacements from coarser FE mesh to finer BE
mesh is typically a non-conservative interpolation. Thus BE nodes still map onto closest FE
elements and nodal displacements of BE nodes are interpolated by

(32)

where uBEj for j=1,...,je is the nodal displacements of BE nodes associated with element
ΩFE

(e), ie the number of FE nodes belonging to ΩFE
(e) and uFEi the FE nodal displacements

of ΩFE
(e). Further details on data exchange have beyond the scope of this paper and can be

referred to [12,21].

4.2. METHODOLOGY
The implementation of the RSA scheme consists of three main phases, i.e. pre-processing,
coupling (iteration) and post-processing, as illustrated in Figure 7(a). The details of these
phases are explained below, in the context of electrostatic actuator problems.

u N uBEj i j j FEi
i

ie
= ∑

=
( , )ζ η

1

P P NFEi BEj i j j
j

je
= ∑

=
( , )ζ η

1
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Figure 6 Data exchange.
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4.2.1. Pre-processing
As shown in Figure 7(b), the purpose of the pre-processing is to prepare essential
information for subsequent FE/BE computation and coupling data exchange. Like standard
FE or BE method, the first step of the pre-processing is to discretize the structural and
electrostatic domains respectively using FE and BE techniques described in Eqns.(29) and
(30), thus results in initial FE and BE meshes.

Then based on meshes topological and nodal information, the mapping relationship between
FE and BE meshes are established by: 1) performing a loop over all FE elements belonging to
the interface and searching for each element the involved BE nodes projections and, 
2) determining the local coordinates of the BE node concerning its “partner” finite element.

Thereafter, the last step of the pre-processing phase is to set up the initial conditions
respectively for FE and BE solvers. Here the conditions include the initial nodal
displacements on FE mesh and electrostatic pressures on BE mesh.

4.2.2. Coupling
After pre-processing, the RSA scheme proceeds to its kernel: coupling. This is an iterative
procedure comprises three main steps, as shown in Figure 7(c).

The first step, called Relaxation Procedure I, uses the nonlinear Gauss-Seidel algorithm
in Eqn.(9) only once to solve the whole system by sequentially calling FE and BE solvers.
In other words, the electrostatic pressure computed in last iteration (i.e. PBE

(k)) is transferred
to the FE mesh and interpolated at the structural interface nodes according to Eqn.(31), the
resulting pressure PFE

(k) are used as load for structural FE analysis to obtain the structural
displacement yM_FE. As the structure deforms, the displacement of the electrostatic nodes at
the interface is obtained by interpolating on FE mesh according to Eqn.(32) and then used as
the boundary condition for electrostatic field calculation. Once this step finishes, two
intermediate variables, i.e. displacement yM_FE and electrostatic pressure yE_BE are obtained,
which correspond to yM and yE in Eqn.(26).

Int. Jnl. of Multiphysics Volume 1 · Number 3 · 2007 349

Start

Pre-processing

Pre-processing
entry

Discretize structural & electrostatic
domains

Establish the mesh mapping
relationship for data exchange

Post-processing

(a) Schematic of the RSA scheme (b) Pre-processing procedure

Coupling

Stop Return

Set initial displacements uFE at FE mesh

& initial electrostatic pressures PBE at BE mesh(0)

(0)

Figure 7 (Continued).
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The second step, i.e. Relaxation Procedure II, repeats step one with slight differences. It
transfers the intermediate value of electrostatic pressure yE instead of PBE

(k) to FE solver and,
therefore, produces another two intermediate variables displacement zM_FE and electrostatic
pressure zE_BE, which correspond to zM and zE in Eqn.(26).

Thereafter the third step, called Acceleration Procedure, adapts the Steffensen’s
acceleration technique in Eqn.(26) to compute structural displacement uFE

(k+1) based on the
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intermediate variables yM_FE, zM_FE and previous iteration result uFE
(k) as well as electrostatic

pressure PBF
(k+1) based on yE_BE, zE_BE and PBE

(k).
Above three steps are implemented successively, until a pre-defined termination condition

is satisfied.

4.2.3. Post-processing
When the iteration in the coupling procedure stops, the resulting displacement u and pressure
P as well as their iterative histories and other information are retrieved and output for storage
or display. This is a very standard procedure and will not be introduced furthermore.

The implementing of the RSA scheme is relative simple and easy for programming, which is
the most important advantage of it. It also can be found that during the coupling phase, each iteration
requires two successive relaxation procedures which are involved in the staggered/relaxation
method. Since these procedures are the most time-consuming parts in the RSA scheme, the
computational cost of every RSA iteration is almost as twice as that of the relaxation iteration.
However, as will be shown in section 5, the RSA scheme needs much less iterations to achieve
convergence for tightly-coupled problems, therefore the total cost is relatively lower even if
compared with the multilevel Newton and the quasi-Newton methods. Furthermore, as
illustrated in section 5 and proved in this section, the RSA scheme has looser convergence
conditions than the staggered/relaxation method, therefore it may converge even if the latter fails.

