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Abstract 

Predicting the temperature in the graphite purification zone of arc plasma is not only 

useful for guiding the smoothness of the production process, which affects the final 

quality of the graphite product, but also provides decision support for the implementation 

of fine temperature control. This study conducted an analysis of nine variables 

associated with the temperature of the graphite purification zone within arc plasma to 

develop temperature prediction models. Using the random forest algorithm for feature 

selection, four key variables were identified with importance exceeding 0.4. These 

variables include the main gas flow rate, powder flow rate, voltage, and current. 

Subsequently, three different algorithms, namely Error Back Propagation (BP), Extreme 

Learning Machine (ELM), and Long Short-Term Memory (LSTM), were employed to 

develop various models for predicting temperature. Ultimately, the predictive 

performance of the models was assessed by comparing the temperature prediction 

models for various operating scenarios using different evaluation criteria. The 

experimental results show that the three models have their own advantages and 

disadvantages in different working conditions. The LSTM model exhibited  superior 

predictive performance in C1~C2 and C6~C9 working conditions, the ELM model 

demonstrated superior predictive performance in C3~C4 working conditions, and the BP 

model demonstrated superior predictive performance in C5 working conditions. Hence, in 

the actual purification process, a variety of prediction models can be used in combination 

to facilitate the continuous monitoring of temperature variations in the graphite 

purification zone. 

Keywords: Arc plasma, Graphite purification, Temperature prediction models, Intelligent 

algorithms, Random forests. 

 

1. Introduction 

Intelligent algorithms can make predictions and inferences by learning patterns between inputs and outputs 

without any prior knowledge of the inner workings of the system, but rather use their "black box" nature to train 

the constructed multiple hidden layers with the aid of massive amounts of data, and automatically learning 

features from the data to quickly deal with a variety of complex, highly non-linear problems. Currently, 

intelligent algorithms are widely used in the field of materials manufacturing [1-4]. 

Common high-temperature graphite purification method requires high purity of raw materials, the carbon 

content must reach more than 99%, purification operation technology is not only strict requirements, need to 

isolate the air, and expensive equipment, huge investment [5,6]. At present, Professor Song Chunlian's team at 

the Provincial Plasma Key Laboratory at Heilongjiang University of Technology and the Faculty of Science of 

Dalian Maritime University have jointly conducted research to build an arc plasma graphite purification system, 
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which has important applications in the field of graphite purification technology. This method can be used to 

purify graphite raw materials by gasifying the impurities in the graphite raw materials using an arc plasma 

discharge environment at a lower cost than the high temperature physical purification method [7,8]. 

Temperature is the key performance index of arc plasma purification, which can be regulated by changing 

parameters such as current and voltage. 

Intelligent algorithms can be applied to the arc plasma graphite purification process to realize the prediction of 

the temperature in the graphite purification zone by preprocessing, training and learning from a large amount of 

purification process data. This approach facilitates the smooth control of the production process and ensures the 

quality of the graphite purification process. In this study, the random forest algorithm was employed for feature 

selection of input variables. This was followed by the utilization of three distinct algorithms — error back 

propagation (BP), Extreme Learning Machine (ELM), and Long Short-Term Memory network (LSTM) — to 

develop various temperature prediction models. Various assessment criteria were subsequently applied to 

evaluate the effectiveness of the models. The temperature prediction model studied in this study is mainly 

applied to the design and development of discharge plasma graphite purification equipment, which on the one 

hand offers decision support for precise temperature regulation within the graphite purification zone. On the 

other hand, the theoretical foundation for the continuous innovation and development of plasma graphite 

purification technology. 

2. Research Base 

2.1 Main equipment and layout of graphite purification zone 

The main power supply, purification reactor, graphite powder feed equipment, refrigeration equipment, working 

gas delivery system together with the main-control center form the arc plasma graphite purification equipment. 

