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ABSTRACT 

We report on the results of dimensional analyses on the dynamic plastic 

response of square armour steel plates due to detonation of proximal 

cylindrical charges and ensued air blast loading. By assuming a generic 

function for the blast load, which is multiplicative comprising its spatial and 

temporal parts, a set of 14 dimensionless parameters, representative of the 

load and plate deformation, were identified and recast in the form of 

dimensionless functions of stand-off to charge diameter ratio. Parametric 

studies were performed using commercial code ABAQUS’s module of Finite 

Element hydrocode using MMALE and MMAE techniques, and combined 

with regression analyses to quantify the dimensional parameters and the 

expressions for dimensionless functions. A few numerical studies with 

various FE mesh types were also performed to validate the transient 

deflections against the small-scale experiments. For pulse loading due to 

proximal charges of small orders of stand-off/charge diameter ratio, the 

magnitude of the transverse deflection increased abruptly with incremental 

decrease in stand-off, in contradistinction to the plate deformations at 

higher stand-offs where variations in displacement are smooth. This 

confirmed the existence of a stand-off at which a transition in behaviour 

takes place. For stand-off values less than charge diameter, a dimensionless 

energy absorbing effectiveness factor was considered to investigate the 

prediction of rupture in the plate corresponding to different charge masses. 

This factor is measured as a baseline parameter to predict, using solely 

numerical means, the blast loads which ensue rupture on full-scale 

prototypes. 

 

 
1. INTRODUCTION  
With an increased level of blast- and ballistic-related threats in the UK and around the globe 
in the recent years, design of the protective systems against such threats is of prime 
significance for civil, aeronautical, mechanical, defence and offshore engineers. Thus, 
efforts have been made to improve the blast- and ballistic-resistant performance of, for 
instance, transportation vehicles and civil structures. One vein through which this goal is 
achievable is the right choice of material. In fact, a considerable body of literature exists on 
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the performance of steel, aluminium and composite plates subjected to uniformly 
impulsively (generated by far field explosives) blast, or localised blasts [1], [2] (generated 
by near field explosives), assessed numerically, experimentally [3]–[5] and theoretically. 
While the ballistic energy absorption capacity of some materials may be insufficient due to 
low ductility, low strength and weak hardening [6]–[8], other materials such as high strength 
ARMOX steel are more promising as they possess excellent ballistic performance due to 
high strength and ductility thus high energy absorbing capacity.  

The experimental works of Ref.s [9], and [10] on uniformly impulsive loaded beams and 
plates, classified three failure modes as large inelastic deformation (Mode I), partial tearing 
(Mode II) or complete tearing and shear failure (Mode III). Similar modes of failure were also 
suggested for locally blast loaded plates [11], for which modes II and III correspond to partial 
tearing and capping at the centre, respectively.  

Nurick and co-authors [4], [11]–[15] conducted considerable experimental studies on the 
response of mild steel plates to air blast loading, considering various parameters i.e. explosive 
mass and shape, plate geometry, and boundary conditions. A unifying approach was proposed 
through introduction of a single non-dimensional impulse parameter which allowed all data 
to collapse on a single curve to predict the permanent mid-point deformation.  

Recently, the capability to study the physics of Fluid-Structure Interaction (FSI) is 
employed in several FE codes in order to provide a more realistic assessment of response to 
blast loading. Numerous studies of dynamic response using this technique are reported [16]–
[22] which render a more realistic estimate of maximum and permanent transverse deflections 
achievable, closer to experimental results than the pure Lagrangian models. This can be useful 
since monitoring the transient deflection of the plate experimentally is notoriously difficult 
for which only a few experiments are available. For example, Aune et al [23] observed the 
transient deflection of thin ductile steel and aluminium plates subject to spherical air blast 
laods at various stand-offs using Digital Image Correlation. The DIC technique was also used 
by Spranghers et al [24] to validate their numerical models. Minimising the discrepancy 
between the observed experimental and predicted numerical models (inverse modelling 
approach), the authors iteratively updated the material parameters required for different 
phenomenological models characterising J2 plasticity of the aluminium plate.  

 
1.1. Dimensional analyses 
Dimensional analysis is a useful tool of generalisation and is used here to understand the 
phenomenon of blast loading and the physics of response of full-scale prototype through 
the study of geometrically similar small-scale models, without the necessity of conducting 
experiments on the former. The principle of scaling allows one to obtain a set of 
dimensionless parameters through multiplicative combination of defining variables used in 
numerical calculations or experimental measurements.  

In the past, various researchers have used dimensionless parameters to investigate the 
elastic and/or plastic response of the structures to blast loads. Neuberger et al [25], [26] 
showed the normalised deflections predicted numerically on the small-scale model differed 
by marginally 7% from the results of four times as large full-scale prototype, the discrepency 
being due primarily to the change in material properties during scaling. Their experimental 
results, however, showed a 10% difference in peak deflections.  

In other works of literature, the results of small-scale models have been cast in 
dimensionless form of impulse against characteristic response deflection (E.g. permanent or 
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maximum midpoint deflections); however, relying on impulse and deflections alone can be 
misleading, because in most practical cases, loading regime is dynamic rather than 
impulsive. Furthermore, the dimensional analyses in literature are devoid of proposing 
expressions to actually describe the air blast load, and are rather focused on providing 
expressions for the response of the structure.  

The present article derives a set of dimensionless parameters that can fully describe both 
the loading variation (both spatial and temporal) and structural deformations. The derivation 
of dimensionless parameters is carried out in Section 2. The dimensional parameters are 
recast as dimensionless functions of loading- and structure-related design input parameters, 
namely, explosive mass and diameter, plate geometry, and material properties. The input 
parameters are implemented in the Finite Element package in Section 3. In Section 4 the 
results of numerical, experimental and theoretical analyses are presented, together with a 
discussion on the dimensionless impulse and energy absorbing effectiveness factor. The 
latter dimensionless parameters aid the designers to predict the blast load conditions that 
will ensue rupture in the structural elements. Finally, the concluding remarks are included 
in Section 5.  
 
