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ABSTRACT 
In this work, we present a study of natural convection in a rectangular air-

filled cell with a Prandtl number Pr = 0.71 and inclined by an angle φ. The walls 

for z = 0 and z = H are impermeable and maintained at constant 

temperatures respectively Th and Tc, while the other two walls are 

impervious and adiabatic. All walls are assumed to be rigid (Figure 1). The 

fluid is assimilated to an incompressible Newtonian fluid whose thermo-

physical characteristics are constant when the temperature difference ΔT = 

Th-Tc remains sufficiently low (a few degrees) for the Boussinesq 

approximation to remain applicable. Under these conditions, the convective 

flows obtained are laminar. Rayleigh is considered between 10² ≤ Ra ≤ 104 for 

different inclinations varying from -90° to 180° of aspect ratio A=L/H=10. Our 

calculations highlight the influence of the angle of inclination on the triggering 

thresholds of natural convection, the structure of the flow and the heat 

transfer and thus on the convective instability. 
 

 
1. INTRODUCTION  
Around 1900, Henri Benard [1] by heating down a layer of thin oil observed convective cells 
take the form of a mosaic of regular hexagons. These cells are known as "Benard cells". As 
early as 1916, Lord Rayleigh [2] modeled and solved the problem of Benard, but the critical 
temperature obtained by Rayleigh did not correspond at all to the experimentation of Benard. 
Rayleigh assumed that the fluid is placed between two rigid plates while for Benard's 
experiment, the upper surface of the fluid is supposed to be free. Davis [3] in 1967 and Stork 
and Müller [4] in 1972, showed in their research that the more the cavity is confined, the 
higher the number of Rayleigh critical 𝑅𝑅𝑎𝑎𝑐𝑐 high. At the opposite; when the lateral dimensions 
tend towards infinity, 𝑅𝑅𝑎𝑎𝑐𝑐  tends towards a limit value equal to 1708. Schandrasekhar did a 
very detailed study on this number of critical Rayleigh in the book "Hydrodynamics and 
Hydromagnetic Stability [5] 

The Boussinesq approximation allows an incompressible formulation of the Navier-
Stokes equations by taking into account buoyancy forces due to the expansion of the fluid and 
induced by a variation of the temperature. This approximation is attributed to Boussinesq [6], 

It is proposed to study two-dimensional natural convection in a stationary regime. We 
consider the case of rigid kinematic boundary conditions for numerical simulation. The 
conductive state is characterized by a zero velocity and a linear temperature profile.  
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The objective of this work is the study of the influence of the angle of inclination of the 
enclosure on the trigger thresholds of the instability, the structure of the flow and the heat 
transfer. 
 

 
Figure 1: Physical model 
 
2. MATHEMATICAL FORMULATION 
In order to obtain a simple mathematical model, we adopt the following hypotheses: 
 
• The flow is two-dimensional. 
• The fluid is Newtonian and incompressible. 
• The flow is laminar. 
• Radiation heat transfer is negligible. 
• Viscous dissipation is negligible in the energy equation. 
• The physical properties of the fluid are constant except the density which obeys the 

Boussinesq approximation. 
• The equations governing the flow are the conservation equations: mass, momentum and 

energy. Using the simplifying assumptions quoted above and taking into account the 
Boussinesq approximation, these equations take the following form:  
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To this system of partial differential equations are associated the following thermal and 

dynamic boundary conditions: 
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Thermal: �T(x, z = H) = Tc ∀x
T(x, z = 0) = Th ∀x 

 

Dynamic: �u(x, z = H) = w(x, z = H) = 0 ∀x
u(x, z = 0) = w(x, z = 0) = 0 ∀x  

 
In order to make the system of partial differential equations above dimensionless, the 

following reference quantities are used: 
 

(𝑥𝑥∗, 𝑧𝑧∗) = (𝑥𝑥,𝑧𝑧)
𝐻𝐻

 ;  (𝑢𝑢∗, 𝑤𝑤∗) = 𝐻𝐻
𝛼𝛼

(u , w)  ;  𝑇𝑇∗ = 𝑇𝑇−𝑇𝑇𝑐𝑐
𝑇𝑇ℎ−𝑇𝑇𝑐𝑐

  ;   𝑃𝑃∗ = 𝑃𝑃𝑃𝑃²
𝜌𝜌𝜌𝜌²

 

 
We introduce these dimensionless variables in the (1)-(4) equations we obtain the 

following dimensionless formalism: 
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= 0                                                           (6) 
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∂x∗
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∗
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                                                   (9) 

 
With the following boundary conditions: 
 

Thermal: �T
∗(x∗, z∗ = 1) = 0 ∀x∗

T∗(x∗, z∗ = 0) = 1 ∀x∗ 

 

Dynamic: �u
∗(x∗, z∗ = 1) = w∗(x∗, z∗ = 1) = 0 ∀x∗

u∗(x∗, z∗ = 0) = w∗(x∗, z∗ = 0) = 0 ∀x∗ 

 
On the active walls of the domain, the local and average Nusselt numbers are given by the 

following expression: 
 

Nu = −  ∂T
∗

∂Z∗
�
z∗=0

                                                   (10) 

 
Nua =  1

A ∫ NuA
0 dx∗                                                  (11) 
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3. NUMERICAL SIMULATION 
The finite elements method (FEM) is used in our model for discretizing the governing 
equations (6) to (9) along with the boundary and initial conditions. to validate our work, we 
compared our simulation results from A = 1 and ϕ=90°, with those of De Val Davis [7], Zarrit 
and al. [8] and Wang and al [9] in the case where Ra=103 and Ra=104. The comparison 
presented in Table 1 shows a very good agreement between the different works. We tested 
several types of mesh and we opted for a mesh consisting of 1125 elements. 
 