The main power supply on the one hand provides energy, and on the other hand with the main-control center 

through the voltage, current, main gas flow, and other parameters of regulation and control to generate arc 

plasma in conjunction with the main-control center. Subsequently, the graphite powder is purified through the 

powder feed device to the arc lance mouth for purification [9,10]. The main equipment and layout of the 

graphite purification area are shown in Fig. 1. In Fig. 1, 1 is an infrared thermometer of model IMPACMB35L, 

2 is a spray gun, and the grid-like container located under the spray gun port is a graphite recovery device. The 

temperature of the DC arc of this device ranges from 800 degrees Celsius to 3000 degrees Celsius, depending on 

the intensity of the arc, current, voltage, and other factors. Therefore, the graphite purification device can realize 

graphite purification by setting and controlling the voltage, current and other parameters. 

 

Fig. 1. Main equipment and layout of graphite purification zone 

2.2 Analysis of factors affecting the temperature of graphite purification zone 

The temperature within the graphite purification zone of the arc plasma is primarily determined by the arc. 

Various factors influence the arc temperature, including the current, voltage, working gas flow, gas type, 

physical characteristics of the material being purified, environmental conditions, and other relevant parameters. 



International Journal of Multiphysics 

Volume 18, No. 2, 2024 

ISSN: 1750-9548 

 

290 

Cheng Manqing et al. analyzed and calculated the variation of the arc temperature field when the current 

conditions were changed. The results were clear: the arc temperature values vary with the current. The radial 

current density and axial current density in the arc zone increase with the current increment, and the arc 

temperature values were directly proportional to the current [11]. Du Huayun et al. analyzed and studied the 

effects of changes in protective gas flow and arc length conditions on the arc temperature field and flow field. 

Their results showed that under the same current conditions, the maximum temperature increased with the 

increase in arc length. And with other conditions remaining unchanged, the maximum arc temperature 

demonstrated a rising trend followed by a subsequent decline as the flow rate of the protective gas was 

augmented [12]. Chai Tongtong et al. used ANSYS software to analyze the numerical simulation of argon and 

helium plasma arcs. Through comparison, they found that the peak temperature of the argon arc temperature 

field was greater than that of the helium arc temperature field. However, because the larger area occupied by the 

high-temperature region of the helium arc, the average temperature value of the helium arc temperature field 

was actually higher than that of the argon arc temperature field [13]. Wang Dongsheng et al. showed that the 

thermophysical parameters of the material have a crucial influence on the calculation of the temperature field. 

According to the principles of heat conduction theory, it can be established that the process of thermal energy 

exchange between entities is instigated by differences in their respective temperatures, and there is heat 

exchange between plasma and powder at the surface of the powder [14]. Zhou Yan et al. analyzed the effects of 

environmental factors on the operational characteristics of a synthetic plasma jet exciter. They demonstrated that 

variations in environmental factors also influence the arc temperature, for example, the ambient air pressure and 

temperature [15]. 

Therefore, in practice, it is necessary to consider the extent to which these factors affect the arc plasma graphite 

purification zone's temperature. By optimising the arc parameters and equipment design, the stability of the arc 

can be improved, resulting in a desirable purification temperature. The study of the primary factors influencing 

the temperature change process in the graphite purification zone and the investigation of the establishment of the 

corresponding temperature prediction model are also necessary to realize the study of the temperature prediction 

control system, as they are based on the full utilization of the actual production data. 

3. Research Methodology 

3.1 Data acquisition 

In conjunction with the aforementioned analysis, nine variables affecting the temperature in the graphite 

purification zone were identified during the experiments. These variables include the main gas flow, powder 

feed flow, cooling water temperature, ambient temperature, voltage, current, ambient humidity, ambient air 

pressure, and graphite purification zone temperature. For the sake of analysis, each variable is abbreviated and 

defined in Table 1. 