2. NON-DIMENSIONAL PARAMETERS  
2.1. Localised blast load 

A blast wave is generated by rapid release of energy due to detonation of a high explosive 
over a short period of time. In this work, the blast wave is assumed to be generated by a 
cylindrical explosive of certain mass 𝑀𝑀𝑒𝑒, having the diameter 𝐷𝐷𝑒𝑒, the heat energy per mass 
of 𝑄𝑄𝑒𝑒 which is placed at distance 𝑑𝑑 from the target. This gives parameters defining the blast 
source uniquely as: 𝑀𝑀𝑒𝑒, 𝑑𝑑, 𝐷𝐷𝑒𝑒, and 𝑄𝑄𝑒𝑒.  

The blast wave pressure is assumed to be representable as a multiplicative decomposition 
of functions of the spatial part (also called load shape) and temporal part (pulse shape) [27], 
given in Eq. (1).  
 

𝑝𝑝(𝑟𝑟, 𝑡𝑡) = 𝑝𝑝0𝑝𝑝(𝑟𝑟)𝑝𝑝(𝑡𝑡)                                                     (1) 
 

Spatial distribution of blast loading (𝑝𝑝(𝑟𝑟)) over the target surface is assumed to be 
uniform over the central part of the plate and exponentially decaying over the surrounding 
part of the plate [28], given as:  
 

p(r) = �
 1                                0 ≤ r ≤ Re

 ae−br                    Re  ≤ r ≤ L                                     (2) 

 
Various functions are proposed to describe the pulse shape (𝑝𝑝(𝑡𝑡)) of a blast load. These 

include rectangular, triangular, sinusoidal, and exponentially decaying functions. While the 
dynamic plastic deformation of the plate has a strong dependence upon the pulse shape, 
Youngdahl [29] showed that these effects can be eliminated through introduction of 
effective pressure and impulse parameters. The pulse shape assumed in this work is a 
modified, non-dimensional form of Friedlander equation [30] given by Eq. (3). Thus, the 
parameters that fully define the loading profile are: 𝑝𝑝0, 𝑡𝑡𝑑𝑑 ,𝛼𝛼, 𝑏𝑏  and 𝑅𝑅𝑒𝑒. It should be noted 
that the parameter 𝑎𝑎 = 𝑒𝑒𝑏𝑏𝑅𝑅𝑒𝑒 is not an independent parameter as it links the two functions 
proposed for the spatial distribution of loading.  
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𝑝𝑝(𝑡𝑡) = (1 − 𝑡𝑡/𝑡𝑡𝑑𝑑 )𝑒𝑒−𝛼𝛼𝛼𝛼                                              (3) 
 
It is assumed that the blast overpressure is laterally imparted on the target, that is, a 

quadrangular plate of characteristic side length  𝐿𝐿 and characteristic thickness 𝐻𝐻, having the 
density 𝜌𝜌, made of ductile material of quasi-static yield stress 𝜎𝜎0, Young modulus 𝐸𝐸 and gives 
rise to an axisymmetric displacement field of final central transverse deformation 𝑊𝑊𝑓𝑓. In this 
work, the dynamic flow stress is characterised by Johnson-Cook constitutive model given in 
Eq. (4).   
 

𝜎𝜎′𝑦𝑦 = [𝐴𝐴1 + 𝐵𝐵1𝜀𝜀𝑛𝑛][1 + 𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀̇∗)]                                        (4) 
 

The expression in the first set of brackets gives the effect of material hardening without 
any strain rate effects (that is, at the reference strain rate  𝜀𝜀

.
= 1/𝑠𝑠), where 𝐴𝐴1 = 𝜎𝜎0 is the static 

yield stress, 𝐵𝐵1and 𝑛𝑛 are the hardening constant and exponent, respectively. The expression 
abbreviated in the second set gives the effect of strain rate, where 𝐶𝐶 is the strain rate sensitivity 
parameter and 𝜀𝜀̇∗ = 𝜀𝜀̇/𝜀𝜀0̇ is the dimensionless plastic strain rate. While this model ignores the 
Bauschinger effect, it conveniently predicts the material behaviour which undergo strain 
hardening behaviour of isotropic materials. Thus, the parameters attributed to the material and 
geometric properties of the plate are 𝑊𝑊𝑓𝑓, 𝐻𝐻, 𝜌𝜌,  𝜎𝜎0 , 𝐿𝐿,𝐵𝐵1,𝐸𝐸, 𝜀𝜀

.
.  

By applying Buckingham’s Pi-theorem, a system of 17 independent variables leaves a 
kernel of 14 dimensionless Π parameters, as defined by Eq.’s (5)-(18): 
 

Π1 =
𝑊𝑊𝑓𝑓

𝐻𝐻
                                                                  (5) 

 
Π2 = 𝑏𝑏𝐷𝐷𝑒𝑒                                                                (6) 

 

Π3 = 𝑝𝑝0�𝑄𝑄𝑒𝑒𝑡𝑡𝑑𝑑
3

𝑀𝑀𝑒𝑒
                                                           (7) 

 
Π4 = 𝑑𝑑

𝐷𝐷𝑒𝑒
                                                                   (8) 

 

Π5 = 𝑀𝑀𝑒𝑒
𝐷𝐷𝑒𝑒3
� 𝑄𝑄𝑒𝑒
𝜌𝜌𝜎𝜎0

                                                          (9) 

 
Π6 = 𝐷𝐷𝑒𝑒

�𝑄𝑄𝑒𝑒𝑡𝑡𝑑𝑑
                                                            (10) 

 
Π7 = 𝛼𝛼𝑡𝑡𝑑𝑑                                                              (11) 

 
Π8 = 𝐿𝐿/𝐻𝐻                                                             (12) 

 
Π9 = 𝑅𝑅𝑒𝑒

𝐷𝐷𝑒𝑒
                                                                 (13) 

 
Π10 = 𝑅𝑅𝑒𝑒/𝐿𝐿                                                          (14) 
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Π11 = 𝐸𝐸
𝐵𝐵1

                                                      (15) 

 

Π12 = 𝜌𝜌𝐷𝐷𝑒𝑒3

𝑀𝑀𝑒𝑒
                                                    (16) 

 
Π13 = 𝐵𝐵1

𝜌𝜌𝑄𝑄𝑒𝑒
                                                    (17) 

 
Π14 = 𝜀𝜀

.
𝑡𝑡𝑑𝑑                                                    (18) 

 
Through some algebraic manipulation, it can be seen that the unknown parameters of 

