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ABSTRACT 
This paper studies the contact of general rough curved surfaces having 

nearly identical geometries, assuming the contact at each differential area 

obeys the model proposed by Greenwood and Williamson. In order to 

account for the most general gross geometry, principles of differential 

geometry of surface are applied. This method while requires more rigorous 

mathematical manipulations, the fact that it preserves the original surface 

geometries thus makes the modeling procedure much more intuitive. For 

subsequent use, differential geometry of axis-symmetric surface is 

considered instead of general surface (although this “general case” can be 

done as well) in Chapter 3.1. The final formulas for contact area, load, and 

frictional torque are derived in Chapter 3.2. 

 

 
1. INTRODUCTION  
The need of understanding rough surfaces contact has long been recognized. One primary 
focuses of the early studies is to predict real contact area as it varies with load. Since a rough 
surface is known to include layers of micro-asperities, the real area of contact can be 
extremely small comparing to the apparent area observed by our eyes and is very difficult 
to measure. This problem has been addressed and resolved for the first time by Archard, 
Greenwood and Williamson using novel fractal and statistical models to mathematically 
describe the microscopic surface structure. Their works have been the basis for various 
subsequent studies on contact mechanics, describing the surface geometry (asperities 
distribution, geometry) and material behavior (elastic, plastic flow) (Yastrebov et al. 2014). 
Recently, a deterministic approach to model rough surface contact has grown rapidly with 
the advance of computational capability, providing further insights to the study of contact 
mechanics. 

The fact that only nominally flat rough surfaces case is focused has limited the scope of 
this model. One reason for this shortage was given by Greenwood and Trip, as generally the 
curvatures difference of curved surfaces creates a cluster effect which makes asperities 
interaction becomes significant. Thus an intensive analysis similar to those performed in 
the nominally flat rough surfaces contact is not frequently performed in the case of rough 
curved surfaces contact. Rather, the latter in only loosely studied through the inspection of 
axial contact between two rough curved surfaces having constant curvatures, by replacing 
them with a nominally flat rough surface and a smooth curved surface having anequivalent-
curvature (Johnson 1985). This method although gives a quick approximation of pressure 
distribution, it does not allow one to account for:  

 
• More general analysis, such as the contact is non-axial or the surfaces have varying 

curvatures 
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• More detailed analysis, such as the true distribution of contact pressure which is important 
to the calculation of cumulative frictional torque in rotating parts. 
 
This paper studies the contact of general rough curved surfaces having nearly identical 

geometries, assuming that the contact at each differential area obeys the model proposed by 
Greenwood and Williamson (GW model for short). In order to account for the most general 
geometry, principles of differential geometry of surface are applied. This method requires 
more rigorous mathematical manipulations, as it preserves the original surface geometries (i.e. 
not require the original system to be replaced by any equivalent system) makes the modeling 
procedure much more intuitive. For subsequent use, differential geometry of axis-symmetric 
surface is considered instead of general surface (although this “general case” can be done as 
well) in Chapter 3.1. The final formulas for contact area, load, and frictional torque are 
derived. 

One direct application of this study is the analysis of roughness-dependent frictional torque 
occuring rotating parts, whose geometry is often axis-symmetric. For flat surfaces contact (i.e. 
two flat surfaces slide across each other), effect of friction is generally quantified with the 
calculation of frictional force value. Similarly, for curved surface contact (e.g. in journal 
bearing), the value of frictional torque is frequently required. Unlike the former situation, 
where surface roughness does not affect the frictional force if one uses the Coulomb’s friction 
model (since the total reaction force at the points of asperity contact always equal to the load), 
surface roughness changes the distribution of contact pressure across the curved surfaces 
(even when Coulomb’s model holds), thus frictional torque value would be different. 
Furthermore, the frictional torque will not vary linearly with the load like when one models 
contacting surfaces smooth, rather it will also be dependent on the roughness. This topic is 
clarified through two specific examples. Lastly, additional analysis on the load – contact area 
and frictional torque – load relationship is presented. 
 