5. NUMERICAL RESULTS
In this section, three electrostatic actuator examples including the MEMS parallel plate
capacitor, the cantilever micro-beam and the cross bars, will be presented to compare the
RSA scheme with other three conventional methods introduced in previous section. In all
these examples, the mechanical computations are implemented using FE solver, and the
electrostatic calculations are executed by BE solver.

5.1. MEMS PARALLEL PLATE CAPACITOR
The MEMS parallel plate capacitor is the simplest transducer whose behavior can be
determined analytically, so it is the most appropriate benchmark to verify different
approaches for multiphysics simulations.

The capacitor studied here consists of a movable top plate positioned g0 = 1µm above a
fixed bottom one with the area of Ap = 100µm2 each, and an elastic beam which has the
Young’s modulus E = 1GPa and a 3-D dimension of L × Ab = 81µm × 2µm [22], as in Figure
8. The top end of the beam is fixed, and the other end is attached to the movable top plate.
If a voltage V is applied to the capacitor, charges with different polarities will be distributed
on the surfaces of two plates. Hence, the induced electrostatic force will pull the top plate
down and stretch the attached beam, until reaches a position where the mechanical force due
to the beam stretching can balance the electrostatic force. As the applied voltage increases,
the top plate approaches the bottom and eventually touches it at a certain applied voltage VPI
which is called the pull-in voltage.

According to Cai et.al. [22], the behavior of the top plate is given by

(33)

where u is the displacement of the top plate and ε the pemittivity. The pull-in voltage was
estimated by Senturia [9] as

ε A V

g u

EA

L
up b

2

0

2
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(34)

For the purpose of demonstration, the beam is discretized into 81 beam elements for FE
analysis and both plates are discretized into 100 4-node elements for BE analysis. The
displacements of the top plate obtained through the RSA scheme as well as other three

V
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A LPI
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p

= =
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27
90 900

3

ε
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(a) Applied voltage at 80V (global view)
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Figure 10 (Continued).
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(c) Applied voltage at 90.89V (global view) 
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(d) Applied voltage at 90.89V (local enlargement) 

D
is

pl
ac

em
en

t (
µm

)

0 5 10 15 20 25
–0.34

–0.33

–0.32

–0.31

–0.3

–0.29

Iteration number

Staggered/Relaxation method

Multilevel Newton method
Quasi-Newton method

RSA scheme

Figure 10 Convergence histories for parallel plate capacitor example.
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g0

L

Cantilever beam

Ground plane

V

 

w

t

Figure 11 Cantilever micro-beam.

methods are compared with the analytical values, as shown in Figure 9. The simulation
results overlap each other and are all in good agreements with the analytical values verifying
the accuracy of these four methods.

The convergence histories of the four methods are compared in Figure 10. As shown
in Figure 10(a) and (b), when the applied voltage is 80V, all the four methods converge
to the same value with similar iteration numbers although the staggered/relaxation and the
quasi-Newton methods are a little slower. But when the voltage of 90.89V (i.e. just before
pull-in) is applied, as in Figure 10(c) and (d), the staggered/relaxation method converges
much more slowly, while other three methods converge rapidly. Note here the needed
iterations for the quasi-Newton method is 17, the RSA scheme is 9, and the multilevel-
Newton is only 5.

The performances of the four methods for different applied voltages are summarized in
Table 1. All these methods converge until the pull-in voltage 90.90V verifying their accuracy.
Furthermore, as the applied voltage increases, the required iterations and CPU time for the
staggered/relaxation method also increases rapidly, while other three methods increase
relatively smoothly. It also should be noticed that although the multilevel Newton method
takes fewer outer iterations than other three methods for high voltages, it requires more
function evaluations and CPU time than the quasi-Newton and the RSA methods due to the
inner Krylov linear solver, which indicates higher computing cost.

5.2. CANTILEVER MICRO-BEAM
The cantilever micro-beam is a classical MEMS device that has been studied extensively
[6,7,9,23]. The beam considered in this paper is 500µm long, 50µm wide, 14.35µm thick,
fixed with one end and positioned 1µm above a ground plane, as in Figure 11. When a
voltage is applied between the beam and the ground, the electrostatic force is induced due to
the charge distribution on the surface of the beam. This electrostatic force causes beam
deflection that redistributes the surface charges and as a result, changes the electrostatic
force. An equilibrium state will be obtained if the forces due to the beam deflection and the
surface charges balance each other. Similar to the MEMS parallel plate capacitor, as the
applied voltage increases, the free end of the beam will approach the ground plane and finally
touch it at the pull-in voltage.