𝑝𝑝0,𝑏𝑏, 𝑡𝑡𝑑𝑑 ,𝛼𝛼 ,𝑅𝑅𝑒𝑒 ,𝑊𝑊𝑓𝑓 ,   parameters are related to the ratio � 𝑑𝑑
𝐷𝐷𝑒𝑒
� as follows: 

 
𝑝𝑝0 = 𝐸𝐸𝑀𝑀𝑒𝑒

𝜌𝜌𝜌𝜌𝑒𝑒3
𝑓𝑓1 �

𝑑𝑑
𝐷𝐷𝑒𝑒
�                                                (19) 

 
𝑏𝑏 = 1

𝐷𝐷𝑒𝑒
𝑓𝑓2 �

𝑑𝑑
𝐷𝐷𝑒𝑒
�                                                 (20) 

 
𝑡𝑡𝑑𝑑 = 𝐷𝐷𝑒𝑒

�𝑄𝑄𝑒𝑒
𝑓𝑓3 �

𝑑𝑑
𝐷𝐷𝑒𝑒
�                                                (21) 

 

𝛼𝛼 = �𝑄𝑄𝑒𝑒
𝐷𝐷𝑒𝑒

𝑓𝑓4 �
𝑑𝑑
𝐷𝐷𝑒𝑒
�                                             (22) 

 
𝑅𝑅𝑒𝑒 = 𝐿𝐿𝑓𝑓5 �

𝑑𝑑
𝐷𝐷𝑒𝑒
�                                             (23) 

 
𝑊𝑊𝑓𝑓

𝐻𝐻
= 𝑀𝑀𝑒𝑒

𝜌𝜌𝜌𝜌𝑒𝑒3
𝑓𝑓6 �

𝑑𝑑
𝐷𝐷𝑒𝑒
�                                             (24) 

 
The dimensionless functions are obtained by regression analyses on the results of a series 

of numerical studies. It should be mentioned that, as ARMOX steel is less sensitive to strain 
rate effects (𝐶𝐶 = 0.014 in Table 1), the effect of material strain rate sensitivity is not 
considered in this study.  
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3. MATERIALS AND MODELS 
3.1. Simulation of air and explosive  
For the air blast loading, the space was initially filled with air, modelled as an ideal gas with 
the following equation of state: 

 
𝑃𝑃 = (𝐶𝐶𝑝𝑝 − 𝐶𝐶𝑣𝑣)𝜌𝜌𝑎𝑎𝑇𝑇                                                 (25) 

 
where 𝑃𝑃 is the gas pressure, 𝐶𝐶𝑝𝑝 = 1.005 kJ/KgK  and 𝐶𝐶𝑣𝑣 = 0.7176 kJ/KgK are the specific 
heat parameters at constant pressure and volume, respectively, 𝜌𝜌𝑎𝑎 = 1.228 kg/m3 is the air 
density and 𝑇𝑇 = 289 K is the gas temperature [31]. 

For the air blast explosion, the explosive was modelled by Jones -Wilkins-Lee Equation of 
state as: 

 

𝑃𝑃 = 𝐴𝐴 �1 − 𝜔𝜔𝜔𝜔
𝑅𝑅1𝜌𝜌0

� 𝑒𝑒
−𝑅𝑅1

𝜌𝜌e
𝜌𝜌𝑝𝑝  + 𝐵𝐵 �1 − 𝜔𝜔𝜔𝜔

𝑅𝑅2𝜌𝜌0
� 𝑒𝑒

−𝑅𝑅2
𝜌𝜌e
𝜌𝜌𝑝𝑝 + 𝜔𝜔𝜌𝜌2

𝜌𝜌0
𝐸𝐸𝑚𝑚0                   (26) 

 
where 𝜌𝜌𝑝𝑝 is the density of the explosive product, 𝜌𝜌e is the density of the explosive at the 
beginning of process, 𝐴𝐴,𝐵𝐵,𝑅𝑅1,𝑅𝑅2, and 𝜔𝜔 are the material constants [31], and 𝐸𝐸𝑚𝑚0 is the 
specific internal energy, as presented in Table 1. In this study, the blast wave is generated 
by detonation of 40𝑔𝑔𝑔𝑔 PE4 disc plastic explosive having the characteristic dimensions  𝐷𝐷𝑒𝑒 =
50𝑚𝑚𝑚𝑚 and charge height calculated as ℎ𝑒𝑒 = 4𝑀𝑀𝑒𝑒

𝜌𝜌𝑒𝑒𝜋𝜋𝐷𝐷𝑒𝑒2
= 12.73𝑚𝑚𝑚𝑚. The detonation is assumed 

to initiate from the centre of the explosive mass. The value of specific heat energy 𝑄𝑄𝑒𝑒 for 
PE4 is taken from Ref [32]. 

 
3.2. Steel material characterisation 
ARMOX 440T is a type of high strength armour steel alloy manufactured by SSAB® which 
exhibits excellent tensile strength and blast resistance. The material properties of ARMOX 
440T steel was taken from the bilinear quasi-static tests conducted at Imperial College 
Laboratory (Fig. 1) and ARMOX 44T data sheet [34]. Johnson- Cook Constitutive model 
was used to represent the dynamic flow stress, as in Eq. (4). The Johnson-Cook parameters 
for ARMOX 440T steel are obtained from Ref. [33] and presented in Table 1. 

 

 
Fig. 1- Bilinear quasi-static plot of axial (Axl.) and transverse (Trs.) stress for ARMOX 
440T 
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Fig. 2- Multi-material arrangement in Eulerian medium- 𝒕𝒕∗ denotes the arrival time 
of the wave pressure at the boundary 
 
Table 1- Material properties of air, plastic explosive and Steel plate(after Ref [33]) 

Material 𝜌𝜌𝑒𝑒(kg/m3) Det. Wave speed 
𝜐𝜐 (m/s)  A (𝐺𝐺𝐺𝐺𝐺𝐺) B (𝐺𝐺𝐺𝐺𝐺𝐺) 𝑅𝑅1 𝑅𝑅2 ω 𝐸𝐸𝑚𝑚  

(kJ/kg) 

Pre-det. 
bulk 
modulus 

PE-4 1601 8193 6.0977×1011 1.295×1010 4.5 1.4 0.25 6.057×106     0 

Air 
𝝆𝝆𝒂𝒂(kg/m3) 𝝁𝝁𝒌𝒌 (𝝁𝝁𝝁𝝁𝝁𝝁. 𝒔𝒔) P (Pa) E0 

𝑪𝑪𝒑𝒑 − 𝑪𝑪𝒗𝒗 Specific heat 
constant (at high temp) 
(Jkg-1K-1)  

