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ABSTRACT 
The present study targets four representative GNBs (Geometrically 

Necessary Boundaries) in terms of their unified and quantitative evaluations 

based on the field theory of multiscale plasticity (FTMP). Discrete dislocation 

dynamics simulations on GNBs 2, 3, 4 and 7, whose details about the 

consisting dislocations have been experimentally identified and theoretically 

evaluated by Hong, Winther, et al., are conducted. Applying the FTMP-

based duality diagram representation scheme to the formation processes 

reveals a systematic interrelationship that further governs the stability of the 

GNBs, i.e., all the GNBs yield a common tendency to converge ultimately to 

a single master curve. This leads us to propose a postulate about the 

stability/instability criterion that involves their dynamic interactions with 

external disturbances. 

 

 
1. INTRODUCTION  
Dislocation substructures have been well documented to exhibit diverse configurations in 
response rather sensitively to the applied loading conditions [1-3]. Since they evolve with or 
without long-range stress fields and misorientation developments [4], corresponding to their 
attendant important roles of strain energy storage or release, the morphology-related pieces of 
information can essentially dominate not only the deformability but also the strength and 
toughness of the targeted material systems. Therefore, quantification of such dislocation 
substructures beyond the “density-based” perspectives, including their configurational details 
and the morphological aspects, is one of the essential issues towards better understanding and, 
furthermore, rational modeling of crystalline plasticity of metallic materials.  

A number of efforts has been dedicated to evaluate dislocation ensembles so far [5-7]. 
Although these efforts have achieved certain success, no universal approach or scheme that 
connects them altogether has neither been established nor proposed to date. Dislocation 
density tensor has recently been frequently used in attempts to capture the evolutionary aspects 
of many-dislocation systems [8-11]. The tensorial quantity, however, does not inherently 
contain any information about the configurations, because it is basically determined by the 
total length of dislocations. This seems to confront the limitation to the conventional crystal 
plasticity framework. 

About 60 years ago, Kazuo Kondo [12-15] proposed the concept of the non-Riemannian 
plasticity, whose main idea is to capture the defects in materials by torsion and curvature of 
the crystalline space. In the context of continuum mechanics, the former corresponds to the 
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commonly used dislocation density tensor, while the latter to the incompatibility tensor. The 
dislocation density tensor is equivalent to the density of the geometrically necessary (GN) 
dislocations [16, 17]. Since it is classified as the translational type of defects, it vanishes when 
the net Burgers vectors have canceled each other, as in the case of counting dipole-type 
dislocation pairs altogether. The incompatibility tensor, on the other hand, can represent 
spatial dislocation distributions including such multipole-type configurations, since it is 
defined as the one-more spatial derivative (curl, more precisely) of the dislocation density 
tensor. We have demonstrated in recent years that the incompatibility tensor can be a powerful 
tool for evaluating dislocation substructures [20] without any other elaborate procedures, if it 
is appropriately utilized within the framework provided by the field theory of multiscale 
plasticity (FTMP) [18-26].  

FTMP is a generic theoretical framework that can serve practical solutions to one of the 
above-mentioned long-standing questions “how can/should we express discrete dislocation 
ensembles in 3D by continuum languages?” Discrete versions of dislocation dynamics would 
be a very promising methodology as a “DNS” (direct numerical simulation) technique, more 
practical and efficient than full atomistic counterparts. The features can be found in [30]. Still, 
we definitely need the associated continuum descriptions for multiscale perspectives to 
effectively analyze and evaluate the simulated outputs. Major features, together with complex 
examples about collapsing wall structures, are found in [20].  

Motivated by the theory, the present study attempts to tackle the evaluation of dislocation 
substructures of complex kinds. Here, we target geometrically necessary boundaries (GNBs), 
whose detailed structures and the corresponding ideal configurations have been recently 
identified by Hong, et al. [27] and Winther, et al. [28], respectively. Referring to the basic 
findings in [27, 28], we firstly reproduce the GNBs by using dislocation dynamics code, 
ParaDiS [29], and examines extensively the simulated dislocation structures based on FTMP. 
This paper is organized as follows. Section 2 briefly describes the concepts of FTMP-based 
evaluation. In Section 3, after showing the simulation conditions for the four representative 
GNBs, we compare the simulated results with the configurations reported in [28]. Section 4 
presents the FTMP-based evaluations and discussions on the simulated results in the context 
of stability/instability criterion, followed by conclusions in Section 5. 
 