Table 1. Description of variables related to the temperature in the graphite purification zone 

No. Variable Unit Scope of change 
Variable 

abbreviation 

1 Main gas flow L/min [20~25] F1 

2 Powder feed flow g/min [80~100] F2 

3 Cooling water temperature ℃ [5~6] F3 

4 Ambient temperature ℃ [29~31] F4 

5 Voltage V [27~30] V 

6 Current A [200~500] A 

7 Ambient humidity % [60~69] RH 

8 Ambient air pressure kPa [97.9~98.0] P 

9 Graphite purification zone temperature ℃ [851.2~2089.1] T 
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The experimental data were obtained from the plasma graphite purification equipment at the Provincial Plasma 

Key Laboratory at Heilongjiang University of Technology. A total of 4,500 data sets were collected for the 

situation within 2100 degrees Celsius, including nine working conditions, each containing 500 data sets. The 

lowest temperature point in the graphite purification zone was selected as the measurement point, and the 

working conditions were set according to the conclusions of the previous laboratory research. The original data 

conditions are detailed in Table 2. It shows that the temperature fluctuation value is significant in the graphite 

purification environment due to its complexity. Furthermore, under the same working condition, the temperature 

range can exceed 200 degrees Celsius, indicating a substantial disparity between the lowest and highest recorded 

temperatures. Consequently, prior to utilising the actual data, it is imperative to perform outlier testing on the 

data to reduce the impact of such data on the model, which is conducive to improving the accuracy of the 

temperature prediction model. 

Table 2. Nine working conditions 

Working 

conditions 
C1 C2 C3 C4 C5 C6 C7 C8 C9 

F1(L/min) 

range(±1%) 
20 25 25 25 25 25 25 30 20 

F2(g/min) 

range(±1%) 
100 90 80 100 100 100 80 90 90 

F3(℃) 6 6 6 6 6 7 7 7 7 

F4(℃) 30 30 30 30 30 30 30 31 31 

V(V) 

range(±1%) 
24 30 25 29 28 27 28 29 28 

A(A) 

range(±1%) 
200 300 300 400 250 200 500 500 500 

RH(%) 61 61 61 61 61 61 62 62 62 

P(kPa) 97.9 97.9 97.9 97.9 97.9 97.9 97.9 98 98 

T(℃) 
853.3 

~872.5 

1729.7 

~1909.9 

1619.9 

~1845.2 

1831.9 

~2010.8 

1534.6 

~1717.1 

1424 

~1549.5 

1947.8 

~2002.9 

1636.2 

~1853.4 

1997.3 

~2090.8 
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Fig. 2. Box plots for handling outliers 

3.2 Data pre-processing 

Data pre-processing included outlier removal, normalisation and analysis of variable significance. Box plots are 

used for outlier removal. A box plot is a graph used to show the centre position and range of dispersion of one or 

more groups of continuous data distribution, which can show the main statistical information such as the 

median, quartile and outliers of the data, and is named box plot because of its resemblance to a box [16,17]. The 

median of the data, which is the central line of the box, signifies the average of the data within the selected 

sample set. The top line of the box represents the upper quartile of the data, while the bottom line represents the 

lower quartile. The extent of the alteration in the data can be demonstrated by the height of the box. The 

graphite purification zone temperatures for the nine working conditions are plotted on their respective box plots 

as shown in Fig. 2, where the data between the top and bottom edges can be used normally, while the discrete 

points (outliers) beyond them are eliminated by mean replacement. 

Before training the temperature model, the data must also be normalised, and it can be seen from the 

information in Table 1 that the production data should be normalized before use because it contains data with 

different dimensions, such as temperature and pressure. Normalization can address the issue of the loss of data 

expression characteristics due to differing dimensions, which can affect the accuracy of the prediction model. 

Furthermore, normalization can accelerate the convergence speed of the model. Consequently, the original data 

are mapped to the [0,1] range for dimensionless processing by employing the min-max method [18].  xi 

represents the ith data of this set of variables. The minimum value within the set of variables is represented by 

xmin, while the maximum value is represented by xmax, and x̂

 

is the normalised data. 

 
minmax

minˆ
xx

xx
x i




  (1)

 

In addition, to simplify computational sophistication, this study utilizes the Random Forest algorithm to evaluate 

the input factors and determine their relative importance. The results of this analysis are presented in Fig. 3. 