1.293 18.27 101325 2.5×10-4 287 

ARMOX 
440T Steel 

𝑨𝑨𝟏𝟏(𝑴𝑴𝑴𝑴𝑴𝑴) 𝑩𝑩𝟏𝟏(𝑴𝑴𝑴𝑴𝑴𝑴) 𝑪𝑪 𝒏𝒏 L 
(mm) 𝝂𝝂 𝑬𝑬 (𝑮𝑮𝑮𝑮𝑮𝑮) H 

(𝒎𝒎𝒎𝒎) 
𝝆𝝆 
(𝒌𝒌𝒌𝒌/𝒎𝒎𝟑𝟑) 𝜺𝜺𝒇𝒇 

1210 1543 0.014 0.584 400 0.3 200 4.61 7850 0.06 

 
3.3. Description of experimental setup 

The experimental tests on ARMOX steel panels have been carried out by Ref.’s [33], and 
[35] in Blast Impact and Survivability Research Unit at the University of Cape Town the 
details of which could be found in the literature, however; a brief description of the tests is 
given here. Air blast load was generated by the blast chamber facility through detonating 
disk explosives of PE4 using MA2A3 electrical detonator, which was in turn mounted on a 
polystyrene bridge to provide the desired stand-off by varying the lengths of bridge legs 
(Fig. 3). The panels were mounted on a modified pendulum system, as shown in Fig. 4, not 
only to determine the impulse but also to accommodate two high speed cameras to monitor 
the transient measurements for the plate. The plate was clamped along its periphery and the 
rear surface was painted with speckle pattern, utilised in the Digital Image Correlation 
(DIC) procedure. Full description of the experimental setup is given in Ref.’s [7], and [35], 
including experimental tests with various charge masses and with a horizontal pendulum. 
Table 2 summarises the experimental tests selected for this study. While AX440T with 
38mm stand-off was used for validation, the other two models were employed to investigate 
the energy absorbing effectiveness factor discussed in Section 5.  
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Fig. 3- Photograph of the loading arrangement 

 

 
Fig. 4- Photograph showing the inside of the modified pendulum, set up for filming 
the rear surface of the plates 

 
Table 1- Experimental tests data on ARMOX 370T and ARMOX 440T, with 𝑫𝑫𝒆𝒆 =
𝟓𝟓𝟓𝟓𝒎𝒎𝒎𝒎. *Results of Ref [7] 
Test 
Configuration d 𝑴𝑴𝒆𝒆 𝑾𝑾𝒇𝒇 Impulse (N.s) Failure mode Pendulum type 

AX370T 25 40 29.5* 80 II (partial tearing) Horizontal 

AX440T 25 60 Crack length 
81mm 117.2 II Horizontal 

38 33 13.5* 57.1 I Modified swing 
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Fig. 5-Transient deformation of the panel (d=38mm, De=50mm, Me=33gr)    
 
3.4. Numerical models 

A preliminary numerical scheme is developed using the Multi Material Arbitrary Eulerian 
(MMAE) technique. The MMAE utilises continuum mechanics algorithms to obtain the 
solutions for the arbitrary motion of fluid mesh points relative to the (fixed reference) 
Eulerian points. In other words, a material Eulerian element may contain different material 
points and the mesh does not necessarily follow the motion of material. This technique, 
when coupled with Lagrangian model, is referred to as MMALE hereinafter, can trace the 
deformation and deformation gradients of the target by conservation of momentum in the 
contact pair surfaces between the target surface and the explosive product. MMALE is 
similar to MMAE but in MMALE the fluid interacts with the deformable target surface, 
enabling it to slide through the Eulerian mesh.   

A 3D Eulerian cuboid of size 300x300x200, containing air and explosive, was set up in 
FE hydrocode ABAQUS 6.13, and meshed with ascending element lengths of 2mm in the 
vicinity of the explosive to 10mm furthest from the region of interest. The choice of element 
size serves a few purposes: for convergence of the pressure load, to ascertain adequate 
number of material mesh points are encompassed within the explosive material, and to 
reduce the computational costs. The outflow boundary was assigned to the top face and side 
faces of the cuboid, while the bottom face was assigned rigid boundary conditions. Fig. 2 
shows the arrangement of this numerical model. 

A total set of 9 simulations were conducted for the range of 0.5 ≤  𝑑𝑑
𝐷𝐷𝑒𝑒
≤ 3, which consist 

of six simulations with incremental stand-off change of 25m, as well as stand-off values of 
27, 30, 38mm. In crude terms, using the Hopkinson- Cranz law, this range corresponds to 
the full-scale spherical IED (Improvised Explosive Device) threats having diameter range 
of 70-700mm at 300-500mm stand -off, assuming the spherical and cylindrical explosives 
to have the same mass to generate the same pressure load.  
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For each test, the inflow of pressure, varying radially from the centre of the target, was 
quantified along the rigid target gauge points. Fig. 8 shows the advection of the explosive and 
fluid surface interaction at different times, while in Fig. 6 and Fig. 7 the pressure history at 
different gauge points is monitored. 

 
3.5. Validation of numerical models 
The complex nature of the localised blast phenomenon renders the prediction of the actual 
dynamic solution and associated damage modes in FE analyses intrinsically difficult. 
Accurate prediction of the structural response in FE models depends, firstly, on the accuracy 
of the mesh type to trace the solutions for local forces and bending moments along its 
section; and secondly, on the credibility of the input parameters utilised in the continuum 
mechanics equations incorporated in the FE computer programme. Unfortunately, more 
often than not, the coefficients are obtained empirically and vary in the literature. The 
plethora of values necessitate applying the consistency tests and validation of numerical 
models with experiments.  

For this purpose, the transient deformation of the panel is investigated using MMALE 
analyses. The target surface in each analysis is discretised with different element type. This 
approach is similar to the one discussed in Section 3.1 but on deformable plate with material 
data presented in Table 1. Due to symmetry, only a quarter of the plate was integrated into the 
model with symmetry boundary conditions applied on the related segments of the boundary. 
An additional 20mm width was considered for two upper and lower clamps, modelled as rigid 
body surfaces and placed along the periphery of the plate. A penalty contact formulation was 
used with friction coefficient of 0.3 between the contact surfaces while contact between the 
plate and air was assumed frictionless.  