2. FTMP-BASED EVALUATION  
Mathematically, all the imperfections in a space can be completely expressed by the two 
differential geometrical quantities in the non-Riemannian geometry, i.e., torsion and curvature 
[12-15]. They are characterized, respectively, as the closure failure and the rotation of material 
vectors after parallel displacement encircling the dislocated and/or defected fields, as 
schematically depicted in Figure 1. The both are higher-ranked tensors, whose contractions 
ultimately yield second-rank counterparts, known as dislocation density tensor and 
incompatibility tensor, respectively. The dislocation density tensor is equivalent to the concept 
of so-called “geometrically-necessary” dislocation density [16, 17]. The more important roles, 
however, are played by the incompatibility tensor in general, as we have demonstrated in 
recent years [18-26]. Details about these geometrical quantities are briefly given in the 
following.  
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Figure 1: Schematics of torsion tensor and curvature tensor, each characterized 
as “translational” and “rotational” types of defects, respectively. 

 
2.1 Incompatibility tensor 
The dislocation density tensor 𝛼𝛼𝑖𝑖𝑖𝑖 and the incompatibility tensor 𝜂𝜂𝑖𝑖𝑖𝑖 are given by the curl 
operation of the plastic distortion tensor 𝛽𝛽𝑙𝑙𝑙𝑙

𝑝𝑝  and the double curl of the plastic strain tensor 𝜀𝜀𝑙𝑙𝑙𝑙
𝑝𝑝 , 

respectively, i.e., 
 

 𝛼𝛼𝑖𝑖𝑖𝑖 = −𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕𝑘𝑘𝛽𝛽𝑙𝑙𝑙𝑙
𝑝𝑝  

 
𝜂𝜂𝑖𝑖𝑖𝑖 = ϵ𝑖𝑖𝑖𝑖𝑖𝑖ϵ𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕𝑘𝑘𝜕𝜕𝑚𝑚𝜀𝜀𝑙𝑙𝑙𝑙

𝑝𝑝  
(1) 

 
Since 𝜀𝜀𝑙𝑙𝑙𝑙

𝑝𝑝  is the symmetrized part of 𝛽𝛽𝑙𝑙𝑙𝑙
𝑝𝑝 , we obtain,  

 
 𝜂𝜂𝑖𝑖𝑖𝑖 = −ϵ𝑖𝑖|𝑘𝑘𝑘𝑘|(𝜕𝜕|𝑘𝑘|𝛼𝛼𝑗𝑗𝑗𝑗) (2) 

 
If we consider dislocation system, the surface integral surounding 𝛼𝛼𝑗𝑗𝑗𝑗 gives the resultant 

Burgers vectors for the corresponding Burgers circuit as, 
 

 𝑏𝑏𝑙𝑙 = �𝛼𝛼𝑗𝑗𝑗𝑗
 

𝑠𝑠
 d𝑆𝑆𝑗𝑗  (3) 

 
where, d𝑆𝑆𝑙𝑙  is the area in the Burgers circuit. 

 
In this study, we obtain 𝛼𝛼𝑖𝑖𝑖𝑖 from Equation (3) and 𝜂𝜂𝑖𝑖𝑖𝑖 from Equation (2). Since 𝜂𝜂𝑖𝑖𝑖𝑖 

intrinsically contains the pieces of information about how 𝛼𝛼𝑖𝑖𝑖𝑖 is spatially distributed as in 
Equation (2), we can obtain also those about the structural aspects of the targeted dislocation 
systems that cannot be captured by 𝛼𝛼𝑖𝑖𝑖𝑖 alone.  

