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ABSTRACT 
In porous medium studies the Mandel-Cryer effect is known, describing 

non-monotonic pore-water pressure evolution in response to loading or to 

changed stress conditions. In a 2D poro-elastic model we couple the pore 

water hydraulics with mechanics (HM). The Mandel-Cryer effect is identified 

in parts of the model region that are far from the drainage boundary. At parts 

of the loaded boundary an even more complex pressure evolution is 

revealed. Variations of the Biot-parameter as the coupling parameter clearly 

indicate the relevance of the two-way coupling between the involved 

physical regimes. Hence the Mandel-Cryer effect is a typical result of multi-

physical coupling.  

 

 
1. INTRODUCTION  
In problems of poro-elasticity the so-called Mandel-Cryer effect describes the non-
monotonic response of pressure due to external loading. A sudden change of pressure on an 
open system usually is expected to result in a monotonic reaction: the initial pressure will 
gradually decay towards a new equilibrium state. However, in a poro-elastic system an 
increase of pressure can be observed in parts of the system for a certain time, before the 
overall decrease becomes dominant. 

Mandel [1] was the first, who described such behaviour. Mandel's problem consists of an 
infinitely long rectangular specimen sandwiched at the top and the bottom by two rigid 
plates. The lateral sides are free from normal and shear stress, and pore pressure. At t = 0 a 
force is applied to the rigid plates and a uniform pore pressure appears, according to the 
Skempton effect [2]. With progressing time the pressure near the side edges will dissipate 
because of drainage. But initially the solution, derived by Mandel, shows an increase of 
pressure. The transferring of compressive total stress works as a pore pressure generation 
mechanism such that the pressure in the centre region continues to rise after its initial 
creation. In the centre between the drained ends the pressure increase is most pronounced 
and also prevails the longest time.  

Altogether the pore pressure response hence is non-monotonic, a characteristic not 
observable in a simple diffusion phenomenon such as that modelled by the Terzaghi theory 
[3]. It has to be noticed that the Mandel set-up is 1D, as details pressure and deformation 
development are described only in the single space dimension, which extends from the 
centre of the specimen to the drained ends. In our numerical model we will elaborate on a 
2D set-up, in which the processes in the transverse (vertical) direction are included also. 
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After Mandel, Cryer [4] observed a similar behaviour at the centre of a sphere consolidating 
under hydrostatic pressure. The sphere is open at the surface, so that the initial sudden pressure 
increase will be compensated by fluid drainage. Cryer developed an analytical solution for 
this situation, which in the interior of the sphere shows the same non-monotonic development 
of pressure, as described by Mandel before. 

This type of non-monotonic pressure response is usually referred to as the Mandel-Cryer 
effect. It is a distinctive feature of the multi-physical coupling, in contrast to the traditional 
uncoupled Terzaghi theory [3]. The physical phenomenon has been confirmed in the 
laboratory [5,6]. Abousleiman et al. [7] extended the Mandel problem to include transverse 
isotropy as well as compressibility of pore fluid and porous medium (see also: Cui et al. [8]). 

Recently the Mandel-Cryer effect is studied in unsaturated soil [9], in fluid inclusions [10]. 
The Mandel problem is used frequently as a benchmark problem for codes concerning coupled 
poro-elasticity [11-16]. 

Finite element modelling is a convenient numerical technique for the simulation of the 
Mandel-Cryer effect. They have been applied for the Mandel problem [8,11,12,17], as well as 
for the Cryer problem [18,19]. Including thermal effects additionally Selvadurai & Suvorov 
[20] extend the Cryer setting to a coupled THM problem, also using the code COMSOL 
Multiphysics [21]. Using finite elements Jha [22] observed and described the Mandel-Cryer 
effect in a constellation of groundwater pumping and injection wells. Here, we focus on a 
modified version of the Mandel set-up in 2D that was proposed by Jha & Juanes [15]. 
 