In each set of simulations, the plate was discretised with a different element type, namely 
shell, membrane and continuum (solid homogeneous) elements, but with the same degree of 
refinement as 5mm element length (which satisfied the convergence). The shell elements used 
were conventional shell S4R and continuum shell SC8R elements. S4R elements are general 
purpose, uniformly reduced integration elements with hourglass control to avoid spurious zero 
energy modes. These elements allow for the finite membrane strains and arbitrary large 
rotations. The continuum shell elements (SC8R) on the other hand, are 8 noded hexahedral 
elements for general shell-like structures with continuum topology, adaptable to thick and thin 
shells, which allow for large strains and more accurate for contact pairs investigations.  

The C3D8R continuum elements are a class of solid elements with reduced integration also 
known as ‘brick’ elements. These elements require refinement to capture stress components 
at boundary but are not stiff enough in bending unless a sufficient number of them are 
employed through the thickness of the plate/shell. The choice of 5 elements through thickness, 
in combination with enhanced hourglass control, is assumed to give reasonable estimate to 
capture the local bending.  

Membrane elements (M3D8R) are 8 noded quadrilateral elements with reduced integration 
and hourglass control, which conform to simplified shell theory in which internal bending 
moments are neglected [36]. 

The element size in each model was kept constant at 5mm. The transient deflection of each 
model is validated against that of experiments in Fig. 5, which shows the permanent and 
maximum deformation at the centre of the panel are consistent with those of the shell 
elements. Table 3 shows the percentage of error in maximum deflections against experiment. 
The MMALE models were carried out on a cluster of 16 high performance CPU’s each having 
1600MB memory.  
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The membrane elements experienced large out-of-plane deformations compared to all 

other element types. Due to the membrane element’s paucity of bending stiffness 
perpendicular to its plane; the element convergence is fraught with difficulty due to 
excessive lateral deformations. It transpires from Fig. 5 and Table 3 that the conventional 
and continuum shell elements incur less computational cost than the membrane or 
continuum elements. Thus, the conventional shell elements can be used throughout the 
study. 

 
Table 2- permanent and maximum transverse deformation of ARMOX Model 
(𝑴𝑴𝒆𝒆 = 𝟑𝟑𝟑𝟑𝒈𝒈𝒈𝒈,𝒅𝒅 = 𝟑𝟑𝟑𝟑𝒎𝒎𝒎𝒎) 
Element type 𝑾𝑾𝒇𝒇 (mm) 𝑾𝑾 (mm) % Error 𝑾𝑾𝒇𝒇 % Error 𝑾𝑾 CPU Time (min) 
C3D8R 18.73 30.98 28.53 12.3 173 
S4(R) 16.10 27.27 10.47 1.83 63 
SC8R 17.64 29.11 20.11 8.67 53 
Experiment 13.5 26.78 NA NA NA 

 
4. RESULTS AND DISCUSSIONS 
4.1. Dimensionless parameters 

Using the curve fitting tool in MATLAB, a set of dimensionless functions are obtained as 
presented in Eq.’s (27) - (34), and illustrated in Fig. 10 - Fig. 16 for the charge mass of 40gr. 
For the sake of comparison, the results of simulations with 60gr charge (19mm charge 
height) are also plotted in Fig. 11.  

 

𝑓𝑓1 = 0.11 � 𝑑𝑑
𝐷𝐷𝑒𝑒
�
−1.153

                                               (27) 

 

𝑓𝑓2 = 4.591 � 𝑑𝑑
𝐷𝐷𝑒𝑒
�
−0.42

                                               (28) 

 

𝑓𝑓3 = 21.56 � 𝑑𝑑
𝐷𝐷𝑒𝑒
� + 54.3                                               (29) 

 
𝑓𝑓4 = 0.359

� 𝑑𝑑𝐷𝐷𝑒𝑒�
+2.138

                                                      (30) 

 

𝑓𝑓5 = 0.0363 ln �0.4𝑑𝑑
𝐷𝐷𝑒𝑒
� + 0.0819                                        (31) 

 

𝑓𝑓6 = 344.8𝑒𝑒−1.753� 𝑑𝑑𝐷𝐷𝑒𝑒
 �                                              (32) 

 
As the characteristics of loading variables (spatial and temporal) are known a priori, the 

transverse deflection of the plate in Eq. (24) due to such a load is measured by implementing 
the load in a separate full 3D pure Lagrangian analysis. In this model, a 3d matrix of the 
magnitude of pressure load with respect to its generalised coordinates is generated for each 
model, applied directly onto the panel with aforementioned geometry and properties as 
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discussed in Section 3.2, with rigid boundaries along its periphery. Due to symmetry, only 
a quarter of the plate is modelled. The panel is discretised with S4R shell elements of 5mm 
length and hourglass control to ensure convergence. Fig. 9 shows the maximum 
displacement of the two panels at varying stand-off.  

Eq. (24) can be recast in the form of Eq. (33), where 𝐼𝐼∗ is the impulse density (impulse per 
unit area). Thus, the dimensionless function attributing response to the impulse is given in Eq. 
(34) and plotted in Fig. 16. Table 4 summarises the impulse obtained in MMAE method using 
Eq. (36), over the radial distance (R) of 200mm. 

 
𝑊𝑊𝑓𝑓

𝐻𝐻
= 𝐼𝐼∗

𝐻𝐻�𝜌𝜌𝜎𝜎0 
𝑓𝑓7 �

𝑑𝑑
𝐷𝐷𝑒𝑒
�                                                 (33) 

 
                                  𝑓𝑓7 = −2.036 � 𝑑𝑑

𝐷𝐷𝑒𝑒
� + 10.08         0.5 ≤  𝑑𝑑

𝐷𝐷𝑒𝑒
< 0.75                      

                 (34) 

                                     𝑓𝑓7 = 4.28 � 𝑑𝑑
𝐷𝐷𝑒𝑒
�
−2.5

+ 0.1        0.75 ≤ 𝑑𝑑
𝐷𝐷𝑒𝑒
≤ 3                   

 

 
Fig. 6 Pressure load at various radial local coordinates ((𝒅𝒅/𝑫𝑫𝒆𝒆  = 𝟎𝟎.𝟐𝟐𝟐𝟐) 
 