2. MODELING ROUGH SURFACE CONTACT: 
Greenwood and Williamson (1966) proposed a method to mathematically model the 
stochastic nature of surface’s microscopic structure by using a probabilistic approach, which 
introduce the concept of “asperity” and consider their height to be normally distributed over 
the entire rough surface. In practice, such statement is valid for most high-end engineering 
surfaces (i.e. homogeneous, isotropic surface), yet not quite so for other lower-end ones 
(Bhushan 2001). For the latter situation, Kotwal and Bhushan (1996) have developed an 
analytical method to generate probability density functions of non-Gaussian distributions, but 
will not be considered in this study. One key assumption in the work of Greenwood and 
Williamson is that each individual contact does not affect the deformation of its neighbors and 
the asperity is spherical with curvature 0ℜ  at its peak (Figure 1).  This conveniently allows 
the each individual contact to be modeled independently by implementing the Hertzian theory. 
As mentioned previously, this method limits the contact to only be between nominally flat 
rough surfaces, so that the above assumption holds.  
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Consider two rough surfaces in contact which could be replaced by a system of two other 

surfaces with equivalent asperities’ curvature and RMS roughness parameter. The first 
surface is perfectly smooth and is located at some distance 0l  from the reference line 0h . 
The second surface is considered rough with the asperities’ height z  varies randomly 
around the reference line which is described by the Gaussian distribution (Skewness = 0 
and Kurtosis = 3) (Figure 2): 
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where qR  is the RMS roughness parameter. 

 

If the total number of asperities on this surface is 0N , the number of asperities having 

height in the interval [ , ]z z dz+  comes into contact is 0 ( )N z dzν = Φ  and thus the total 

number of asperities in contact is 
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Furthermore, according to the Hertzian contact theory, when a elastic sphere is indented 
to depth 0z l−  (from now refer as the indentation depth) in an elastic half-space: 

The contact area is 2
sin 0 0( )gA a z lπ π= = ℜ −  and the required force is 
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modulus of elasticity and can be found using 
2 2
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= +  ( 1 2 1 2, , ,E E ν ν  are the 

moduli of elasticity and Poisson’s ratios of the two bodies) (Figure 3).  
Noting that if a thin layer of coating is present, according to Liu et al (2005) a different 

equivalent modulus of elasticity should be used.  
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Figure 1. GW model of a single asperity 
 

 
Figure 2. GW model of rough surfaces contact 
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Figure 3.Contact between a elastic sphere and elastic half-space 

 
Very recently, the exact solutions for these integrals have been found in Jackson and 

Green (2011): 
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where: 

s

aα
σ

= ,
2

4
αγ =  

( )I ⋅  and ( )K ⋅  are the modified Bessel function of the first & second kind respectively  

( )erfc ⋅  is the complimentary error function 

( )Γ ⋅  is the gamma function  
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3. NEARLY-IDENTICAL ROUGH CURVED SURFACES CONTACT: 
Since the two curved surfaces considered in this study are nearly-identical, contact at each 
infinitesimal area could be treated as the contact between two nominally flat rough surface, 
which can then be integrated to describe the overall contact behavior between gross 
geometries. This approach requires the number of asperities and the indentation depth at each 
differential surface contact to be found. Furthermore, the magnitude, direction and location of 
application of contact pressure (i.e. define a bound vector) at each individual asperity as well 
as corresponding differential surface area should also be stated. What is known is the applied 
load, geometry and material properties of considered surfaces, and therefore any expression 
should be written in terms of these given parameters.  
 
3.1. Differential geometry of surfaces: 
i) Vector formalism of line in 3D space: 
It is very convenient to express a general bound vector in 3D space using vector formulation. 
A bound vector is completely defined if its initial point, magnitude and direction are specified. 
In this problem, three quantities need to be expressed vectorially are the asperity’s direction, 
the reaction force and the friction force. 

Consider a straight line L is defined by two parameters ( , )Px l  (Figure 4). An arbitrary 

point Q on the line has position vector Qx  is given by Q px x λ= + l  where λ is an arbitrary 

scalar. 

We are also interested in he point where an asperity comes into contact: a point I  is the 
intersection of two line L1 1 1( , )x= l and L2 2 2( , )x= l has position vector Ix  given by: 

 

222111 ll λλ +=+= xxx I  (4) 

 

 
Figure 4. 3D line parameters 
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Figure 5. 3D surface parameters 
 
ii) Differential geometry of surface of revolution:  
To understand the contact of any asperity on the surface, differential geometry is used to 
describe many of the surface’s characteristics as function of surface’s parameters (Figure 5).  

A general surface S in 3D space can be generated by two parameters 1ξ  and 2ξ . Any 

point on the surface has the position vector 1 2( , )p p ξ ξ= . In orthonormal coordinates the 

surface of revolution can always be expressed as (Gray 1997):  
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The unit normal vector n  of the surface is: 
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For a surface of revolution, it is natural to pick 1 2,rξ ξ φ= =  (Figure 6). 
 

 
Figure 6. A general surface of revolution 

 
If a surface is obtained by rotating the curve ( )z f r= from 1z z=  to 2z z=  around the 

z axis− , from Eq. (5) any point on this surface has the position vector: 
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with ( )r rϕ =  and ( ) ( )r f r zψ = = .  