 
  



256 

 
FTMP-based simulations and evaluations of Geometrically-Necessary Boundaries 

(GNBs) of dislocation  

 

 
 
2.2 Flow-evolutionary hypothesis 
In FTMP, the field evolutions in materials is described by the flow-evolutionary hypothesis 
[19]. This hypothesis is defined as,  
 

 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜅𝜅𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖  (4) 
 
where 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖  is the fluctuation part of the energy-momentum tensor 𝑇𝑇𝑖𝑖𝑖𝑖 , and 𝜅𝜅 is the duality 
coefficient, which represents a sort of the energy conversion rate. The subscripts 𝑖𝑖 and 𝑗𝑗 denote 
spatio-temporal component i.e., 𝑖𝑖, 𝑗𝑗 = 1,2,3 and 4 (time). Extending the definition of 𝜂𝜂𝑖𝑖𝑖𝑖 to 
4D space-time and assuming spatio-temporal isotropy in Equation (4), we have the temporal 
component given as [19], 
 

 𝜂𝜂𝐾𝐾𝐾𝐾 = 𝜅𝜅𝜅𝜅(𝐾𝐾 + 𝑈𝑈𝑒𝑒) (5) 
 
where the index K denotes the spatial components, i.e., K = 1, 2 and 3. The right-hand side of 
Equation (5) consists of the summation of the fluctuation parts of the kinetic energy 𝐾𝐾 and the 
elastic strain energy 𝑈𝑈𝑒𝑒, respectively. When we consider static conditions, Equation (5) 
reduces to  
 

 𝜂𝜂𝐾𝐾𝐾𝐾 = 𝜅𝜅𝛿𝛿𝛿𝛿𝑒𝑒  (6) 
 

This relationship asserts that the excessively stored elastic strain energy is to be converted 
to the incompatibility-based microscopic degrees of freedom, e.g., those manifested as 
evolving dislocation substructures. The inverse can include the energy releasing processes, 
which critically controls the onset of instabilities that eventually can lead to fracture. By 
plotting both the quantities, 𝜂𝜂𝐾𝐾𝐾𝐾 and 𝛿𝛿𝛿𝛿𝑒𝑒, we obtain duality diagrams, on the other hand, 
based on which we can further visualize the associated energy flow accompanied by the 
configurational changes of dislocations taking place within the targeted system. 

 
3. NUMERICAL EXPERIMENTS 
3.1 Simulation models 
Figure 2 shows the initial and ideal configurations of GNBs reported by Winther, et al. [28], 
together with their experimental observations. Here, we classify the GNBs in terms of the 
consisting Burgers vectors according to [28], i.e., the GNB2 is composed of 2 sets of Burgers 
vectors and it forms hexagonal network after the reaction of the two, while the GNBs 3 and 7 
have 3 sets of Burgers vectors and their ideal configurations are the ladder-like patterns. The 
GNB4, on the other hand, has a combined morphology of the GNBs 3 and 7, and its ideal 
configuration is also obtained by the corresponding combination.  

Figure 3 indicates the GNB models, where the definition of the dislocation components 
follows [28]. Here, the targeted material is assumed to be Al (FCC), corresponding to the 
experiment in [27], with the shear modulus 25.5 GPa, Poisson’s ratio 0.34, and the magnitude 
of Burgers vector 2.86×10-10m. The wall models for the four representative GNBs, i.e., 2, 3, 
4 and 7, are displayed in Figure 3, where periodic boundary conditions for all the directions 
are assumed, combined with the Fast Multipole Method (FMM) [29] incorporated in the 
ParaDiS code 
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(ver.2.5.1). Note, since all the edges of the walls are isolated in the simulation cells because 
of the modeling restrictions in utilizing the FMM, we set the evaluation range as depicted in 
Figure 3 (c) for obtaining necessary quantities, e.g., the stress and the incompatibility tensor 
fields. 
 

 
Figure 2: Schematic illustration of initial and final dislocation configurations for four 
representative GNBs, consisting of mutually different numbers and combinations 
of Burgers vectors, together with experimentally observed counterparts by 
Winther, et al [28]. 

 
The dislocation densities for the initial configurations are 7.05×1014m-2 (GNB2), 

7.45×1014m-2 (GNB3 and GNB7), and 8.89×1014m-2 (GNB4), respectively. Here, we apply 
no external stress such that the GNBs organize spontaneously into their ideal configurations 
of their own. 

