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ABSTRACT 
In a classical paper Henry set up a conceptual model for simulating saltwater 

intrusion into coastal aquifers. Up to now the problem has been taken up by 

software developers and modellers as a benchmark for codes simulating 

coupled flow and transport in porous media. The Henry test case has been 

treated using different numerical methods based on various formulations of 

differential equations. We compare several of these approaches using 

multiphysics software. We model the problem using Finite Elements, utilizing 

the primitive variables and the streamfunction approach, both with and 

without using the Oberbeck-Boussinesq assumption. We compare directly 

coupled solvers with segregated solver strategies. Changing finite element 

orders and mesh refinement, we find that models based on the 

streamfunction converge 2-4 times faster than runs based on primitive 

variables. Concerning the solution strategy, we find an advantage of Picard 

iterations compared to monolithic Newton iterations.  

 

 
1. INTRODUCTION  
The classical paper of Henry [1], published for the United States Geological Survey in 1964, 
based on a doctoral dissertation written at Columbia University in 1960 (‘Salt Intrusion into 
Coastal Aquifers’). After now 50 years it is worth not only to acknowledge the conceptual 
model of Henry, but also to highlight its role as test-case for the development of modelling 
software. The Henry testcase has become a classical benchmark not only for codes on salt-
water intrusion but for software designed for modeling variable density and coupled flow and 
transport in porous media in general. Moreover, it also gives clues concerning general 
multiphysics modelling. 

The Henry benchmark has been utilized as such by Lee & Cheng [2], Frind [3], Sanford 
& Konikow [4], Huyacorn et al. [5], Voss & Souza [6], Strobl & Yeh [7], Croucher & 
O'Sullivan [8], Oldenbourg & Pruess [9], Kolditz et al. [10], Holzbecher [11], Benson et al. 
[12], Liu et al. [13], Canot et al. [14], Dentz et al. [15], Soto Meca et al. [16], and Grillo et 
al. [17]. Concerned with classical groundwater simulations, Ségol [18] reports and 
compares results from various models for the Henry’s set-up. Sorek et al. [19] provide an 
overview on various simulation strategies for saltwater intrusion in general, including the  
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Henry case. Simpson & Clement [20,21], discuss the worthiness of the Henry problem as a 
benchmark for density-dependent groundwater flow models. Although the Henry set-up 
may have turned out to be unrealistic and thus not suited for validation purposes, due to its 
simplicity it is still a perfect testcase for verification purposes of numerical approaches and 
algorithms. 

After a mathematical analysis concerning flow and transport of fluids with different 
densities in porous media Henry [1] formulated a quantitative description for the dynamic 
balance between fresh and saline fluids in coastal aquifers. In contrast to former publications 
the main novel aspect was that Henry did not utilize the sharp interface assumption, which is 
often unrealistic. Instead a mixing zone between fresh and saline waters is considered, which 
leads to a nonlinear system of two coupled differential equations. Aside from this new 
phenomenological aspect the Henry problem can be used for checking numerical codes and 
testing various numerical approaches techniques and is thus of interest until today. 

Here we take up Henry’s formulation and introduce three other mathematical formulations 
of the problem. We use the primitive variable (PV) and the streamfunction formulation (SF); 
and we present both formulations with and without Oberbeck-Boussinesq assumption (OB 
and NOB). Henry’s original formulation is SF-OB. Moreover we examine two numerical 
solution techniques. In the monolithic approach the nonlinear system of the entire problem 
set-up is solved by Newton iterations. In the segregated approach the flow and transport 
problem are solved separately within the so called Picard iterations. 

Main aim of the study is to check and compare the performance of numerical codes for the 
different formulations. We examine the supposition of Evans & Raffensperger [22] that the 
streamfunction approach may converge more rapidly and to be more stable numerically than 
similar calculations for primitive variables. To our knowledge no report has been published 
yet to verify the validity of the supposition. 

Evans & Raffensperger [22] also proposed an alternative streamfunction formulation 
without the Oberbeck-Boussinesq assumption (SF-NOB). Some studies on the quantification 
of the Oberbeck-Boussinesq assumption in free fluids can be found in the literature (Nadolin 
[23] , Sugiyama et al. [24], Ahlers et al. [25]), but similar efforts have not been published for 
porous media flow. In the following sections describe the set-up of the numerical models, 
using COMSOL Multiphysics [26], and provide results. Concerning the numerical procedure 
we quantify another alternative, comparing Picard iterations and Newton method for resolving 
the nonlinear system. 

 
2. ANALYTICAL DESCRIPTIONS 
2.1 Primitive Variable Formulations 
The primitive variable formulation (PV) is derived from the mass balance principle and 
empirical relationships (Bear [27], Bear & Verruijt [28]). Density-driven flow in porous 
media can thus be described by a system of coupled differential equations: 

∇. ρ𝐯𝐯 = 0       with     𝐯𝐯 =
k
µ
∇(p + ρgy)    (1a) 

 

∇.𝐃𝐃∇c −  ∇. (𝐯𝐯c) = 0 (1b) 
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Primitive variables, to be solved for, are the salt concentration c and the pressure p. Eqn. (1a) 
is referred to as flow equation. It states fluid mass conservation, formulated in terms of fluid 
density ρ and Darcy velocity v. The latter is given explicitly by the Darcy’s Law, a well 
established formula for flow in porous media. Parameters are the permeability k, viscosity 
µ and acceleration due to gravity g. The variable y denotes spatial distance in vertical 
direction. 