 
Fig. 7 Curve fit of pressure load across the target (𝒅𝒅/𝑫𝑫𝒆𝒆  = 𝟎𝟎.𝟓𝟓𝟓𝟓) 
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(a) 𝑡𝑡 = 2𝜇𝜇𝜇𝜇 

 
(b) 𝑡𝑡 = 8𝜇𝜇𝜇𝜇 

 
(c) 𝑡𝑡 = 10𝜇𝜇𝜇𝜇 

 
(d) 𝑡𝑡 = 20𝜇𝜇𝜇𝜇 

 
(e) 𝑡𝑡 = 30𝜇𝜇𝜇𝜇 

 
(f) 𝑡𝑡 = 40𝜇𝜇𝜇𝜇 

 
(g) 𝑡𝑡 = 50𝜇𝜇𝜇𝜇 

 
(h) 𝑡𝑡 = 60𝜇𝜇𝜇𝜇 

 
(i) 𝑡𝑡 = 80𝜇𝜇𝜇𝜇 

Fig. 8- Advection of the blast wave from 40gr explosive in air medium at 25mm 
stand-off 
 
Table 3- Mid-point deflection vs impulse of MMALE models for ARMOX 440T 
Test Number 𝒅𝒅/𝑫𝑫𝒆𝒆 Impulse (𝑰𝑰) (N.s) Test Number 𝒅𝒅/𝑫𝑫𝒆𝒆 Impulse (𝑰𝑰) (N.s) 
1 0.5 65.11 5 1 51.78 
2 0.54 59.87 6 1.5 44.41 
3 0.6 56.68 7 2 33.99 
4 0.76 54.52 8 2.5 24.82 
   9 3 22.55 
 

In the case of proximal blast loads with 𝑑𝑑
𝐷𝐷𝑒𝑒
≤ 1.5, an incremental decrease in the abscissa 

leads to an abrupt increase in the ordinate of Fig. 10 and Fig. 15, marking a transition point 
in the type of response of target plate. Beyond 𝑑𝑑/𝐷𝐷𝑒𝑒  = 1.5 the blast load is projected more 
uniformly onto the plate surface, therefore deformation and the profile shape of the plate 
shifts from a local to a more global mode. It also transpires that, in the lower range stand-
off the work done by external loads is less dispersed throughout the target surface, leading 
potentially to partial or total damage in the central region.  

As observed in Fig. 11, the load decay constant (𝑏𝑏) is linearly proportional to the charge 
mass. Thus, considering the mass of explosive and the air medium in which the blast wave 
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propagates, Eq. (20) can be modified as 𝑏𝑏 = 𝑀𝑀𝑒𝑒
𝐷𝐷𝑒𝑒2𝜌𝜌𝑎𝑎

𝑓𝑓 � 𝑑𝑑
𝐷𝐷𝑒𝑒
�. Combining this expression with 

Eq. (28)  
 

𝑓𝑓′2 �
𝑑𝑑
𝐷𝐷𝑒𝑒
� = 𝐷𝐷𝑒𝑒3𝜌𝜌𝑎𝑎

𝑀𝑀𝑒𝑒
𝑓𝑓2 �

𝑑𝑑
𝐷𝐷𝑒𝑒
�                                                 (35) 

 
The predicted normalised data from Fig. 11 for 60gr charge compares favourably with the 

data for 40gr charge, when combined with Eq. (35), as presented in Fig. 17. 
 

 
(a) 

 
(b) 

Fig. 9- Maximum deformation of the panels with (a) 𝒅𝒅/𝑫𝑫𝒆𝒆 = 𝟎𝟎.𝟓𝟓 and (b) 𝒅𝒅/𝑫𝑫𝒆𝒆  = 𝟐𝟐 
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Fig. 10- Dimensionless pressure load (Equ. (27)) 
 

 
Fig. 11- Dimensionless load shape decay constant (Equ. (28)) 
 

 
Fig. 12- Dimensionless paraments relating the duration of the load (Equ. (29)) 
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Fig. 13- Dimensionless pulse shape decay constant 𝜶𝜶 (Equ. (30) 

 

 
Fig. 14- Dimensionless 𝑹𝑹𝒆𝒆 (Equ. (31)) 

 

 
Fig. 15- Dimensionless permanent deflections of the plate (Equ. (32)) 
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Fig. 16 -Curve fit of normalised displacement-impulse (Equ. (34)) 
 

 
Fig. 17- Normalised data of load decay parameter  
 
4.2. Impulsive loading 

Eq. (36) gives the impulse imparted to the plate from the centre of projection to the 
characteristic radial distance 𝑟𝑟∗ = 𝑟𝑟  from centre:  
 

𝐼𝐼(𝑟𝑟) = 2𝜋𝜋 ∫ ∫ 𝑝𝑝(𝑟𝑟∗, 𝑡𝑡)𝑟𝑟∗𝑑𝑑𝑟𝑟∗𝑑𝑑𝑡𝑡∗𝑟𝑟
0

𝑡𝑡𝑑𝑑
0                                           (36) 

 
Assuming the impulse imparted over the square surface target of characteristic side 

length 𝐿𝐿 is equivalent to a circular target of radius R, and defining 𝜆𝜆0 = 𝑅𝑅𝑒𝑒/𝐿𝐿 and 𝜆𝜆 = 𝑟𝑟/𝐿𝐿, 
we integrate Eq. (36) to give: 
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𝐼𝐼(𝜆𝜆) =  

⎩
⎨

⎧                                                  𝜋𝜋𝑝𝑝0�1+𝛼𝛼𝑡𝑡𝑑𝑑−𝑒𝑒
−𝛼𝛼𝑡𝑡𝑑𝑑�(𝜆𝜆0𝑏𝑏𝑏𝑏)2

𝑡𝑡𝑑𝑑𝛼𝛼2
                                               𝜆𝜆 < 𝜆𝜆0

𝜋𝜋𝑝𝑝0�1+𝛼𝛼𝑡𝑡𝑑𝑑−𝑒𝑒−𝛼𝛼𝑡𝑡𝑑𝑑�
𝑡𝑡𝑑𝑑𝛼𝛼2

�(𝜆𝜆0𝐿𝐿)2 + 2𝑒𝑒𝜆𝜆0𝐿𝐿𝐿𝐿

𝑏𝑏2
�𝑒𝑒−𝜆𝜆0𝐿𝐿𝐿𝐿(1 + 𝜆𝜆0𝐿𝐿𝐿𝐿) − 𝑒𝑒−𝜆𝜆𝜆𝜆𝜆𝜆(1 + 𝜆𝜆𝜆𝜆𝜆𝜆)�� 𝜆𝜆 ≥  𝜆𝜆0

  (37) 