 
3.2 GNB-formation 
Figure 4 compares the initial and final configurations for the four GNBs obtained in the 
present series of simulations, together with the corresponding ideal and experimentally-
observed configurations by Winther et al [28]. The comparison demonstrates that the 
simulated final configurations agree well with the ideal counterparts. The reactions taken place 
during the configurational changes are roughly the same as that have been supposed by 
Winther et al [28]. The GNB2 forms hexagonal networks as a result of the formation of 
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Figure 3: Simulation models of four GNBs, showing initial configurations with 
periodic boundary conditions, together with evaluation regions for stress and 
incompatibility calculations. 
 

 
Figure 4: Simulated initial and final configurations for GNBs 2, 3, 4 and 7, compared 
with those predicted by Winther, et al [28] 
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junctions (colored in grey in Figure 4) between two Burgers vectors indicated in Figure 3(a), 
while the GNBs 3 and 7 ultimately yield ladder-like patterns with junctions (green) produced 
by the interactions of two Burgers vectors among three. The GNB4, consisting of two sets of 
junctions (both in green) out of the four Burgers vectors, on the other hand, exhibits relatively 
complex morphology, not a simple superposition of those for the GNBs 3 and 7, as expected 
in Section 3.1, i.e., it all consists of curved segments, brought about by its own highest density 
of dislocations. The stress fields produced by the high density thus slightly differentiate the 
final morphology from the ideal one. 
 
4. RESULTS AND DISCUSSIONS 
4.1 GNB-formation 
Figures 5 and 6 indicate variations of the elastic strain energy fluctuation 𝛿𝛿𝛿𝛿𝑒𝑒and the 
incompatibility 𝜂𝜂𝐾𝐾𝐾𝐾 with elapsed time for the four GNBs simulated, respectively. Comparing 
the two sets of variations, we confirm mutually similar overall trends, except for the GNB4, 
i.e., initial sharp drops in the GNB2, while almost constant variations for the GNBs 3 and 7. 
The GNB4, on the other hand, shows conspicuous oscillation in the strain energy fluctuation 
following an initial sharp rise, while it yields relatively moderate ups and downs in the 
incompatibility change. The oscillating strain energy fluctuation stems from its complex 
configurational changes, mainly due to the junction formations taking place at the 
intersections, as can be confirmed in Figure 3, resulting in the formations of a number of 
crooked segments that cause highly fluctuating stress field. The attendant configurational 
changes, on the other hand, do not significantly affect the incompatibility variation. 
 

 
Figure 5: Variation of elastic strain energy fluctuation with elapsed time, comparing 
four GNBs simulated 

 
By correlating the above two quantities, 𝛿𝛿𝛿𝛿𝑒𝑒and 𝜂𝜂𝐾𝐾𝐾𝐾, we obtain the corresponding duality 

diagrams for all the GNBs simulated, as displayed in Figure 7. Here, the large solid circles 
indicate the respective final steps. As demonstrated in the diagram, it can further clarify the 
mutually distinctive trends among the four GNBs, corresponding to Figures 5 and 6 
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described above. The GNB2, with a regular hexagonal network, is located in the far lower-
left of the diagram after a sharp drop in 𝜂𝜂𝐾𝐾𝐾𝐾, demonstrating it being the lowest energy 
configuration among others, whereas the relatively irregular GNB4 is ultimately situated in 
the far upper-right, following sharply drifting 𝛿𝛿𝛿𝛿𝑒𝑒 brought about by comparably large stress 
field fluctuations. The GNBs 3 and 7, on the other hand, are located between the two, after 
showing moderate variations. 
 

 
Figure 6: Variation of incompatibility with elapsed time, comparing four GNBs 
simulated. 

 
Another marked implication derived from the diagrams is a systematic interrelationship 

found among the four GNBs, i.e., all the final configurations clearly exhibit a tendency to be 
aligned on a single master curve, indicating a system of the most stable configurations. To 
further examine this, we next discuss the effect of the kinetic energy contributions to the 
duality diagram representations, regarding it as a sort of external perturbations.  