Eqn (1b) is the steady state transport equation for salinity c. The transport equation results 
from mass conservation for salt. It consists of two terms. The first, with dispersion tensor D, 
describes diffusion and dispersion. As Henry in his original approach, we assume a simple 
Fickian approach for diffusion, in which the tensor D can be replaced by single scalar D 
representing an effective diffusivity. The second term, including velocity v describes 
advective transport. 

The fluid density ρ is a variable that varies with salinity c. In the Henry model a linear 
dependency of density on salinity is assumed, which is in fact a good approximation within 
the usual salinity range concerning seawater intrusion. Fluid viscosity µ also depends on c. 
However, like Henry, we see good reasons to neglect viscosity variations, and assume a 
constant value. 

Flow and transport equation are coupled. The velocity v, determined by solving the flow 
equation, appears in the advection term of the transport equation. Salinity c, determined by 
solving the transport equation, affects density ρ, which appears in the first equation of system 
(1) and in the second term of Darcy’s Law and thus has an influence on the flow solution. This 
coupling is characteristic for density-driven flow, not only in porous media. 

For numerical models a coupled problem is a more difficult task to solve than an uncoupled 
problem. In this case flow and transport modelling can not be partitioned into two separate 
subsequent steps. Instead in the coupled situation both physics have to be solved 
simultaneously. For the implementation of the solution algorithm there are two different 
numerical approaches. Using Picard iterations the two physics are solved separately, in each 
iterative step updated with the results from the other. Using the Newton method the discretized 
version of the entire problem is gathered in one system of equations. The resulting set of 
equations has a higher number of unknowns and is often more complex to solve. Such an 
alternative between a segregated and a coupled solution method is typical for multiphysics 
problems. For the Henry problem we examine which of these alternative procedures shows 
better performance. 

Most studies on density-driven flow not only in porous media utilize the so-called 
Oberbeck-Boussinesq assumption (Oberbeck [29], Joseph [30]) in order to simplify the 
analytical description. The assumption is that density variations are relevant only in the 
buoyancy term, which appears in Darcy’s Law. Then the eqns (1) can be simplified to 

∇. 𝐯𝐯 = 0       with     𝐯𝐯 =
k
µ
∇(p + ρgy) (2a) 

∇.𝐃𝐃∇c −  𝐯𝐯.∇c = 0 (2b) 

Concerning the coupling the difference between eqns (1) and (2) is that in eqns (1) the 
backward coupling (from transport to flow) via density concerns both equations in eqn (1a), 
while in eqns (2) the backward coupling is reduced to the buoyancy term, the last term in the  
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explicit formula for v. We check whether the difference between eqns (1) and (2) is really 
relevant, i.e. if it was really necessary for Henry, to utilize the Oberbeck-Boussinesq 
assumption. In the following we will refer to eqns (2) as PV-OB (primitive variable/Oberbeck-
Boussinesq), while we refer to eqns (1) as PV-NOB (primitive variable/non Oberbeck-
Boussinesq). 

For the primitive variable formulation we use the input data set given in Tables 1 and 2. 
The hydraulic conductivity is given by K = kpg

µ
. Ségol [18] discussed input data, used by 

different models. Especially the transformation of the diffusivity had often made difficulties, 
as was already pointed out by Voss & Souza [6]. 

 
Table 1: Input values for the Henry saltwater intrusion test problems 

Parameter Symbol Value Unit Parameter Symbol Value Unit 

Length L 200 m Hydraulic conductivity K 1 m/d 

Height H 100 m Porosity ϕ 0.35 - 

Seawater density ρsaline 1025 kg/m3 Effective diffusivity D 0.01886 m2/d 

Freshwater density ρfresh 1000 kg/m3 Fresh water inflow Q 0.0066 m2/d 
 

Table 2: Inhomogeneous boundary conditions of the Henry 
saltwater intrusion benchmark using primitive variables 

Boundary θ p 

left (x=0) Dirichlet θ=0  flux: vx=0.0066 m/d 

right (x=L) Dirichlet θ=1 Dirichlet p=ρg(H-y) 

top (y=1) no flow: ∂θ/∂y=0 no flow: vy=0 

bottom (y=H) no flow: ∂θ/∂y=0 no flow: vy=0 

 
The considered (model-) area is a 2D-vertical cross-section through the aquifer, where one 

vertical boundary is located at the seashore. The origin of the (x,y)-system is located at the 
base of the aquifer in the lower left corner of the cross-section. The boundary conditions for 
the primitive variables are gathered in Table 2 and are visualized in Figure 1(A). 