There is no analytical solution available for this problem; however, the pull-in voltage
was estimated by Osterberg et.al. [23] as
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(35)

where t is the beam thickness, g0 the undeformed gap between the beam and the ground
plane, ε the permittivity, L the beam length, w the beam wide and E

~
the effective stiffness

which is defined as

(36)

where E is Young’s modulus and v the Poisson ratio. For this example, E = 169GPa and v = 0.3
are used, thus the estimated pull-in voltage is 15.83V according to Eqn.(35).

The beam is discretized into 50 8-node elements for FE analysis, and the ground plane is
discretized into 80 4-node elements for BE analysis. Simulations are executed using the four
methods for different applied voltages.

The convergence histories of the four methods are shown in Figure 12. At the voltage of
15V, all the four methods exhibit similar convergence characteristics, as in Figure 12(a) and
(b). But as shown in Figure 12(c) and (d), if the applied voltage is 15.88V, the
staggered/relaxation method achieves convergent until 110 iterations, which is due to the
increased coupling between mechanical and electrostatic fields. And other three methods
converge rapidly although the quasi-Newton and the RSA both need a little more iterations
than the multilevel-Newton method.

Table 2 gives the performances of the four methods. All these methods converge until
15.89V which is very near the theoretical pull-in. For low applied voltages, the
staggered/relaxation method is the best choice because it not only requires less or equivalent
function evaluations and CPU time but also easy to implement. However, as the applied
voltage increases, it converges slower and slower, while the other three methods exhibit
better performances. Although in very few high applied voltage cases the RSA scheme needs
a little more function evaluations than the quasi-Newton method, the CPU time required by
the previous is very close to the latter. This is due to the matrix calculation involved in
Broyden update, i.e. Eqn.(16). If finer meshes are adopted, the Broyden updata will cost
much more CPU time, which means the RSA scheme is actually more efficient than the
quasi-Newton method for this example, and the multilevel Newton has higher computational
cost due to function evaluations in the inner Krylov loop.

5.3. CROSS BARS
The cross bars is an example which exhibits extreme nonlinear features, thus it’s able to test
the robustness of the four methods.

The cross bars are shown in Figure 13 [22]. This example consists of two orthogonal bars
with same parameters: the dimension 10µm × 0.5µm × 0.5µm, the Young’s modulus 169GPa
and the Poisson ratio 0.3. Bar B and the far end of bar A are fixed, and the minimum distance
between these two bars is 1µm. If a voltage is applied between the two bars, the free end of
bar A will bend towards bar B.
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Figure 12 (Continued).
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Figure 12 Convergence histories for cantilever micro-beam example.
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Bar A is discretized into 20 8-node elements which are used for FE analysis, and bar B is
discretized into 80 4-node elements for BE analysis. The convergence histories of the four
methods are illustrated in Figure 13. When the applied voltage is 930V, as shown in Figure
14(a) and (b), all methods converge although the staggered/relaxation more slowly. But if the
voltage increases, for example, to 1000V as shown in Figure 14(c) and (d), the
staggered/relaxation method fails to converge after 200 iterations, and other three methods
still work well and converge rapidly.

Table 3 shows the performances of the four methods. Similar with the results of the
previous two examples, the staggered/relaxation method requires less function evaluations
and CPU time for low applied voltages, while the multilevel Newton method and the RSA
scheme are more efficient as the applied voltage increases. It should also be noticed that the
quasi-Newton method is not always successful, this is due to the bad initial conditions (here
zeros at all nodes) which causes violent changes of the displacements (see Figure 14) and
sometimes makes BE solver fail. In order to resolve this matter, voltage stepping technique
can be used, e.g. taking the solution obtained at 700V as the initial conditions for 800V.
Furthermore, the staggered/relaxation method fails to converge because of the increased
coupling and nonlinearity between mechanical and electrostatic fields when the applied
voltage is more than 930V, while the RSA scheme still converges at higher voltages, which
is also a proof that the latter has looser convergence conditions, as presented in section 4.1.1.

6. CONCLUSIONS
This paper presents the RSA scheme for multiphysics simulation of MEMS. The principle,
implementation procedure and convergence condition of this scheme are introduced. Other
three conventional coupling algorithms, i.e. the staggered/relaxation, the multilevel Newton
and the quasi-Newton methods, are also reviewed. The RSA scheme is then applied on
MEMS electrostatic actuators problems. The simulation results show that: 1) the RSA
scheme is easy to implement; 2) it is cheaper than the other three methods for the examples
illustrated in this paper; 3) it is able to converge even if the staggered/relaxation method fails
and; 4) it is not sensitive to the initial conditions.

Although the RSA scheme is promising for MEMS multiphysics simulation, this is only
in the context of electrostatic actuator problems. Future work will be done to validate the
availability of the RSA scheme to other types of examples, such as fluid-structure
interactions or transient problems.
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Figure 14 (Continued).
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