Input variables with a significance level below 0.4 were eliminated, and it was ultimately determined that the 

variables of main gas flow (F1), powder feed flow (F2), voltage (V), and current (A) would be utilized as inputs 

to the temperature prediction model. 
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Fig. 3. Analysis of the importance of variables 

3.3 Model of the BP algorithm 

To realize the learning and training of the BP network by continuously adjusting the weights of each layer and 

gradually reducing the difference in the output value and the expected value during signal and error propagation. 

The neurons in the hidden layer act as receivers of the input signal, responsible for processing and transmitting it 

to the next layer. When the neurons in the final layer have completed their processing, the forward propagation 

of learning is complete. If the calculated error between the actual output and the desired output is found to be 

unsatisfactory up to the set requirement, back propagation of the error signal is performed [19]. 

Assuming that the hidden layer is a single layer, let the overall structure of the BP model be n-m-k, where n, m, 

and k represent the number of neurons in the corresponding layer. The symbols ωji represent the weights that 

connect the first layer to the neurons in the hidden layer, while bj represent the thresholds that exist between 

these respective layers. The symbols vkj denote the weights linking the neurons of the hidden layer to those of 

the final layer, while ck represent the thresholds that exist between these respective layers. 

The activation value hj of the hidden layer neuron, and the activation value yk of the output neuron are calculated 

as follows: 

 




n

i

jijij bxh

1

  (2) 

 




m

j

kjkjk chvy

1

)(   (3) 

The tansig function is selected as the activation function of σ(hj), with the purelin linear function is selected as 

the activation function of the output neurons. This is incorporated into the error function E after calculating hj 

and yk, where tk denotes the output target. 
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In accordance with the error function E, the weights vkj are adjusted during back propagation. Let δk be the 

neuron error of the output layer, where σ′(hj) is the derivative of the tansig function: 

 )() jkkk hty  （  (5) 

According to the chain rule, the gradient of vkj is: 
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Set η as the learning rate. The weights of vkj and ωji can be updated by gradient descent: 
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Substituting δk into the calculation gives the hidden layer neuron error δkj: 
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The thresholds of bj and ck are modified in the following manner: 

 
jjj bb 
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3.4 Model of the ELM algorithm 

The ELM algorithm is the random initialization of the input layer's weights and thresholds, without adjusting 

them during the training process, while the weights for the output layer are computed by generalized inverse 

matrix theory. The approach does not require the use of complicated optimization algorithms, such as back-

propagation algorithms, to modify the network weights. This leads to quicker training and enhanced 

generalization of the ELM. In addition, ELM can handle high-dimensional data and non-linear problems, but in 

practical applications, regularisation strategies are also needed to avoid overfitting problems [20,21]. 

The ELM algorithm randomly sets connection weights βi after determining the quantity of hidden layer neurons. 

Subsequently, the training data is mapped to the neuron li. 
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The matrix of output weight is denoted by α. L
+
 is the pseudo-inverse matrix of L, and the target matrix of the 

training data is denoted by Y. 

 YL  (13) 

3.5 Model of the LSTM Algorithm 

LSTM is an acronym for Long Short-Term Memory. Its basic components are cell states and gate architectures. 

The cellular state can be conceptualized as a pathway for information transfer, which enables the sequential 

transmission of information. LSTM is also capable of processing different types of sequence data at high 
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training speeds and with high accuracy. The algorithm consists of three gates : forgetting gate, input gate and 

output gate, which are represented by zf, zi and zo respectively [22,23]. 