Note that we use the variable of normalized concentration θ = c−cfresh
csaline−cfresh

 instead of 

original salinity c. cfresh denotes the background concentration of the inflowing fresh water, 
csaline the concentration of the saline water at the saltwater boundary. The transformation is 
possible because the transport equation is linear. The corresponding formula for density 
dependency is: ρ = ρfresh + θ(ρsaline − ρfresh). 

A typical result for the primitive variable formulation is given in Figure 2. The distribution 
of concentration is depicted by contour lines, representing low salinity on the left and high 
salinity on the right of the figure. The contours, i.e. isohalines, are vertical near the left and 
right boundaries and show curvature in the interior. The distribution of total pressure is 
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(A) 

 

 
(B) 

Figure 1: Sketch of boundary conditions; (A): primitive variable approach, (B): 
streamfunction approach 

 
Figure 2: Total pressure as colormap (with colorbar) and salinity contours (with 
labels) for the reference case (V in Table 5) calculated by the primitive variable 
model without Oberbeck-Boussinesq assumption 
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depicted as surface plot. p increases with depth and the deviation of the isobars from the 
horizontal are hardly visible. Flow is visualized by an arrow field, in which the arrow size 
corresponds to the absolute value of the velocity. The basic features of the flow field can be 
recognized easily. There is fresh water inflow into the model region across the left boundary. 
Across the right seashore boundary there is inflow in the lower part and outflow in the upper 
part. This leads to a counter current against the main left to right direction in the lower part of 
model region. The counter current weakens gradually with the penetration into the interior, 
before the upward flow component becomes dominant. While flowing upward there is a strong 
mixing with fresh water and the horizontal component changes its direction, finally following 
the main flow direction. 

 
2.2 Streamfunction Formulations 
In his publication Henry also utilizes Darcy’s Law, the continuity equation, and the steady 
state transport equation. Using the streamfunction ψ and normalized concentration θ he 
derives the system of two coupled partial differential equations: 

𝑎𝑎.∇2ψ =
∂θ
∂x

       with     a =
µQ

kg∆ρH
          (3a) 

 

b.∇2θ −
∂ψ
∂y

∂θ
∂x

+
∂ψ
∂x

∂θ
∂y

= 0        with      b =
D
Q

 (3b) 

where Q denotes the net freshwater discharge per unit length of the seashore, H the thickness 
of the aquifer and ∆ρ the density difference between freshwater and saltwater. Mixing effects 
due to flow inhomogeneity and other effects are included, as D is recognized as an effective 
diffusivity. The streamfunction is defined through the equations: 

∂ψ
∂y

= vx                    
∂ψ
∂x

= −vy (4) 

As eqns (1) and (2) system (3) consists of two coupled differential equations, too. We refer 
to it as streamfunction formulation (SF). The boundary conditions for the streamfunction 
approach, as specified by Henry, are given in Table 3; see also Figure 1(B). 

 
Table 3: Inhomogeneous boundary conditions of the 
Henry saltwater intrusion test problem 
Boundary θ ψ 
left (x=0) Dirichlet: θ=0  Neumann: ∂ψ/∂x=0 
right (x=L/H) Dirichlet: θ=1 Neumann: ∂ψ/∂x=0 
top (y=1) No flow: ∂θ/∂y=0 Dirichlet: ψ=1 
bottom (y=0) No flow: ∂θ/∂y=0 Dirichlet: ψ=0 

 
Holzbecher [11] proposes a modified formulation including the dimensionless porous 

medium Rayleigh number which is used in convection studies. It is obtained from eqns (3) by 
the transformation ψ → bψ: 

∇2ψ = Ra
∂θ
∂x

                    ∇2θ −
∂ψ
∂y

∂θ
∂x

+
∂ψ
∂x

∂θ
∂y

= 0 (5) 
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As only coefficient the Rayleigh number Ra = 1

𝑎𝑎𝑎𝑎
  appears on the right side of the 

streamfunction equation. However, because of the variable transformation for the ψ the 
parameter b has to be considered in the formulation of the boundary conditions. In the 
following we will refer to eqns (5) as SF-OB (Streamfunction/Oberbeck-Boussinesq). 

In mathematical notation the boundary conditions for eqns (3) or (5) are inhomogeneous as 
there are nonzero values prescribed at the boundary, and they are non-periodic. Henry makes 
a transformation of variables in order to achieve homogeneous and periodic boundary 
conditions: 

Ψ =  ψ − y                         C =  θ −
x
L

   (6) 

The very same transformation is used by Ségol [18] revisiting the Henry model as an 
example of a classical groundwater simulation. Boundary conditions for the variables Ψ and 
C are given in Table 4. 

 
Table 4: Homogeneous boundary conditions of the Henry 
saltwater intrusion test problem 
Boundary C Ψ 
left and right (x=0, x=L) Dirichlet: C=0  Neumann: ∂Ψ/∂x=0 
top and bottom (y=0, y=1) No flow: ∂C/∂y=0 Dirichlet: Ψ=0 

 
The transition to homogeneous boundary conditions has the advantage that periodic 

functions can be used as ansatz-functions, the approach which Henry used for his spectral 
methods. The disadvantage is that the set of differential equations become more complex: 

a.ΔΨ =
∂C
∂x

+
1
L

                  b.∆C −
∂ψ
∂y

∂C
∂x

+
∂ψ
∂x

∂C
∂y

=
1
L
∂Ψ
∂y

+
∂C
∂x

+
1
L

 (7) 

Henry (1964) provides solutions when the dimensionless constants a and b take the values 
shown in cases I and II of Table 5. The corresponding Rayleigh number is given in the last 
column. The parameter combination of case III was introduced by Ségol [18]. For the 
combination of case IV Ségol presented results calculated with SUTRA [31]. The case was 
taken up again by Croucher & O’Sullivan [8] using parameters equivalent to Case V. 