2. HYDRAULIC-MECHANICAL COUPLING 
The Mandel-Cryer effect results from hydraulic-mechanical coupling (HM). The hydraulic 
regime in question is porous medium flow according to Darcy’s Law, determined by 
hydraulic pressure in the pore space. The pressure however is also affected by deformations 
of the elastic material, described by Biot’s theory. Moreover the influence is vice versa, as 
the geomechanics depends on pressure, too. Thus there is a two-way coupling. In the sequel 
the differential equations for the single processes are described first and the coupling terms 
are introduced thereafter.  

The stress regime the porous medium and the corresponding deformations are described 
by the mechanical equations 

−∇.𝛔𝛔 = 𝐅𝐅𝐯𝐯 (1) 

 

𝛔𝛔 − 𝛔𝛔𝟎𝟎 = 𝐂𝐂: (ε − ε0) (2) 

Eqs (1) and (2) is a system of differential equations in which the elements of the 
deformation vector u are the dependent variables. Further variables are: stress tensor σ, 
volume force vector 𝐅𝐅𝐯𝐯 and stiffness tensor C. The strain tensor ε is defined by 

ε =
1
2

((∇𝐮𝐮)T + ∇𝐮𝐮) (3) 

Equation (2) describes the stress-strain relationship in general. In the application below we 
deal with elastic media only. Subscript 0 denotes initial or reference values. 
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The hydraulic conditions in porous media are described by: 

ρS
∂p
∂t

+ ∇. (ρ𝐪𝐪) = Q (4) 

 

𝐪𝐪 =  −
k
µ
∇(p − ρgz) (5) 

Equation (4) is a differential equation for pore pressure p as dependent variable. Other 
variables and parameters are: Darcy velocity vector q, fluid density ρ, permeability k, fluid 
dynamic viscosity μ, acceleration due to gravity g, storage parameter S, and fluid source/sink-
term Q. Equation (4) is a formulation of the mass balance and equation (5) is Darcy’s Law for 
flow in porous media. The equations (4) and (5) describe the diffusion of pressure, where the 
diffusivity D is given by: 

D =
K
S

     with    K =
kρg
µ

 (6) 

The pore pressure also affects the mechanical state of the system. In the mathematical 
description this is taken into account by an extension in the stress-strain equations (2): 

𝛔𝛔 − 𝛔𝛔𝟎𝟎 = 𝐂𝐂: (ε − ε0) − αp𝐈𝐈 (7) 

with Biot constant α [23,24]. For high Biot constants (≅ 1) there is a strong coupling, for low 
α (≅ 0) there is a weak coupling. In order to consider anisotropy direction-dependent Biot 
constants can be introduced in the last term on the right hand side of the equation [7]. Cui et 
al. [8] use a tensor of Biot-constants as a further generalization. The backward link from 
mechanics to hydraulics is given by an additional term in the fluid equation (4): 

ρS
∂p
∂t

+ ∇. (ρ𝐪𝐪) = Q − ρα
∂εv
𝜕𝜕𝜕𝜕

 (8) 

with volumetric strain εv. The term also depends on the Biot constant α. 
 
3. MANDEL-CRYER MODEL SET-UP 

A model was set up that illustrates the Mandel-Cryer effect in the coupled poro-elastic 
approach described above. The original sandwiched specimen used by Mandel [1], showing 
the non-monotonic behaviour of pore pressure, was modified. While Mandel’s setting 
becomes basically a 1D problem if transversal effects are neglected, the latter are considered 
in our 2D approach. In the conceptual model we follow Jha & Juanes [15]. While in the 
original Mandel set-up only vertical loading was assumed, the Mandel-Cryer model, used 
here, is driven by lateral loading from the side. Using overburden and sideburden Kim et al. 
[16] propose another very similar 2D modification of the original Mandel set-up. 