From Eq. (6) and Eq. (7) , the corresponding unit normal vector n  and the corresponding 

area of a differential surface element dA  is: 
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ϕrdrdzdA 2)(1 ′+=  (10) 

 

Furthermore, if 1( )g z f −= , the (apparent) area of this surface given by Anton (1999) 
is: 
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3.2. Calculation of contact area, contact pressure and frictional torque: 

Consider a surface of revolution S1 with vertex 1O  is at the origin of frame 

1 1 2 3( , , )i i iℜ =  and a surface of revolution S2 with vertex 2O  is at the origin of frame 

2 1 2 3( , , )j j jℜ =  (Figure 7). 1 2 3( , , )i i i  can always be chosen such that the position vector 

of 2O  with respect to 1ℜ  is the eccentricity vector [ ]0 T
x ze e e= . Because the 

surface is axis-symmetric and the asperities are randomly distributed, the eccentricity vector 

is assumed to be parallel to the load [ ]0 T
r zF F F= , which is a known vector. 

 

 
Figure 7. Contacting surfaces of revolution 

 
According to the GW model, let S1 is a rough surface and S2 is a perfectly smooth 

surface. The geometries of S1 and S2 are generated by rotating the curves 1 1 1( )z f r=  and 

2 2 2( )z f r=  around 3 3i and j respectively. 
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Consider a differential area at point 1I  on the rough surface S1 defined by two parameters 

1 1( , )r φ  and associated with the normal vector 1 1 1( , )n r φ  (resolved in 1ℜ ). 1n  intersects the 

smooth surface S2 at point 2I . 2 2 2( , )n r φ is normal vector of the smooth surface S2 at point 

2I  (resolved in 2ℜ ). From Eq. (9) and Eq. (10): 
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Introduce 1 1 1 2( , ) ( , )r d I Iφ∆ =  and 1( , )d I Pδ = with P  is any point on the line 1 2I I . 

Physically,δ , 1n , 2n  represent the height, the direction of an individual asperity and the 
direction of reaction force respectively (Figure 8).  

 

 
Figure 8. Representation of several surface parameters 
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System of equations for the intersection at 2I  can then be derived from Eq. (4) and Eq. 
(8):  
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By solving this system, we obtain 1 1( , )r φ∆  as well as 2 1 1( , )r r φ , 2 1 1( , )rφ φ . Substitute

2 1 1( , )r r φ , 2 1 1( , )rφ φ into Eq. (13), we could express 2n  in terms of 1r  and 1φ . The 
indentation depth of an individual asperity can be found as:  
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In a differential area, the asperities can be assumed to be unidirectional (i.e. having the 
same direction vector). If the asperities density is 0ℵ , The number of asperities in that 

differential area is 2
0 0 1 1 1 11 ( )dA z r dr dφ′ℵ =ℵ + . Since the asperities’ height is normally 

distributed described by the Gaussian distribution, the number of asperities on a differential 
area that height in the interval [ ], dδ δ δ+  is: 

 

δϕδδδν dddrrzddA 111
2

100 )(1)()( ′+Φℵ=Φ×ℵ=  (17) 

 
In terms of contact pressure distribution: 
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In terms of contact pressure distribution: 
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Furthermore, the position vector of a single point of contact 1I  and the moment arm 
(Figure 10) respectively are: 
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Assume the relative angular velocity is 3iϖ , the directional unit vector of the frictional 
force at an asperity contact is: 
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Finally, we attain the expressions for the number of asperities, real contact area, reaction 

force components and frictional torque in terms of an individual asperity, a differential surface 
area and the entire contacting surfaces: 

 

 
Figure 9. Contact of a single asperity 
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Table 1. Expressions for the number of asperities, real contact area, reaction 
force components and frictional torque 
Number of 
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contact 
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Eq. (20) shows the number cN  of asperities that are in contact. Eq. (21) can be solved 

using Eq. (3) that approximates the real contact area. Eq. (22), (23), (24) yield the components 
of the cumulative reaction force which according to Newton’s third law have to be equal to 
the components of the applied load. Finally, Eq. (25) gives the expression for the cumulative 
frictional torque. 