 
Table 5: Input values for the Henry saltwater intrusion test problems 
Case a=Qµ/kg∆ρH b=D/Q Ra=1/(a⋅b) 
I 0.450 0.1 22.2 
II 0.263 0.1 38.0 
III 0.263 0.05 76.0 
IV 0.263 0.035 108.6 
V 0.263 0.025 154.0 

 
Also the streamfunction equations can be formulated without the Oberbeck-Boussinesq  
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assumption. For that purpose Evans & Raffensperger [22] introduce the flux-based 
streamfunction 𝜙𝜙: 

∂ϕ
∂y

= ρvx                         
∂ϕ
∂x

= −ρvy   (8) 

which leads to the formulation: 

∇.
𝑎𝑎

1 + θ∆ρ
∇ϕ =

∂θ
∂x

 (9) 

instead of eqns (3a). Eqn (9) does not have a constant coefficient on the left hand side, but 
a variable, that is changing with the transport variable θ instead. In the following we refer 
to this approach as the SF-NOB (streamfunction, non Oberbeck-Boussinesq) formulation.  

A first result for the SF-OB case was presented by Holzbecher [32]. The typical output 
is shown in Figure 3. Here the salinity distribution is depicted as surface plot; dark colour 
representing high salinity and light colour low salinity. The streamfunction is depicted by 
contours, representing streamlines. The streamlines provide a very good image of the flow 
pattern. Particles entering the cross-section in the lower part of the seaside, migrate against 
the main flow for some time, before reaching a turning point where the horizontal velocity 
component changes its sign, finally leading back to the seaside again. In vertical direction 
there is a gradual movement upward along the streamline. The density of the streamlines 
corresponds with the magnitude of the velocity: at higher velocities the streamlines are 
dense, while they are farther apart, where velocities are low. 

 
Figure 3: Streamfunction contours and isohalines (light for fresh water, dark for 
saline water), calculated using the streamfunction formulation under the 
Oberbeck-Boussinesq assumption for the Henry case V (see Table 5) 

 
3. NUMERICS AND SOFTWARE 
For his simulations of the saltwater intrusion Henry used Fourier series with trigonometric 
polynomials for, what he called, an analytical solution. In fact the method is a spectral 
method in nowadays terminology. The series show a poor convergence, as was also 
observed by Ségol [18] and Borisov [33]. The major reason for the bad convergence is that 
the boundary conditions can not be properly approximated by the chosen functions. For that 
reason the finite element approach with locally supported basis functions is more 
appropriate for the numerical solution of the Henry problem, and is explored in this paper.  

For all finite element simulations of this paper we use the COMSOL Multiphysics [26] 
code. COMSOL has the advantage that one may work with physical real-world parameters 
and pre-defined differential equations, as well as with dimensionless variables and general 
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differential equations. COMSOL offers a wide variety of options concerning the Finite 
Element types and spaces, which are also examined in test runs. Moreover we take advantage 
of the Earth Science Module (ESM), one of the additional toolboxes for COMSOL 
Multiphysics to model porous media flow.  

For the PV formulation we choose ‘Darcy's Law’ and ‘Solute Transport’ from the 
COMSOL ESM. The coupling variables are the velocity components (from flow to transport) 
and the fluid density (from transport to flow). The entire model is set up using untransformed 
physical parameters. For the SF formulations we choose the Poisson equation as a classical 
differential equation for flow, and the ‘Convection-Diffusion’ mode for the transport equation. 
We implement the approach based on the Oberbeck-Boussinesq assumption, as given by eqns 
(4) and (5), as well as eqns (8) and (9) that do not require the Oberbeck-Boussinesq 
assumption. 

Concerning finite elements we use Lagrange elements from 1st to 5th order and global grid 
refinement. Runs with adaptive grid refinement are used to obtain the most accurate reference 
solutions for comparison purposes. In all runs the steady state is found by a direct solution. It 
is not necessary to use a transient modelling approach converging to the steady state. 
Using Picard iterations the systems for the flow and transport equations are solved separately 
until the required accuracy is reached (Mardal et al. [34]). This is also refered as sequential 
approach (Kim [35], Heil et al. [36]). In contrast, using the classical Newton solver for 
nonlinear equations, the entire system derived from the flow and transport discretization is 
solved by an iterative procedure. In multiphysics simulations this is also refered to as 
coupled solution or monolithic approach (Heil et al., Kim [35]). Putti & Paniconi [37] 
provide a description of the alternative solution strategies for density driven flow in porous 
media, and the Henry test case in particular. They pinpoint to the advantage if the matrix 
constituting the system of equations to be solved is of smaller size. In problems of density-
driven flow in porous medium, the matrices in the Picard iterations are of half the size of 
the matrix to be used in the Newton iteration. 