 )],[( 1 fttff ciyz    (14) 

  )],[( 1 ittii ciyz    (15) 

 )],[tanh(
~

1 cttct ciyU    (16) 

 )],[( 1 ottoo ciyz    (17) 

tU
~

 is the temporary cell state. ωf and cf represent the forgetting gate's weight matrix and bias vector. ωi and ci 

represent the input gate's weight matrix and bias vector. ωc and cc represent the temporary cell's weight matrix 

and bias vector. ωo and co represent the output gate's weight matrix and bias vector, respectively. The symbol σ 

signifies the application of a sigmoid function. Additionally, the notation [yt-1, it] represents the concatenation of 

the yt-1 (previous moment's output) with the it (input at this moment) into a single vector. Ut represents the 

current state of the cell, yt represents the output, and   represents the vector dot product operation. 
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4. Testing and Analysis 

To assess the predictive precision of the model, data from three distinct working conditions, designated as C2, 

C4, and C9, were selected for the experiment. A total of 200 data points were selected for each working 

condition. Figures 4-6 illustrate the prediction value curves and actual value curves of the LSTM, BP, and ELM 

models, emphasizing the discrepancies between the predicted and actual results for each model. 

Under the C2 working condition, the prediction value curves of the three models are basically in line with the 

trends of the actual value curves, and the error range of the LSTM model is -11.87 degrees Celsius~5.978 

degrees Celsius, the error range of the BP model is -17.89 degrees Celsius~4.788 degrees Celsius, and the error 

range of the ELM model is -25.88 degrees Celsius~17.74 degrees Celsius. Comparing the three models, the 

LSTM model has the smallest predicted error range. 

Under the C4 working condition, the three models’ prediction value curves basically agree with the trend of the 

actual value curves, and the error range of the LSTM model is -7.055 degrees Celsius~3.094 degrees Celsius, 

the error range of the BP model is -5.82 degrees Celsius~7.972 degrees Celsius, and the error range of the ELM 

model is -0.7987 degrees Celsius~1.194 degrees Celsius. Comparing the three models, the ELM model has the 

smallest predicted error range. 

On the other hand, under the C9 working condition,  the prediction value curves of the BP model show a large 

error, and the error range of the LSTM model is -1.755 degrees Centigrade~3.594 degrees Centigrade, the error 

range of the BP model is -15.55 degrees Centigrade~13.52 degrees Centigrade, and the error range of the ELM 

model is -3.109 degrees Centigrade~3.041 degrees Centigrade. Comparing the three models, the predicted error 

range of the LSTM model is the smallest. 
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 Fig. 4. Predicted results of the three algorithms under the C2 working condition 

 

 Fig. 5. Predicted results of the three algorithms under the C4 working condition 
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 Fig. 6. Predicted results of the three algorithms under the C9 working condition 

Table 3. Results of evaluation indicators for different algorithms 

Working condition Evaluation indicators BP ELM LSTM 

C1 

M1 (MSE) 7.9098 3.4602 1.9895 

M2 (MAE) 2.201 1.4828 1.0172 

M3 (MAPE) 0.0025 0.0017 0.0012 

C2 

M1 (MSE) 6.095 20.4822 3.933 

M2 (MAE) 1.8392 3.3052 1.2206 

M3 (MAPE) 0.001 0.0018 0.0007 

C3 

M1 (MSE) 0.6646 0.4942 1.0081 

M2 (MAE) 0.6875 0.5697 0.8334 

M3 (MAPE) 0.0004 0.0003 0.0005 

C4 

M1 (MSE) 8.6826 0.0645 1.1191 

M2 (MAE) 2.4901 0.1819 0.6314 

M3 (MAPE) 0.0013 0.0001 0.0003 

C5 

M1 (MSE) 0.938 8.6546 1.4228 

M2 (MAE) 0.7273 2.1936 0.8837 

M3 (MAPE) 0.0004 0.0014 0.0005 

C6 

M1 (MSE) 0.6676 0.4796 0.2902 

M2 (MAE) 0.4758 0.5671 0.3971 

M3 (MAPE) 0.0003 0.0004 0.0003 

C7 

M1 (MSE) 4.4604 0.7494 0.2459 

M2 (MAE) 1.7608 0.6128 0.3448 

M3 (MAPE) 0.0009 0.0003 0.0002 

C8 

M1 (MSE) 0.9772 2.1226 0.9614 

M2 (MAE) 0.7464 1.1138 0.6985 

M3 (MAPE) 0.0004 0.0007 0.0004 

C9 

M1 (MSE) 51.6591 0.4854 0.4777 

M2 (MAE) 6.1649 0.4973 0.5082 

M3 (MAPE) 0.003 0.0002 0.0002 
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To develop a deeper comprehension of the precise performance of the prediction models, different prediction 

models were compared under nine working conditions and analyzed using error statistics. There are three main 

metrics, Mean Squared Error (MSE) for metric 1, Mean Absolute Error (MAE) for metric 2, and Mean Absolute 