 

 
Figure 10. Representation of moment arm 

 
4. APPLICATION TO SOME COMMON SURFACE GEOMETRIES: 
4.1. Concentric spherical annulus:  
Consider two concentric spherical surfaces (Figure 12) created by the revolution of:  
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with: 
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Figure 11. Schematic of a concentric spherical annulus 

 
Dropping the subscript of 11,ϕr . It can be readily verified that εϕ −=∆ ),(r and: 
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Thus from Eq. (16) and Eq. (18):  
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Substitute Eq. (1), (26), (32), (34) into Eq. (25), we attain the frictional torque expression: 
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4.2. Eccentric cylindrical annulus:  
Consider two cylindrical surfaces (Figure 13) defined by the revolution: 
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with: 
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Eq. (15) then becomes: 
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Squaring )(a  and )(b  then take their sum: 
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After solving for ∆  and dropping higher order terms of ε , we get: 
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Solve for )sin(),cos( 22 ϕϕ  then substitute into Eq. (12) and Eq. (13): 
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Thus from Eq. (16), (18) and (19):  
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Substitute Eq. (1), (35), (44), (46) into Eq. (21), (22), (25), we attain the contact area, 

applied load and cumulative frictional torque expressions: 
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(49) 

 
5. ANALYSIS: 

However, the eccentricity ( e ) is hard to measure without special instruments. Thus it is more 

convenient to consider the frictional torque – load relationship. By eliminating e  using Eq. 
(22) to Eq. (25), we can find: 

 

),,,( iqf GRFT µτ=  (50) 

 
where: 
F  and µ  are the applied load and the friction coefficient 

qR  is RMS roughness parameter 

iG ’s are the surfaces geometric parameters 
 

FGT if µτ )(* ′=  (50) 

 
Which means the frictional torque is linearly dependent on the applied load value. It is 

expected that ff TT ≈*  and the two values become closer if more assumptions about the 

geometries are made. For example, in Section IV.1, if we assume 
),( 2112 RRRR <<−≈ εε  , then from Eq.(24) and Eq. (25): 
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After replacing )sin( 111 θRd = , )sin( 212 θRd = , Eq. (50) becomes: 
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Eq. (53) is exactly the formula for the frictional torque – applied load relationship if the 

contacting surfaces are modeled as smooth that is obtained in several studies such as the 
one from Grégory (2014). 

Considering the example in Section 4.2 where no additional geometric assumption is 
made. First, the consistency between theories of contact mechanics should be taken into 
account. In the early days, Hertz set the foundation of contact mechanics by analytically 
predicting the compressive force required to indent a smooth sphere into a infinite smooth 
half-space, which was then broadened to account for other shapes. According to Sneddon 
1965, in the case of parallel-axis cylinders contact, the applied force as function of 
indentation depth 21 RR −+ε  is: 
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Thus Eq. (48) should be identical to Eq. (54) as 0=qR  since both describe contact in 

the “smooth” case. Taking the limit of Eq. (48): 
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Noting that the Gaussian distribution function becomes the Dirac delta function as 

0→qR , which has a special property: 
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Using this property, Eq. (54) becomes:  
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The analytical solution for this definite integral could be found using Wolfram Alpha: 
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where: 

212 ,, RcbRRa εε ==−=  
( )⋅F  and ( )⋅E  are the incomplete elliptic integrals of first and second kind 

Since it is required that smoothrough FF =)0( , we attain: 
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Next, using Eq. (2), (3) we could analytically evaluate the first integrations in Eq. (47), 

(48), (49). Based on these expressions, a MATLAB script is written to numerically evaluate 
Eq. (47), (48) and (49) at increments of ε  and qR . The integration command “integral” uses 
global adaptive quadrature method “integral” with absolute error tolerance of 1e-10 
(Shampine, 2008).  

 
Graphs 1 to Graph 6 show the relationships between contact area, applied force, frictional 

torque with eccentricity and roughness. Graph 7 indicates that even though the contact area – 
applied load relationship might be linear at a particular roughness, the contact area increases 
faster with applied load as roughness goes up. We even observe this behavior more clearly in 
the case of frictional torque – applied load relationship.  

 
 

  



217 Int. Jnl. of Multiphysics Volume 11 · Number 2 · 2017 

 

 
 

 
Graph 1. Contact area as function of eccentricity and roughness 
 

 
Graph 2. Contact area as function of eccentricity at various roughness 
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Graph 3. Applied force as function of eccentricity and roughness 
 

 
Graph 4. Applied force as function of eccentricity at various roughness 
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Graph 5. Frictional torque as function of eccentricity and roughness 
 

 
Graph 6. Frictional torque as function of eccentricity at various roughness 
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Graph 7. Contact area as function of applied force at various roughness 
 

 
Graph 8.Frictional torque as function of applied force at various roughness 
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6. CONCLUSION  
The paper proposes a method to account for the contact of rough curved surface having 
nearly identical geometries. General formulas for the true contact area as well as the applied 
force have been deduced in terms of definite integrals. These integrals could be simplified 
analytically. Numerical technique and programming are then implemented in order to 
perform analysis of a special case: two cylindrical rough surfaces in contact.  
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