Moreover the matrix of the Newton iteration is more complex. Thus each Picard iteration 
step requires less computational storage and can be expected to converge faster than the 
Newton solution. On the other side Newton’s iterative method has to be applied only once for 
the solution of the Henry problem, while the two systems of smaller size have to be solved in 
each Picard iteration. Thus the disadvantage of the bigger matrix for the Newton method may 
be compensated. Here we check the performance of the two solution strategies, i.e which is 
the mentioned features is dominant. 

In COMSOL Multiphysics the Newton method is the default choice for the solution of the 
nonlinear equations. In version 3.4 of the software the Picard iterations are implemented with 
appropriate options for segregated groups: flow and transport variable both define one group.  

All model runs were started with a hydrostatic state for the flow variable, i.e. with 
hydrostatic stratification of pressure for PV formulations, and with a constant value for the 
streamfunction for the SF formulations. Initial value for concentration is the zero in all cases. 

 
4. RESULTS 
4.1 Dependencies on Element Order and Mesh Refinement 
Model runs are performed for different meshes and elements, using primitive variables and 
streamfunction formulation. For each run we calculate execution time and accuracy. A run  
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with several adaptive grid refinements for the primitive variable approach and second order 
elements is used as the reference, to which all other models are compared. The reference 
model has 66804 elements and 268658 degrees of freedom (DOFs) and shows the finest 
mesh near the upper right corner of the model region. 
In order to measure the accuracy, a series of 799 points was selected, located on the diagonal 
from the lower left corner of the model region to the upper right corner. The concentrations 
𝑐𝑐𝑖𝑖 calculated at these positions are taken to measure the accuracy of the different model 
runs, according to the formula: 

‖e‖ =  ���ci − ci,ref�
2

799

i=1

   (10) 

The reason for that choice is that the highest gradients of the salt concentration can be 
expected near the upper right corner, which is one end of the diagonal. It is thus the biggest 
challenge for the model to calculate these values accurately.  

We first examine the influence of finite element order on the solution. For different finite 
element order Figure 4 depicts computed concentrations on the main diagonal, obtained 
with the same coarse mesh. The figure shows the steep gradient of the solution, and the 
oscillations of the numerical results around the reference. With increasing finite element 
order the oscillations are decreasing. 

 
Figure 4: Comparison of concentration results for models with different finite 
element order; shown are normalized concentrations along the right part of the 
main diagonal through the model region 

 
For the examination of the different options for the PV-OB and the SF-OB approaches 

we systematically chose a set of options. For each element type we perform a simulation 
series starting with a coarse mesh. In order to obtain the same number of elements for the 
PV and the SF approaches, the parameter for the maximum element size scaling factor is 
slightly altered: it is 0.99 for the dimensional model based on the pressure formulation, and 
0.975 for the non-dimensional streamfunction based model. With each grid refinement the 
number of elements increases by the factor of four. Also the DOF increases approximately 
by the factor of 4 with each mesh refinement. For linear elements the DOF slightly exceeds 
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the number of elements, while for quadratic elements the DOF exceeds the number of 
elements by more than a factor of 4. 

The major features of all runs are listed in Table 6. We list the setting of the numerical 
parameters, element order and mesh refinements, and report the resulting number of DOFs 
and elements, the execution time and the accuracy for the model runs.  

 
Table 6: Summary of COMSOL model results for the formulations based on 
the Oberbeck-Boussinesq assumption, using streamfunction (SF) and 
primitive variable (PV) formulations, depending on finite element order and 
mesh refinement  
Model Element 

order 
Refine- 
ments 

DOFs No.  
elements 

Execution Time Accuracy 
PV SF PV SF 

1 1 0 558 510 1.39 0.33 1.6987 1.6427 
2 1 1 2134 2040 2.58 0.72 0.6990 0.6868 
3 1 2 8346 8160 8.41 2.92 0.2799 0.2894 
4 1 3 33010 32640 39.70 16.44 0.1034 0.1172 
5 1 4 131298 130560 249.08 123.95 0.0323 - 
6 2 0 2138 510 2.86 0.80 0.5500 0.5246 
7 2 1 8354 2040 9.27 3.16 0.1806 0.1746 
8 2 2 33026 8160 40.42 16.86 0.0448 0.0546 
9 2 3 131330 32640 226.84 113.91 0.0085 - 
10 3 0 4730 510 5.91 1.97 0.2057 0.1989 
11 3 1 18638 2040 24.69 9.05 0.0474 0.0557 
12 3 2 73449 8160 117.5 51.16 0.0073 - 
13 4 0 8354 510 12.27 4.14 - - 
14 4 1 33026 2040 49.89 20.05 - - 
15 5 0 12992 510 25.27 8.11 - - 

The biggest error appears near the top right corner, where the concentration gradients are 
steepest (see Figures 2 and 3). The distribution of the error along the main diagonal near the 
top right corner is depicted in Figure 5. Due to the boundary condition at the boundary itself 
the error is zero. With refined meshes the position with biggest error moves towards the 
boundary, while the absolute error itself is reduced. 

