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Abstract 

For intelligent agricultural decision-making such as cultivation, equipment automation, and 

plant development, conserving energy is essential. The Internet of Things (IoT), artificial 

intelligence (AI) and large amounts of information are examples of industrial 4.0 technologies 

that are utilized to manage energy consumption and enhance environments. This research 

suggests implementing an extended galactic swarm (XGS) decision model for agricultural 

electrical automation mapping by maximizing the efficiency of the energy consumption 

forecasting procedure. Data about energy is gathered form a variety of agricultural 

production and environmental monitors and employed to evaluate and train the XGS model. 

By removing the noisy data, we apply the min-max normalization approach to normalize the 

raw data samples. The random forest (RF) approach is then used to forecast the amount of 

energy used. By adjusting the hyperparameters, the XGS model is used to improve the RF 

method’s performance. The suggested model is implemented on the python platform, and its 

performance is examined using several measures. The proposed XGS-based prediction 

framework delivers the highest efficiency in the energy consumption forecasting process 

when compared to other current models. For intelligent managers of agriculture or farmers 

who seek to address the issues of agricultural energy more cheaply and ecologically, this 

article offer a workable agricultural electrical automation mapping solution. 

Keywords- Agriculture, Automation, Energy Consumption, XGS Decision Model, Random 

Forest (RF) 

1. Introduction 

A green farming method known as green agriculture lowers greenhouse gas emissions that supports farmers and 

their resources,it encourages the resilience and sustainability of food grains. Crop rotation, nitrogen management, 

pest control, recycling, and water harvesting are important accomplishments [1]. These procedures shield living 

beings from dangerous elements and help create a safer environment [2]. It is imperative to implement digital 

communication with farmers using wireless technology to connect agricultural landscapes as the globe undergoes a 

digital revolution. Not all ofEarth’s entire surface is suitable for agriculture due to factors such as soil quality, 

geography, temperature, climate and non-homogeneous cultivable zones [3]. Several variables related to 

urbanization, politics and the economy constantly put pressure on the availability of arable land.There is a decline in 

the amount of land utilized for agriculture in food production and every field has different characteristics such as soil 

type, irrigation flow, availability of nutrients, and resistance to insects. Farmers using traditional farming methods 

must visit their fields during crop life to assess the conditions. Farmers could recognize current activities without 

physically being in the field because of the precise field image provided by modern sensor and communication 



International Journal of Multiphysics 

Volume 18, No. 2, 2024 

ISSN: 1750-9548 

 

676 

technologies [4]. Deploying smart equipment from planting to harvest is made easier by wireless sensors, which 

allow for more precise agricultural monitoring and early problem diagnosis. With sensors installed on robotic weed 

killers, drones and autonomous harvesters, agriculture as a whole is a cost-effective and intelligent operation. 

However, to guarantee sustainability and reduce adverse ecological consequences, technological breakthroughs are 

required [5]. 

1.1 Smart agriculture using IoT applications 

Due to the IoT, farmers and researchers have access to effective technologies that are transforming the agricultural 

crop-producing industry. By making information regarding soil, water, pesticides, fertilizers and manures easily 

accessible, it facilitates decision-making. The IoT tackles global warming and climate change by emphasizing 

resource sustainability and environmental preservation. It also helps with post-harvest, end-user transactions and 

intelligent crop development [6]. Drones, remote sensing, computer imaging, smart greenhouses, intelligent 

livestock management and effective climate monitoring are few of the technologies that the IoT makes possible for 

precision farming as shown in Figure 1.  

 

Figure 1: Overview of smart Agriculture based IoT 

There is a continuing need for innovative ideas and technology to suit the demands of mankind on a global scale [7]. 

For agricultural electrical automation mapping, this study proposes to apply an XGS-RF decision model by 

optimizing the effectiveness of the energy consumption forecasting process. 