 
The total impulse that the charge could potentially impart to the target would thus be given 

by: 
 

𝐼𝐼(∞) = lim
λ→∞

{𝐼𝐼(𝜆𝜆)} = 𝜋𝜋𝑝𝑝0�1+𝛼𝛼𝑡𝑡𝑑𝑑−𝑒𝑒−𝛼𝛼𝑡𝑡𝑑𝑑�(𝜆𝜆0𝐿𝐿)2 
𝑡𝑡𝑑𝑑𝛼𝛼2

+ 2𝜋𝜋𝑝𝑝0�1+𝛼𝛼𝑡𝑡𝑑𝑑−𝑒𝑒−𝛼𝛼𝑡𝑡𝑑𝑑�(1+𝜆𝜆𝜆𝜆𝜆𝜆)
𝑡𝑡𝑑𝑑𝛼𝛼2𝑏𝑏2

           (38) 

 
Thus, a non-dimensional impulse, 𝑖𝑖, can be defined as the quotient of the impulse imparted 

to a target over the total impulse that the blast can generate:  
 

𝑖𝑖 = 𝐼𝐼(𝜆𝜆)
𝐼𝐼(∞)

=

⎩
⎪
⎨

⎪
⎧  

(𝜆𝜆0𝐿𝐿)2

2+2𝜆𝜆0𝐿𝐿𝐿𝐿+(𝜆𝜆0𝐿𝐿𝐿𝐿)2                                𝜆𝜆 < 𝜆𝜆0 

1 − 2𝑒𝑒−𝐿𝐿𝐿𝐿(𝜆𝜆−𝜆𝜆0)[1+𝜆𝜆𝜆𝜆𝜆𝜆]
2+2𝜆𝜆0𝐿𝐿𝐿𝐿+(𝜆𝜆0𝐿𝐿𝐿𝐿)2 

                 𝜆𝜆 ≥  𝜆𝜆0

                    (39) 

 
Eq. (39) indicates the effectiveness of the plate to dissipate the impulse imparted to it which 

is usually measured against the total impulse required to penetrate the plate (rupture impulse 
or impulse threshold). As most blast scenarios studied here correspond to 60 < 𝑏𝑏 < 120, for 
the finite region of 0 < 𝜆𝜆 < 0.5 the charge is 95% efficient (Fig. 18). Conversely, the 
reciprocal of Equ. (39) determines the efficiency of the charge, with 𝐼𝐼(∞)/𝐼𝐼(𝜆𝜆) = 1 indicating 
the full impulse imparted to the target. 

The interaction surface of dimensionless impulse against stand off and 𝜆𝜆 (Fig. 19) suggests 
that for the blast loads generated by the same mass of explosive, the most threatening blast 
scenarios would be the small charge diameter and larger charge height, rather than high charge 
diameter and lower charge height. This is due to the nature of the detonation waves in a 
cylindrical explosive which propagate in the direction of its height. The pressure wave 
generated by the explosive product of larger height/diameter ratio would therefore concentrate 
on the centre of its projection on the plate, imparting more energy locally, thus possessing a 
higher value of surface traction hence a more localised penetrating effect. For example, within 
the finite region of 0 < 𝜆𝜆 < 0.5 , most localised blast load scenarios considered here 
correspond to the range of 60 < 𝑏𝑏 < 120, generating a potentially perforating impulse.   

 
4.3. Energy absorbing effectiveness  
A dimensionless energy absorbing effectiveness factor was introduced by Jones [37] as: 
 

𝜓𝜓 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

     (40) 

 
The denominator of Eq. (40) is the energy absorbed in the same volume of material up to 

rupture in a uniaxial tensile test specimen. The dynamic energy absorbing effectiveness factor 
was also defined, similar to Eq. (40) for the energy absorbing effectiveness factor subject to 
dynamic loads. Eq. (40) can be modified and rewritten as: 
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Fig. 18- interaction surface of the dimensionless impulse 𝒊𝒊 
 

 
Fig. 19 interaction surface of dimensionless impulse i against normalised stand off 
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𝜓𝜓′ =
∫ 𝜙𝜙(𝜀𝜀,𝜎𝜎0,𝜀𝜀

.
)𝜀𝜀𝜀𝜀𝜀𝜀

𝜀𝜀𝑓𝑓
0

𝑉𝑉𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆
                                                   (41) 

 
Where 𝜙𝜙(𝜀𝜀,𝜎𝜎0, 𝜀𝜀

.
) is the strain rate dependent stress tensor of the material subject to 

dynamic loads, 𝑉𝑉 is the volume of the material and 𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆 = 70𝑀𝑀𝑀𝑀/𝑚𝑚3 is the Specific Energy 
to Tensile Fracture of the material, which is the area under the stress strain curve of the 
material up to failure in the quasi-static test. Clearly, Eq. (41) can be used to determine the 
effectiveness of structure under various blast loading scenarios. For example, considering the 
blast generated by an explosive of 𝑀𝑀𝑒𝑒 = 60𝑔𝑔𝑔𝑔, 𝑑𝑑 = 25𝑚𝑚𝑚𝑚 and 𝐷𝐷𝑒𝑒 = 50𝑚𝑚𝑚𝑚, the ARMOX 
440T panel of 4.6mm thickness ruptured during the experiment (Table 2). Thus, the calculated 
energy absorbed effectiveness factor can be stipulated as the pivot threshold energy to predict 
rupture of various ARMOX440T panels, when subjected to various proximal or distal pressure 
waves at increased stand-off but generated with disc explosives of higher masses and (Fig. 
20).  

 

 
Fig. 19 -Dimensionless energy absorbing effectiveness factor 𝝍𝝍′ for ARMOX 440T, 
the region of  𝝍𝝍′ > 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐 correspond to the blast load which is predicted to 
penetrate the plate. 