 
Figure 5: Comparison of error for selected model runs (with 1. order elements and 
different levels of mesh refinement) along the main diagonal through the cross-
section for the Henry testcase (see Table 6 for run details) 
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Results from Table 6 concerning execution time are visualized in Figure 6, where 

execution time is depicted as function of DOF, allowing the comparison of PV and SF 
approaches for different element orders. It shows that the execution time rises with element 
order, as expected. However the dependence on element order is are small. Figure 6 and 
Table 6 also clearly shows that the SF approach has a significant advantage concerning 
execution time. For linear elements on the coarsest mesh the SF formulation performs more 
than 4 times faster than the PV approach. This behaviour could be expected, as the PV 
formulation requires several intermediate calculations between the various variables. 

 
Figure 6: Comparison of execution time in dependence of DOF for PV and SF 
approaches and different element orders 

 
Dynamic pressure has to be calculated from total pressure, taking the buoyancy term into 
account. The number of iterations to reach the required accuracy is higher in the PV than in 
the SF formulation. For the default quadratic elements and meshes of run 6 and 7, there are 
6 iterations required in the SF case, in contrast to 18 in the PV case.  

The direct comparison of PV and SF approaches concerning execution time for the 
different meshes and element types is given in Table 7. For linear elements the advantage 
of the streamfunction approach decreases with mesh refinement, from a factor higher than 
4 for coarse meshes to approximately 2 for fine meshes. For quadratic elements the 
advantage is less pronounced, but remains at least by a factor of 2. Obviously the effort to 
solve the larger systems of nonlinear and linear equations increases, in comparison to the 
mentioned intermediate calculations between variables that are necessary in the PV 
approach. 

According to the last two columns of Table 6, both approaches, PV and SF, for the same 
mesh deliver results of the same accuracy. This is not surprising, because the same accuracy 
requirements were formulated for the solvers. These results are visualized in Figure 7, where 
accuracy is depicted as function of DOF. Obviously both PV and SF approaches deliver 
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Table 7: Execution time advantage of streamfunction formulation 
over primitive variable formulation 
Model Element  

order 
Refine- 
ments 

Execution time ratio 
PV/SF 

1 1 0 4.21 
2 1 1 3.58 
3 1 2 2.88 
4 1 3 2.41 
5 1 4 2.01 
6 2 0 3.58 
7 2 1 2.93 
8 2 2 2.40 
9 2 3 1.99 
10 3 0 3.00 
11 3 1 2.73 
12 3 2 2.30 
13 4 0 2.96 
14 4 1 2.49 
15 5 0 3.12 

 

 
Figure 7: Comparison of accuracy in dependence of DOF for PV and SF 
approaches and different element orders 

 
 

  

10
3

10
4

10
5

10
-2

10
-1

10
0

DOF

ac
cu

ra
cy

 


e 


 

 
1. order PV
2. order PV
3.order PV
1. order SF
2. order SF
3. order SF



34 The Henry-saltwater intrusion benchmark – alternatives in  
multiphysics formulations and solution strategies    

 

 
 
results of comparable quality. The figure shows that for the accuracy the element order is 
obviously important, unlike for the execution time: we see considerably better results for 
higher order elements.  

Table 8 provides an overview on the effect of grid refinement on execution time, 
accuracy and convergence order (see below). Independent of element type and variable 
formulation the effect of grid refinement on the execution time increases from one 
refinement application to the next. For all refinements the PV formulation shows slightly 
lower increase than the SF formulation. As could be expected the effect is higher for second 
order elements than for first order elements. 

Obviously the effect of grid refinement concerning accuracy increases from one 
application to the other, also independent of element type and variable formulation. The 
effect of grid refinement is higher for the PV than for the SF approach. The gain by grid 
refinement is higher for higher order elements.  

A measure for the improvement of the numerical solution is the convergence order ϑ. 
For irregular meshes the convergence rate can be evaluated on the basis of the DOF, using 
the formula: 

ϑ = −2
ln(‖e1‖) − ln(‖e2‖)

ln(DOF1) − ln (DOF2)
 (11) 

(Jänicke & Kost [38]), where ‖e‖ is the norm, defined in equation (11), and DOF the degree 
of freedom of the compared model runs 1 and 2. 