In the model a specimen is exhibited to a uniform constant compressive pressure of σ0=1 
MPa from the left. The right and bottom boundaries are fixed in the normal directions, but 
allow movements in tangential directions (‘roller’ conditions). Concerning flow, the top is 
a drained boundary with constant pore pressure p=0, while the other three boundaries are 
no-flow boundaries. The situation is sketched in Figure 1 (displacement vector u = (u,v)). 
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Figure 1: Sketch of the 2D modified Mandel set-up 

 
In the numerical model we discretize the equations, given in the section above, including 

the two way coupling. For the description of the poro-elastic material behaviour we use the 
common Young modulus E and Poisson ratio ν. The temperature is relevant for the water 
properties ρ and µ. Gravity effects are neglected. There are no fluid sources and sinks within 
the modelled region. 

 
Table 1: Parameters for the 2D modified Mandel model 
Parameter Value [unit] Parameter  Value [unit] 
Length L 50 [m] Biot parameter α 1 
Height H 10 [m] Porosity 0.05 
Load σ0 1 [MPa] Diffusivity D 2.2 10-7 [m2/s] 
Young modulus E 18 [GPa] Storage parameter S 0.05 [1/m] 
Poisson ratio ν 0.25 Hydr. Conductivity K 1.1 10-8 [m/s] 
Bulk density 1500 [kg/m3] Temperature 20 [°C] 

 
For modelling we use the software COMSOL Multiphysics [21], a versatile and flexible 

code for Finite Element solutions of coupled partial differential equations. The software can 
be applied to all kinds of (multi)-physical settings. It is equipped with a graphical user 
interface that allows easy handling and coupling of different physics modes. There are several 
toolboxes that extend the core program. For this study we utilized the ‘porous medium and 
subsurface’ toolbox and the ‘poroelastic’ mode.  

With the 2D deformation vector u and pore pressure p there are three dependent variables 
in the coupled system of equations. In the finite element formulation all dependent variables 
are discretized by quadratic element functions on a triangular mesh. The finite element mesh 
is refined at the top boundary. Altogether we used 72139 quadratic elements, 5057 edge 
elements, with an average element quality 0.95. 

 
4. RESULTS  
The model was simulated for the time interval from 0 to 1400 s. Figure 2 shows the 
deformation of the model, i.e. its shrinking in horizontal direction and its extension in 
vertical direction after 1000 s for the maximum coupling case, which we use here as a 
reference. The length unit on the colorbar is [m]. For illustration purposes the displacement 
is exaggerated. 

Figure 3 depicts the development of pressure with time for the reference case with maximal 
coupling, i.e. α=1. The pore pressure at the right and lower boundaries is plotted for different  
 

 
  

p=0; u, v free 
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no flow 
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time instants (the legend shows time in [s]). The y-coordinate increases from bottom to the 
top, the x-axis from left to the right. Pressure is non-dimensionalised with the applied 
compressive stress. 
 

 
Figure 2: Total displacement for maximal coupling after 1000 s; for the visualization 
the deformations at left and upper boundaries are exaggerated 

 

 

 
Figure 3: Distribution of (non-dimensional) pressure at different time instants [s]; 
upper subplot for right vertical boundary; lower subplot for bottom boundary.  
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The Mandel-Cryer effect, the early times pressure increase, can clearly be recognized at 

parts of both boundaries.  At the lower part of the vertical boundary and most parts of the 
bottom boundary, the pressure increases before beginning to decrease. At t=0, an undrained 
pressure is generated. The specimen is deformed: due to the boundary conditions it shrinks 
in horizontal direction and extends in vertical direction upwards. With progressing time the 
pressure near the top boundary decreases because of fluid drainage. As the hydraulic 
diffusivity is small, the effect of drainage is not observed immediately near all no-flux 
boundaries. This results into load transfer of compressive total stress towards the bottom 
boundary, in response to which the pressure there continues to rise above its undrained 
value.  