2. Related works 

The research aims to increase network performance and reliability in agriculture applications by presenting an 

adaptive network mechanism for a smart farm system employing IEEE 802.11ac and LoRaWAN protocols [8]. 

Reliable monitoring duties are ensured by the process that modifies protocols in response to network circumstances. 

According to the author of [9] an interactive online application, FastMapping produces field maps of geographic 

variability, and multivariate management zones and automatically cleans agronomic data collected on farms. In 
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contrast to Management Zone Analyst software, it integrates data layers, employs an R language interface and 

generates data reports. Site-specific agriculture management is supported by FastMapping.To create 3D farm maps, 

the author [10] suggested a ground-level mapping and navigation system that makes use of computer vision and IoT. 

Robotic cars, edge nodes and a cloud layer for deep computing and administration are all part of the system. 

Because of its superior scalability and precision, the Mesh Simultaneous Localization and Mapping algorithm, or 

Mesh-SLAM (Mesh-SLAM) method, can be used in farms.The study [11] suggested data that has been collected 

over the last 20 years from a farmer's case study in North Italy is assessed and quantified. Soil analysis, drone photos 

and on-site weather stations were among the data sources. The report emphasizes better data storage options are 

required in the agriculture industry.The author [12] investigated the use of traditional and contemporary prediction 

techniques in precision fertilization, combining machine learning (ML) and spatial interpolation with agronomic 

elements. It assesses both traditional and contemporary approaches and emphasizes the value of remote sensing 

techniques and data in advancing precision agriculture, even in the face of difficulties handling complicated data. 

The use of IoT technology to create a smart farm for resource and crop management that is more affordable is 

covered in the article [13]. The system provides farmers with a dependable and adaptable smart idea by collecting 

and analyzing data from several sensors via wireless sensor networks. According to the author of [14] examined 

with an emphasis on six prerequisites for the smooth integration, processing and use of farm data, the article 

presents the platform method for smart farming. It draws attention to the difficulties in handling enormous volumes 

of data and the requirement for standardized procedures for integrating data and technology, which will boost output 

and profitability. The study [15] created a Smart Farm Watering System for remote agricultural monitoring utilizing 

the IoT, information and communication technology (ICT). The system lowers labor costs and enhances agricultural 

output by monitoring soil moisture, irrigation and safety using sensors, control panels, and software. The LoRaFarM 

IoT platform, which is flexible and low-cost, is based on the Long-Range Wide-Area Network (LoRaWAN) [16] and 

intended to improve and optimize farm management. The platform uses sensor data collection and use to work 

toward more ecologically friendly agriculture. The work of [17] suggested automating and instantly gathering and 

analyzing environmental data, the platform improves agricultural yield and management while conserving natural 

resources. 

Contribution of the study 

 To optimise the efficiency of the energy consumption forecasting technique, this research recommends 

using an extended galactic swarm (XGS) decision model for mapping agricultural electrical automation. 

 In order to train and assess the XGS model, data regarding energy is collected from a number of 

environmental and agricultural production sensors. We use the min-max normalisation method to 

standardise the raw data samples after we remove the noisy data. Next, the energy consumption forecast is 

made using the random forest (RF) method.  

 To enhance the performance of the RF approach, the XGS model is employed by modifying the 

hyperparameters. We put the suggested model into action on the Python platform and evaluate it using 

various metrics to see how well it performs.  

 When compared to other models in use today, the proposed XGS-based prediction framework provides the 

most accurate predictions of future energy use. If you are a farmer or smart agricultural management 

looking for a way to map out agricultural electrical automation that's both cost-effective and 

environmentally friendly, this article will assist you.  

3. Methods 

Determining seasonally peak demand is the primary goal of the time series forecasting of loads in agriculture, since 

this forecast can be used to construct a demand response scheme. IoT devices help with data collection, which is the 

first step in this process. Real-time data from the ground is gathered by sensors in open agriculture, smart farms, sun 
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radiation, soil, and plants. It is possible to create precise estimates for one or more future periods using previous 

consumption data. In Figure 2 the suggested workflow is shown. 