 
Table 8: Change of execution time and accuracy, and convergence 
order, depending on mesh refinements and element order 
Refinements 
compared 

Element 
order 

Execution  
Time Increase 

Accuracy Increase Convergence Order 

PV SF PV SF PV SF 
0->1 1 1.86 2.18 2.43 2.39 1.32 1.30 
1->2 1 3.26 4.06 2.50 2.37 1.34 1.27 
2->3 1 4.72 5.63 2.71 2.47 1.45 1.31 
3->4 1 6.27 7.54 3.20 - 1.69 - 
0->1 2 3.24 3.95 3.04 3.00 1.63 1.61 
1->2 2 4.36 5.34 4.03 3.20 2.03 1.69 
2->3 2 5.61 6.76 5.27 - 2.41 - 
0->1 3 4.18 4.59 4.34 3.57 2.14 1.86 
1->2 3 4.76 5.65 6.49 - 2.73 - 
0->1 4 4.07 4.84 - - - - 

 
The calculated convergence orders are presented in Table 8 and show that the 

convergence order increases with element order and mesh refinements, reflecting the results 
concerning the accuracy increase. Expectedly ϑ is smaller for the reported runs than the 
convergence order for linear 2D problems according to convergence theory. According to 
Ciarlet [39] the convergence index is 2 for linear elements and 3 for quadratic elements (see 
also: Bradji & Holzbecher [40]). The relatively poor performance can be attributed to the 
nonlinearity of the Henry problem. 
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The different approaches are also compared concerning the mass flux errors. We utilize the 
option of COMSOL Multiphysics to compute advective, diffusive and total fluxes across the 
boundaries. For the comparison here we choose the total mass balance across the vertical 
boundaries, which should become zero in a steady state model. Results of the salt mass error 
for both approaches are given in Table 9. 

The values, given in Table 9, can be related to total advective salt flux across the seaside 
boundary, which is 10 (in dimensionless form) in all runs. The imbalance is thus unacceptable 
high for coarse meshes. The imbalance decreases significantly with the element order. Model 
9 using quadratic elements gives a mass error that is only 12.5% of that of model 5 for linear 
elements, with the same DOF. Models 12 and 14 using 3rd and 4th order elements show even 
smaller mass balance errors, with less DOF.  

The results of Table 9 show that the mass balance error is of similar size for the PV and SF 
model runs. Thus there seems to be no advantage for either of the two approaches. The PV 
seems to be slightly superior, i.e. has a smaller imbalance, for coarse meshes, while for fine 
meshes the SF has slightly better results. This holds for 1st, 2nd and 3rd order elements. 
 

Table 9: Salt mass imbalance  
Model Element 

order 
Refine- 
ments 

Imbalance  
SF-OB 

Imbalance 
PV-OB 

1 1 0 5.054 4.695 
2 1 1 3.663 3.555 
3 1 2 2.350 2.361 
4 1 3 1.363 1.404 
5 1 4 0.738 - 
6 2 0 1.966 1.942 
7 2 1 0.879 0.929 
8 2 2 0.311 0.349 
9 2 3 0.092 0.109 
10 3 0 0.593 0.591 
11 3 1 0.150 0.164 
12 3 2 0.027 0.032 
13 4 0 0.176 0.200 
14 4 1 0.028 0.037 
15 5 0 0.054 0.071 

 
4.2 Relevance of the Oberbeck-Boussinesq Assumption 
The validity of the Oberbeck-Boussinesq assumption is checked by comparison of results 
for the OB and the NOB formulations, as presented in section 2. We varied the input 
parameters to cover the entire range proposed in the original Henry paper. Concerning the 
flow pattern and the salinity distribution the results from both formulations were identical. 
Although visual inspection could not detect any difference in the graphical output of the 
different runs, a closer examination of the numerical values show deviations. The differences 
can be best evaluated using the maximum value of the streamfunction. This is taken on the 
right (seaside) boundary, and represents the strength of the re-circulation. 
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We present the results in Table 10. The streamfunction and thus the water circulation 

changes its strength by 1-1.5%. The change of streamfunction variable is approximately 
half the size of the density change. The influence of the OB assumption is obviously 
marginal. 

 
Table 10: Comparison of extrema of streamfunction 
and velocity for Oberbeck-Boussinesq and non-
Oberbeck-Boussinesq models  
Case Ψmax SF-OB Ψmax SF-NOB ratio 
I 0.925 0.947 0.987 
II 2.138 2.174 0.983 
III 3.877 3.930 0.987 
IV 5.125 5.191 0.988 
V 6.676 6.759 0.988 

 
4.3 Picard vs. Newton Iterations 
Concerning the numerical method we studied the Picard and Newton iterations. The test is 
restricted to the SF approaches and quadratic elements. For this aim we utilized the option 
for segregated solution, which is available in COMSOL Multiphysics. For the OB-
formulation we also checked the performance of a direct linear solver, for comparison to 
the default nonlinear solver for all segregated groups. The execution times for the runs are 
given in Table 11 Table 11. For the OB approach the run numbers correspond to the ones 
of Table 6.  

For all reported cases the Newton solver required 6 iterations, while there are 17 
nonlinear Picard iterations needed in all runs, OB or NOB, to require the same accuracy. 
The linear solver, used in the Picard iterations for the NOB formulations only, required 53 
iterations, also independent of the grid refinement.  

The results show that the Newton method converges faster for coarse grids. For finer 
grids the computing of the Jacobian obviously becomes more expensive, so that the Picard 
iterations perform better. However, within the Picard iteration the Jacobians are smaller 
(they are derived for half the number of unknowns each) and less complex (they are derived 
for one type of process only). These results confirm the expectations of Putti & Paniconi 
[35], who already pinpointed on the increasing demands of the Newton iteration with 
increasing size of the Jacobian. 