Percentage Error (MAPE) for metric 3. 
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The variable M represents the quantity of samples contained within the test data, xj is the actual value of the 

graphite purification zone temperature, and jx̂  is the predicted value of the graphite purification zone 

temperature. All three assessment metrics share the common characteristic that as they approach zero, the 

model's accuracy increases and the predictive performance improves. The distinction among MSE, MAE, and 

MAPE lies in their respective characteristics. MSE accentuates the prediction error, exhibits greater sensitivity 

to outlier data, and emphasizes error values with significant impact. In contrast, the MAE places greater 

emphasis on the absolute value of the discrepancy between the predicted and the actual value, while MAPE 

gauges the relative magnitude of the deviation in terms of percentage. 

Table 3 shows the results of the evaluation indices of different algorithms under nine working conditions. From 

the three evaluation indices, it can be seen that different algorithms have their prediction advantages and 

disadvantages under different working conditions. The BP model has obvious disadvantages under the C9 

working condition, while it has obvious advantages under the C5 working condition; the ELM model has 

outstanding disadvantages under the C2 working condition, while it shows high advantages under the C3 and C4 

working conditions; the LSTM model shows good predicted results under the C1~C9 working conditions, and 

overall the fluctuation range of the evaluation index results is the smallest. However, the model still has some 

shortcomings, for example, under the C2 condition, although the MSE value of the LSTM model obtained the 

most favorable evaluation result compared to the other two models, it is worth noting that the value is relatively 

high. 

5. Conclusion 

In this study, a random forest algorithm was employed to assess the significance of characteristic variables that 

impact the temperature within the graphite purification zone, and finally four variables with the importance of 

0.4 or more, namely, main gas flow (F1), powder feed flow (F2), voltage (V), current (A), were selected as the 

characteristic inputs of the temperature prediction model. Then, the three algorithms of BP, ELM and LSTM 

were built the prediction model, and compared the three predicted results with the actual temperature values. 

The results of the study show that within the working conditions of C1~C2 and C6~C9, the LSTM model 

demonstrates the quality predictive performance. Under the working conditions of C3~C4, the ELM model 

demonstrates the quality predictive ability, and under the working conditions of C5, the BP model demonstrates 

the quality predictive ability. This demonstrates that under complex working conditions, although BP, ELM, 

LSTM and other single algorithm models can all complete the prediction of the temperature in the graphite 

purification zone, none of the models can have an absolute advantage, and even there are obvious disadvantages, 

such as the MSE of the ELM model is up to more than 20 under the C2 working condition, and the MSE of the 

BP model is up to more than 50 under the C9 working condition. Among them, although  the predicted value 

curves of the LSTM model could not guarantee that the optimal predicted results were achieved under each 

working condition, the MSE, MAE, and MAPE evaluation indices were within 4 under nine working conditions, 

and the temperature prediction model constructed by this algorithm had the highest robustness compared with 
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the other two models. Therefore, in the actual purification process, multiple prediction models can be used in 

combination to more accurately realize real-time monitoring of the temperature in the graphite purification zone. 

In addition, during the development of the predictive model, all operations were performed under the same 

experimental conditions. However, it was observed that the accuracy of the collected data could still be affected 

by various uncertainties, including factors such as pipeline, device structure, and environmental interference. 

Additionally, the restricted measurement capabilities further constrained the precision of the prediction model. 

Hence, further research is needed to explore methods for enhancing the precision of predictive models across 

various operational scenarios through advancements in data acquisition techniques and optimization of 

intelligent algorithms. 
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