 

Figure 2: Proposed workflow 

3.1. Dataset  

The study looked at data on smart farm agricultural energy for a period of eighteen months, from (October 2020 to 

April 2022). The study examined several variables, including hourly solar radiation (HSR), internal temperatures 

(IT), internal humidity (IH) levels, ventilation temperature (VT), heating temperatures (HT), crop output production 

(COP), outside temperature (OT)andtemperature differential (TD). There is also information on Agricultural 

Electrical Automation Mapping in the dataset. This extensive collection covers a wide range of factors that are 

essential to comprehending and improving agricultural operations. Informed decision-making for effective farming 

techniques was aided by the alternate months' insights on seasonal changes and trends influencing crop energy 

dynamics. 

3.2. Data preprocessing using Min-Max Normalization 

The most basic approach, referred as normalization of min-max values or expansion, entails adjusting the feature 

variables' range to either [0, 1] 𝑜𝑟 [−1, 1]. The type of data determine which target range is chosen. The following is 

the general Equation (1) for a min-max of[0, 1]: 

𝑌′ = 
𝑌−𝑀𝑖𝑛 (𝑌)

𝑀𝑎𝑥(𝑌)−𝑀𝑖𝑛 (𝑌)′
             (1) 

When the normalized value is denoted by 𝑌′and the original value by 𝑌. The Equation (2) can be expressed as 

follows a range between an arbitrary set of values [𝑐, 𝑑]: 

𝑌′ = 𝑐 + 
𝑌−𝑀𝑖𝑛(𝑌)(𝑐−𝑑)

𝑀𝑎𝑥(𝑌)−𝑀𝑖𝑛 (𝑌)′
        (2) 

The min and max values are represented in 𝑐, 𝑑. 

3.3. Energy usage consumption of Agricultural using extended galactic swarm Random forest (XGS-RF) 



International Journal of Multiphysics 

Volume 18, No. 2, 2024 

ISSN: 1750-9548 

 

679 

The mapping automation system in agriculture for increased energy efficiency is the process of classification in the 

smart agricultural electrical automation employed in XGS-RF. To optimize the energy employed in automated smart 

agricultural operations XGS-RF combined the optimization power of the XGS with the reliable classification 

capabilities of RF. 

3.3.1. Random forest 

The random forest (RF) approach uses a cluster of classification trees to vote on which class receives input data the 

most frequently. Applications of RF include feature selection (FS), regression, and classification. The 

methodological approach analyzes each variable's significance utilizing depth analysis. When it comes to huge smart 

farm datasets with plenty of features, supervised learning techniques like RF perform better than many ML methods. 

It is trained using the bagging technique, in which each tree is built by a random selection from training data. The 

architecture of the RF is shown in Figure 3. 

 

Figure 3: RF Structure 

The model uses decision tree predictions to aggregate its output. Because bagging models reduce variation and over 

fitting of data, RFhas become more important in decision tree analysis. It is frequently applied to address missing 

data as well. Sensitivity to sample size, amount of variables, responsiveness to various technique parameters and 

sensitivity to the existence of correlated variables are the characteristics that define the RF architecture. The number 
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of classification trees is merged with the RF classifier. The outcome of the categorization is computed by using 

Equation (3). 

 ( ) =       ∑ (𝑑 ( ) =  ) 
     (3) 

For each subset   of the original dataset with the desired category  , the method creates decision trees using a 

random vector. Hyper-parameters for random forests are used to speed up the process or increase the accuracy of the 

model's predictions.  

 ( ) = 1 − 𝑒 
 − 𝑒 

   (4) 

Gini impurity is measured using Equation (4). In this case, every node is denoted by  , which might be any RF 

decision tree node. In addition, 𝑖 =  0, 1 denotes the class in Equation (5) and 𝑒𝑖is the proportion of  𝑖 samples.  