In default settings COMSOL computes Jacobians even for linear systems, for which they 
are not necessarily required. This can be examined for the OB formulations, for which the 
flow and transport subsystems are linear. However, there is the option of manual control of 
reassembly by which the re-calculation of the Jacobian is suppressed. In Table 11 the results 
for this option are given as 'Picard linear'. The slower convergence of the linear Picard 
iterations relative to the nonlinear Picard iterations is obviously due to the fact that the 
Jacobian calculated by COMSOL Multiphysics is nonlinear. The effect of this non-linearity 
decreases with mesh refinement, until finally for the finest mesh the linear solver converges 
best from all solvers.  

The Newton algorithm requires almost the same execution time for the OB and the more 
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Table 11: Comparison of Picard and Newton iterations, execution time  
and number of iterations for different problem formulations  
Run Refinement Time for SF-OB Time for SF-NOB 

Newton Picard 
nonlinear 

Picard 
linear 

Newton Picard 

6 0 0.82 1.14 1.5 0.81 1.77 
7 1 3.27 3.67 4.36 3.19 5.52 
8 2 16.92 13.92 14.66 17.34 21.57 
9 3 115.9 66.89 61.49 116.0 106.31 

 
complex NOB formulation. In contrast the Picard iteration has an advantage for the OB 
system, which stems from the fact that the solution of the Poisson equation requires the 
computation of the Jacobian only once, and no updating in every iteration step. So the 
advantage for the Picard iterations appears first after the second grid refinement in case of the 
OB approach, but for the third refinement in case of the NOB formulation. 

 
5. CONCLUSION 
For the Henry model on saltwater intrusion in a vertical cross-section four different 
mathematical approaches have been compared. We used the primitive variables (PV) and the 
streamfunction (SF) approach, and explored the relevance of the Oberbeck-Boussinesq 
assumption. The two analytical formulations deliver results of equal quality. This can be 
explained by the fact that in both cases the solvers, linear and nonlinear, have been applied 
with the same assumptions and accuracy requirements.  
The major findings of the numerical experiments are 
1. that the streamfunction formulation indeed has advantages in comparison to the primitive 

variable approach 
2. that the accuracy increases with the order of the finite elements   
3. that the Picard iteration technique performs better than Newton iterations. 

To 1: Models based on SF execute faster than corresponding models based on PV, 
especially for coarse grids and lower order elements. The advantage, measured as total 
execution time, can be as high as the factor 4. But even for the finest meshes and highest 
element order the advantage of SF is at least given by a factor of 2. The supposition of Evans 
& Raffensperger [22] that the streamfunction approach tends to converge more rapidly is thus 
confirmed and quantified. 

To 2: As expected the error decreases with the mesh refinements. The error also decreases 
with element order, i.e. for the same DOF the model run with highest order element delivers 
the most accurate result. This is contrary to other studies on Finite Elements, in which mostly 
quadratic elements are recommended. A convincing argument that explains this different 
finding here is that the very steep gradient of the concentration near the upper right model 
edge in the Henry problem can be resolved better by higher order elements. 

To 3: In our simulation we found that for fine grids, i.e. large systems of equations, Picard 
iterations perform faster than Newton iterations. With this we quantify the expectation of Putti 
& Paniconi [37]. Moreover, using the segregated approach a slightly increased performance  
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can be obtained by switching from non-linear to linear solvers. 
There are some results of minor relevance for the Henry problem. The convergence order 

for the test case is lower than for pure linear partial differential equations, i.e. for the 
uncoupled situation. However, it is increasing with the mesh refinement. The highest 
convergence order is obtained for the PV models, which reach 1.69 for linear elements (in 
comparison of the theoretical 2 for linear problems) and 2.41 for quadratic elements (in 
comparison of the theoretical 3 for linear problems). 

The mass balance error decreases with the mesh refinement. The salt imbalance is 
basically the same for the PV and the SF approach. Comparison of runs with same degree 
of freedom shows a clear advantage for higher order elements. With 3rd and 4th order 
elements we obtained a smaller imbalance even having less DOFs than with lower order 
elements.  

The Oberbeck-Boussinesq assumption is not relevant for general features of the saltwater 
intrusion flow pattern itself. The fluid mass balances for OB and non-OB approaches differ 
by only 1.5%, independent from the scenario and Rayleigh number. For all practical 
purposes in this application field such a difference is irrelevant, as the variance of the input 
data is often much higher. 

For general multiphysics problems finding 3 may be the most relevant. In general Picard 
iterations have the advantage that the linear systems to be solved are smaller than those for 
the Newton method. Mostly the systems used in Picard solutions are less complex, which 
holds for density-driven problems in general, but is probably valid for most multiphysics 
applications. The argument in advantage of Picard iterations becomes even stronger, if a 
higher the number of physics modes has to be considered. If there are n physics modes 
included, the Jacobian used in the Newton method has n times more rows and columns than 
the matrices of the completely segregated approach. This seems to compensate that in the 
segregated solution several smaller systems have to be solved in each iteration, while in the 
Newton approach the big system has to be solved only once. 
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