We define the kinetic energy for a dislocation segment as, 
 

 𝐾𝐾 =
1
2
𝜌𝜌𝑏𝑏3𝑙𝑙𝑣𝑣2 (7) 

 
where 𝜌𝜌 is the density, 𝑏𝑏 is the magnitude of Burgers vector, 𝑙𝑙 is the dislocation segment 
length (unit of b), and 𝑣𝑣 is the speed of dislocation node. Here, the mass of dislocations is 
assumed to be equal to that of the removed atoms by the dislocations [31, 32].  
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Figure 7: Duality diagrams for four GNBs simulated, where final states are indicated 
by large sold circles, respectively.  

 
In the present series of simulations, the kinetic energy is negligibly small compared with 

𝛿𝛿𝛿𝛿𝑒𝑒. Therefore, we here virtually enhance their contributions by multiplying a coefficient 𝛼𝛼 =
1 × 107 to examine their potential effects on the duality diagram representations.  

Figure 8 displays the duality diagrams taking account of thus enhanced kinetic energy 
contributions to the abscissa. As readily found in the modified diagrams, in comparison with 
Figure 7, the contributions of the kinetic energy greatly vary depending on the GNB types, 
i.e., the GNB2 exhibits exclusively large variation, the GNBs 3 and 7 show the smallest, 
whereas the GNB4 yields conspicuous drift similar to the correlation with 𝛿𝛿𝛿𝛿𝑒𝑒 only.   

Since the multiplying factor is set in common to all the GNBs, this inverse trend to 𝛿𝛿𝑈𝑈𝑒𝑒 
observed in Figure 7 logically implies the following. The GNB2 and GNB4 have experienced 
larger additional perturbations than the GNBs 3 and 7. Again referring to the duality diagrams 
in Figure 7 afresh, we notice an important overall trend, i.e., the GNB2 tends to cope with the 
external disturbance by large configurational changes, manifested as the largest variation in 
the incompatibility, whereas the GNB4 tries to withstand rather firmly, with the minimum 
incompatibility changes. 

From the above discussion, we derive a postulate as follows. All the GNBs ultimately tends 
to converge to a single series of configurations (those aligned on a master curve) after 
relaxation from disturbed states, but with distinct ways depending on the locations on the 
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diagram. The feature can be a controlling mechanism for their gaining stabilities that is hidden 
behind the organic interrelationship among distinct GNBs in the energy-configuration 
contexts. This further motivate us to propose tentatively a new stability/instability criterion 
for the GNBs based on it.  
 

 
Figure 8: Same results as Fig.7 but with virtually-pronounced contributions of 
kinetic energy overplotted on final states (solid black squares).  

 
Figure 9 illustrates the schematics of the new stability/instability criterion, by representing 

an evaluation procedure based on the duality diagrams in Figure 7 as an example case.  
If the GNB2 is disturbed by δ(𝑈𝑈𝑒𝑒 + 𝐾𝐾), e.g., via collisions with in-coming dislocation 

fluxes, (① in Figure 9), the perturbed wall will eventually relax and the extra energy will then 
be converted into that for the configurational changes. This relaxed state on the duality 
diagram will be placed back on the master curve (②) if the wall structure is stable enough. 
When the same event occurs against the GNB4 (③), on the other hand, its relaxed structure 
will also come back to the master curve, but in this case, accompanied by relatively small 
incompatibility change (④). By comparing the incompatibility changes (⑤), together with 
how fast the perturbed states regain the master state, we can judge the “degree” or the “quality” 
of the stability of the targeted wall structures. 
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Figure 9: Schematics of new stability/instability criterion, showing evaluation 
procedures by comparing anticipated incompatibility responses against a 
prescribed external energy disturbance on duality diagrams. 

 
4.2 Verification 
To partially verify the above postulate, we collide a dislocation loop against the GNB2 as an 
external disturbance. Figure 10 shows the simulation setup, where a Frank-Read (F-R) source 
is situated away from the wall. We apply the external stress σ23=1.0 GPa so that the source 
generates a dislocation loop. The evaluation range and the other conditions are the same as 
those in Section 3.1. 