 

 
Fig. 20 - Prediction of the failure of ARMOX 370T panels with 𝑴𝑴𝒆𝒆 = 𝟔𝟔𝟔𝟔𝒈𝒈𝒈𝒈  
( ), using experimental result of ARMOX370T which exhibit Mode II failure 
(partial tearing at centre) with 𝑴𝑴𝒆𝒆 = 𝟒𝟒𝟒𝟒𝒈𝒈𝒈𝒈, 𝒅𝒅/𝑫𝑫𝒆𝒆  = 𝟎𝟎.𝟓𝟓 ( ). 
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The data from the ARMOX 370T plates are graphed in Fig. 21. The plasticity in the plate 
was characterised by Johnson-Cook visco-plastic model with strain hardening and rate 
sensitivity given as in Table 1, with identical geometric properties to ARMOX 370T (Table 
1) except with 𝐻𝐻 = 3.81𝑚𝑚𝑚𝑚, 𝜎𝜎0 = 𝐴𝐴1 = 1157𝑀𝑀𝑀𝑀𝑀𝑀 and 𝜀𝜀𝑓𝑓 = 8%. In this case, the threshold 
energy corresponds to loading parameters of 𝑀𝑀𝑒𝑒 = 40𝑔𝑔𝑔𝑔, 𝑑𝑑 = 25𝑚𝑚𝑚𝑚 and 𝐷𝐷𝑒𝑒 = 50𝑚𝑚𝑚𝑚 [7], 
which ensued partial crack in the centre of the plate. Table 5 summarises the deformation 
and the predicted failure modes of the plates. Whether the panels with higher value of 
ordinate in Fig. 21 than those of the threshold energy will actually undergo mode II or mode 
III failure is not investigated here and requires further experiments.   
 
CONCLUDING REMARKS 
This article investigates the dynamic plastic response of localised blast loaded steel plates 
through dimensional analyses of the target and close-in blast loading. By assuming that the 
blast load, generated by cylindrical charge, consists of two independent parts (load shape 
and pulse shape), a set of 7 dimensionless functions are identified by applying the rank-
nullity (Buckingham’s Pi-) theorem. The functions were parametrised in terms of 
standoff/diameter ratio, and obtained in two stages, by a preliminary numerical method 
known as MMAE in ABAQUS and a regression analysis. The MMAE technique is based 
on the full interaction of the PE4 explosive products with the rigid structure, from which 
various loading parameters were obtained. The regression analysis performed on the scatter 
plots of the loading parameters identifies the form of dimensionless functions.   

Preliminary results reveal that the trend of loading magnitude, and hence the trend of the 
plate deformation, shifts at the critical stand-off, demonstrating a shift in the sensitivity of 
the plate response to the projection of the blast. With more proximal blast, the projection of 
the blast is focused on the central part of the plate, leading to large deformations, higher 
deformation gradients and potential rupture of the plate.  

The dimensionless parameters studied here provide a spectrum of data that can render 
the same trend for the response of full-scale prototype plates possessing the same values of 
dimensionless parameters as the small-scale models to blast loads, without having to 
perform rigorous blast testing on the physical panel prototype. 

A series of further FSI simulations was performed using deformable target surface. 
Foremost, the transient deformation of a model was measured experimentally to validate 
the numerical models. The numerical models were compared against the experimental data, 
showing good agreements in terms of permanent and maximum deformations.  

For experimental specimens with loading parameters that resulted in the rupture of the 
panels (Mode II failure), the dimensionless energy absorbing effectiveness factor was 
quantified numerically and utilised to predict the rupture of the plates for more distal blasts 
but increased charge heights (mass). This approach is useful to predict the failure modes of 
geometrically similar ARMOX prototype panels, on which the load is generated by a 
cylindrical PE4 charge, assuming the material properties remain constant during scaling.  
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Table 4- permanent and maximum transverse mid-point deflection of the 
plate from MMALE analysis 
Test plate 𝒅𝒅 (mm) Range of 𝑴𝑴𝒆𝒆 (gr) 𝑾𝑾𝒇𝒇 (mm) 𝑾𝑾 (mm) Predicted Failure mode 

AX370T 

25 40 29.5 42.93 II (from expt.) 
25 

60 

-(*) 47.12 II 
27 33.73 45.20 II 
30 31.82 43.65 II 
38 26.21 38.58 I 
50 20.33 32.90 I 

AX440T 

25 60 40.21 28.91 II (from expt.) 
27 60 38.80 27.59 I 
30 60 37.84 27.78 I 
38 60 33.90 23.27 I 
50 60 28.79 17.46 I 
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NOMENCLATURE 
𝐵𝐵, 𝐿𝐿 [L]  plate characteristic lengths 
𝐵𝐵1  [ML-1T-2] Johnson Cook hardening parameter  
C    Johnson Cook rate dependent coefficient [1] 
Cp  [L2T-2K-1] ideal gas specific heat at constant pressure  
Cv  [L2T-2K-1] ideal gas specific heat at constant volume  
𝐷𝐷𝑒𝑒  [L]  load diameter  
𝐸𝐸  [ML-1T-2] Young’s modulus  
H  [L]  plate characteristic thickness  
I∗  [ML-1T-1] impulse density  
𝐼𝐼  [MLT-1]  impulse transmitted to the plate  
𝑀𝑀𝑒𝑒  [M]  mass of explosive  
𝑄𝑄𝑒𝑒  [L2 T-2]  specific Heat Energy 
Re  [L]  radius of centrally loaded plate  
B  [L-1]  load shape explosive decay constant  
𝑑𝑑  [L]  stand-off distance,  
he  [L]  charge height,  
p0  [ML-1T-2] maximum explosive pressure,  
R  [L]  characteristic radial distance from centre  
𝛼𝛼  [T-1]  Pulse shape decay constant  
ε̇  [T-1]  material strain rate,  
Ε    material strain [1] 
𝜀𝜀𝑓𝑓    strain at tensile fracture (% elongation) [1]  
Ρ  [ML-3]  material density,  
ρe  [ML-3]  explosive density,  
𝜌𝜌𝑎𝑎  [ML-3]  air density,  
 td  [T]  duration of the blast load,  
µk  [ML-1T-1] dynamic viscosity of air,  
σ0  [ML-1T-2] material static yield stress,  
σ′y  [ML-1T-2] material flow stress,  
𝜎𝜎𝑈𝑈𝑈𝑈  [ML-1T-2] ultimate static tensile stress,  
𝜓𝜓′    energy absorbing effectiveness factor, [1] 
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