Near the left boundary, where the specimen is loaded, the situation is more even more 
complex. At early times we observe a pressure decrease due to drainage in the direct vicinity 
of the loading. The system then adjusts to the increased pressure regime at the bottom, that 
was described, which leads to a pressure increase in a second phase, before the decrease in 
the final phase. The details of pressure evolution at three positions at the bottom boundary, 
shown in Figure 4, illustrate the complex behaviour. 

 

 
Figure 4: Evolution of (non-dimensional) pressure at selected positions at the 
bottom boundary; for x=0 the pressure curve with a minimum and a maximum 
shows more complex development 

 
In the long term all excess pressure vanishes and a uniform stress regime returns. Hence, 

the pressure evolution at points away from the drained boundary is non-monotonic, a 
phenomenon not observed in a purely diffusive process such as that modelled by the 
Terzaghi theory, where the pressure is uncoupled from the solid deformation.  

In order to study the coupling effect we ran several model runs with different values for 
the Biot parameter. The coupling parameter was changed from α=0 (no coupling) to α=1 
(maximal coupling). Figures 5 shows the evolution of pore pressure in the lower right corner 
of the model region for all α. 

For the uncoupled case the pressure remains constant throughout: the pressure increase  
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at one side of the model is swiftly compensated by drainage at the upper boundary. For 
coupled regimes the non-monotonic increase can be observed at the lower right corner in 
all cases. p is increasing before it is declining. For α=0.2 the pressure increase is hardly 
visible. However, the non-monotonic behaviour can be clearly identified as a coupling 
effect. 

 
Figure 5: Pore pressure evolution at the lower-right model corner for coupling 
parameters α=0:0.2:1; upper sub-plot for linear time scale, lower sub-plot for 
logarithmic time scale  
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The maximum pressure is reached at t=100 s for α =0.2, at t=178 s for α =0.4, at t=245 

s for α =0.6, at t=287 s for α =0.8 and at t=355 s for α =1. The coupling strength obviously 
extends the time of pressure build-up. While the peak size increases less for strong coupling, 
the relation between peak time and Biot-parameter is nearly linear. 

The representation at logarithmic time scale in Fig. 5 reveals that after loading there is a 
time period in which the pressure remains quasi constant, before a rise becomes apparent. 
Thus for the lower right corner of the model in fact three different phases have to be 
distinguished: first an initial period with constant pressure, a second with rising pressures 
and a third with decreasing pressures.  

Fig. 6 displays the maximum deformation at the right boundary for different coupling 
parameters. We choose the same time, here: 1400 s. As expected the deformation increases 
with the coupling. However the relation between deformation and α is nonlinear. For weakly 
coupled cases the deformation changes slightly with α, while for strongly coupled cases the 
change of deformation is much bigger. 

 
Figure 6: Deformation at upper-right model corner for coupling parameters 
α=0:0.2:1  
 
5. CONCLUSIONS  
The Mandel-Cryer effect, the initial pressure increase as response to an external load, is 
studied as a multi-physics problem concerning a 2-way coupled regime of hydraulics and 
mechanics. We studied the effect in an extended 2D set-up of the original Mandel 
constellation, which allows the study of pressure development in transverse direction in 
addition.  

The non-monotonic behaviour of pressure can be observed in the lower half of the system 
only. The extension of the region with Mandel-Cryer effect surely depends on the parameter 
values. Moreover near to the loading boundary we observe an even more complex 
behaviour: in the lower part the pressure reacts in three phases: decrease, increase and final 
decrease. The development can be explained by the different physical regimes, which 
become dominant at different time periods. 
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We examined the sensitivity of the model due to the coupling term, i.e. the Biot 
parameter. Thus we demonstrated that the Mandel-Cryer effect is a result of a two-way 
multiphysics coupling. The parametric study also shows that the coupling not only affects 
the pressure peak size, but also the pressure peak time. Both size and time increase with 
coupling strength. 
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