Table 1: Comparison of the Nusselt numbers 
Ra 𝟏𝟏𝟏𝟏𝟑𝟑  𝟏𝟏𝟏𝟏𝟒𝟒  
De Val Davis [7] 

𝑁𝑁𝑁𝑁𝑎𝑎 

1.117 2.238 
R. Zarrit and al. [8] (FDM) 1.118 2.254 
Wang and al. [9] (FEM) 1.117 2.254 
Our work 1.118 2.255 

 
4. RESULTS AND DISCUSSION 
Figure 2 shows the streamlines for different inclination angles and for two distinct values of 
the Rayleigh number. The analysis of this figure shows that the flow is single-cell, they are 
manifested by co-rotating streamlines. It can be seen that there is a movement in the fluid 
layers as soon as the heating begins. This movement is ascending along the hot plate and 
descending along the cold plate. For the same value of Rayleigh number, the number of rollers 
decreases with the increase of the angle of inclination. As the Rayleigh number increases, the 
flow increases, becoming multicellular with counter-rotating rolls. 
 

 
Ra=10² 

 
Ra=104 

(a) 
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Ra=10² 

 
Ra=104 

(b) 
Figure 2: Streamlines for (a) ϕ=15° and (b) ϕ=30° 

 
Figure 3 represents the variations of the maximum streamline function as a function of ϕ 

for different values of Ra, and Figure 4 represents the variations of the maximum streamline 
function as a function of Ra for different values of ϕ. For Ra < 300, the inclination has no 
influence on the fluid flow giving a value of zero at |ψ|Max. For the other values of Ra, it 
increases with the increase of ϕ and reaches a maximum value for a vertical cavity (ϕ=90°). 
The intensity of the flow increases with the inclination. Indeed, the values of |ψ|Max increases 
with increasing tilt angle of the cavity pour Ra = 104 (See Table 2) 

 
Table 2: Influence of |ψ|Max on ϕ 
ϕ 0° 30° 60° 90° 
|ψ|Max 08.03 11.53 18.04 20.10 

 
Figure 5 shows isotherms for Ra = 1708 and different values of inclination. For a 

horizontal cavity, the transfer is almost conductive thus giving a stratification. For the other 
angles, this stratification disappears as one increases the angle of inclination giving rise to the 
convective heat transfer. 
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Figure 3: Variation of maximal streamline function according to ϕ 
 

 
Figure 4: Variation of maximal streamline function according to Ra 
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ϕ=0° 

 

 
ϕ=30° 

 

 

 
ϕ=60° ϕ=90° 

 
Figure 5: Isotherms for Ra=1708 

 
Figure 6 represents the variations of the average Nusselt number as a function of ϕ for 

different values of Ra, The evolution of average Nusselt number as a function of Rayleigh 
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number is shown in Figure 7. By analyzing the variation of the Nusselt number as a function 
of the angle of inclination, it is found that the heat transfer is greater for the strong inclinations 
and less important for the low inclinations. For high Rayleigh number, the Nusselt number 
decreases with increasing value of the tilt angle. This decrease is due to the deceleration of 
the flow near the active walls. In the purely conductive case it will be noted that the average 
Nusselt number is equal to the unit. We can say that by increasing the angle of inclination, the 
triggering of the instability will start for Rayleigh number values lower than that found for the 
Rayleigh-Bénard configuration (Table 3). We can also notice that the positive and negative 
angles take the same critical Rayleigh value. 
 

 
Figure 6: Variation of the average Nusselt number according to the angle of 
inclination 

 
Table 3: Critical Rayleigh number vs tilt angle 
𝛗𝛗 0° ±15° ±30° ±45° ±60° ±75° ±90° 
𝑅𝑅𝑎𝑎𝑐𝑐 1740 950 550 450 350 300 300 

 
Figure 8 shows the evolution of the number of critical Rayleigh number as a function of 

the angle of inclination for a heating of the cavity from below. For positive values of φ, the 
𝑅𝑅𝑎𝑎𝑐𝑐 increases exponentially while for negative values we find the opposite phenomenon. We 
propose in this study a correlation between the critical Rayleigh and the angle of inclination 
given by the following relation: 
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 𝑅𝑅𝑅𝑅𝑐𝑐= a𝑒𝑒−
𝜑𝜑
𝑏𝑏  + c                                                       (12) 

 
 
Table 4: Proposed correlation between the critical Rayleigh and the angle of 
inclination (Equation 12). 

a b c R² 
ϕ <0 ϕ >0 

1453.70 -18.73 18.73 287.35 0.998 
 

 
Figure 7: Variation of the average Nusselt number according to the Rayleigh 
number 
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ϕ<0 

 

 
ϕ>0 

 
Figure 8: Variation of the Critical Rayleigh number according to the tilt angle 
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5. CONCLUSION 
We performed a two-dimensional numerical study of natural convection coupled heat transfer 
in a Rayleigh-Bénard inclined rectangular cavity. We examined the effect of inclination angle 
on dynamic flow field and on heat transfer. The results showed that for large numbers of 
Rayleigh, convective heat transfer becomes increasingly low and leads to a decrease in the 
rate of heat transfer as the angle of inclination increases. The critical Rayleigh number 
decreases with increasing angle of inclination. A correlation between the critical Rayleigh 
number and the angle of inclination has been determined. Positive values of the angle of 
inclination accelerate the appearance of convection against negative values of this angle delay 
the appearance of convection. 
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