Figure 11 shows the obtained results, demonstrating ultimately a topological change in the 
central portion of the GNB2. Looking into details of the interaction via the three snapshots, 
we observe that the right vertical segment of the central hexagonal network (colored in grey) 
is subjected to (a) a cross slip as a result of the interaction. This further brings about (b) another 
loop generation from the wall, eventually exhibiting (c) local annihilation in the lower 
hexagonal unit. The incident dislocation loop, on the other hand, keeps expanding, causing no 
more reaction with GNB2.  

Overplotting the corresponding duality diagram to the above series of processes on Figure 
7, we obtain Figure 12(a). The open orange circle indicates the tentative final state with 
disregarding the presence of the incident dislocation, showing apparently the diagram is going 
out of the master curve. To confine ourselves to evaluate the net configurational change of the 
wall structure itself, we remove the segments protruded from the wall-deemed region.  
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Figure 12(b) shows the magnified duality diagram after the removal operation, demonstrating 
that the plot for the final state is shifted leftward and is eventually placed rather exactly on the 
master curve, as depicted by a white arrow in the inset.  
 

 
Figure 10: Simulation set up for verifying stability/instability evaluation scheme, 
where a dislocation expanded from a Frank-Read source is to be collided against 
GNB2 model as external perturbation 
 

 
Figure 11: Snapshots for details of interaction with incoming dislocation, giving rise 
to topological changes of network configuration in GNB2. 

 
The resultant morphology is further compared with the experimentally-observed one for 

GNB2 in Figure 13, together with that for the GNB4 [27]. We can confirm some similar 
configurations between the two (① in Figure 13). Since the experimental GNB2 frequently 
contains such greatly disturbed configurations, we conjecture that it has been experienced 
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frequent external disturbances and coped with them by large configurational changes. The 
GNB4, on the other hand, exhibits relatively “solid” network configuration (②), serving an 
indirect evidence of the “stiff” structure against external perturbations.  

The duality diagram representation demonstrated in Figure 12, together with the leveraging 
comparison with the experiments presented above, we tentatively conclude that the current 
new postulate on the stability/instability evaluation criterion is partially verified.    

 

 
Figure 12: Duality diagram representation for perturbed GNB2 (a) overplotted on 
Figure 7, and (b) magnified view indicating before and after removal operations for 
out-of-wall segments in strain energy calculation for final configuration. 

 

 
Figure 13: Comparison of disturbed configurations for GNB2 between simulation 
and experiment, together with GNB4 in experiment [27]. 
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5. CONCLUSIONS 
Rational as well as practically-feasible treatments of spatio-temporally distributed discrete 
dislocation ensembles have been a long-standing issue and still a challenging problem 
inevitable in completion of multiscale modeling of metallic materials. Unlike 2D cases, which 
can be simply reduced down to continuously-distributed density function-like pictures, 3D 
counterparts need to deal with its configurational complexities more or less explicitly. Among 
others, quantitative stability/instability assessments of wall structures are critically important, 
in the sense that they substantially dominates both the micro/macro mechanical properties of 
the material systems concerned. 

The present study tackled the above based on FTMP (Field Theory of Multiscale 
Plasticity), focusing on their continuum descriptions in the flow-evolutionary context, where 
the duality diagram representation scheme is mainly used. The scheme enables visualizations 
of the energy flow associated with the configurational changes of the targeted many-
dislocation systems. 

Here, the four GNBs are successfully reproduced from the corresponding initial 
configurations based on a series of dislocation dynamics simulations by using the Para-Dis 
code. The simulated results demonstrate that all the duality diagrams tend to converge on a 
single smooth curve, strongly implying an organic interrelationship should exist among at 
least the present four GNBs in the flow-evolutionary contexts. The study also examines virtual 
contributions of the kinetic energy fluctuation to the corresponding incompatibility evolutions 
via the duality diagram scheme and some dynamic interactions with an in-coming dislocation 
for the GNB2 wall model. The former motivates us to postulate a new stability/instability 
criterion against the dislocation wall structures, which is expected not to be limited to the 
GNBs dealt with in the present study, while the latter partially verifies the proposed new 
hypothesis, although it deserves further examinations. 
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