𝑒𝑖 =
  

 
   (5) 

By dividing and distributing items to two distinct sub-notes  𝑜& 𝑟by a variable's criterion 𝑟, accomplish diminishing 

  . The process is reflected in Equation (6).  

  ( ) =  ( ) − 𝑒𝑜 ( 𝑜) − 𝑒𝑟 ( 𝑟)   (6) 

Subsequently, an all-inclusive search is conducted using   values that are obtained from the node's overall 

thresholds. Taking into account all nodes, Equation (7) maintains declines in Gini impurity levels for each variable 

separately.  

  ( ) = ∑ ∑    𝑟 ( ,  )   (7) 

3.3.2.Extended galactic swarm (XGS) decision model 

The XGS is an optimization algorithm that simulates the motion of stars, galaxies, and superclusters throughout the 

cosmos. Galaxies are collections of stars that are not evenly spaced. The finest solutions within each subpopulation 

serve as an inspiration for all the individuals or solutions from that subpopulation. Superswarm treatment is given to 

the subpopulation that is thought to offer the optimum answer. A swarm resides in every subpopulation's optimal 

solution. In XGS, the swarm is represented as a 𝐵 set that consists of 𝐵𝑖
( )

 components. With many swarms working 

together to achieve better exploration, it is possible to achieve better exploration while investigating in a certain 

direction as opposed to using only one swarm. The corresponding sub-swarm has examined the search space 

independently. Particle velocity calculations are used to start this process, and the results are updated as equations (8 

& 9): 

 𝑖
( )

    
 +     ( 𝑖

( )
− 𝐵𝑖

( )
) +     ( 

( ) − 𝐵𝑖
( )

)  (8) 

𝐵𝑖
( )

 𝐵𝑖
( )

+  𝑖
( )

  (9) 

The particle's velocity is  𝑖
( )

 the optimal solution found is  𝑖
( )

, the global best solution is denoted by 𝑔(𝑖), and the 

particle's current location is 𝐵𝑖
( )

, where    and    represent the acceleration coefficients that offer the direction to 

optimal local and global solutions, ω1 denotes the inertial weight, and    and    denote random values between 

0 𝑎𝑛𝑑 1. To sustain an ever-expanding global search capability and a heterogeneous sub-swarm, the feedback 

avoidance mechanism supports the XGS metaheuristic. The following Equations (10 & 11) are used to update the 

super swarm's location and velocity in the subsequent clustering level: 



International Journal of Multiphysics 

Volume 18, No. 2, 2024 

ISSN: 1750-9548 

 

681 

 ( )     
 +     ( 

( ) −  ( )) +     ( −  ( ))  (10) 

 ( )   ( ) +  ( ) (11) 

If the best personal answer is  ( ), the weight of inertia is   , the velocity  ( ) is related to  ( ), and the random 

numbers (   and   ) are similar to those shown in the first level. The best global at this stage is g, and it is left 

unchanged once the best solution has been found. The super swarm focuses on the subswarms' optimal global 

solutions, improving exploitation in the process. Combining XGS optimization with RF improves mapping precision 

and efficiency for agricultural electrical automation. Using a range of agricultural datasets, XGS is an advanced 

optimization strategy that increases classification accuracy by accurately selecting RF parameters. Galactic 

movements serve as its source of inspiration. This hybrid method solves energy-related problems while enhancing 

the categorization method by identifying and ranking energy-efficient techniques. This technique ensures accurate 

and energy-efficient mechanization in agriculture, leading to more efficient and sustainable farming operations. It 

does this by using XGS for parameter adjusting and RF for robust labeling. Thus, XGS and RF integration offers an 

important step in smart agriculture innovation. 

4. Result and discussion  

8GB of RAM, a C-drive with 100 GB of storage, and a 64-bit version of Windows 10 were used in the experiment. 

For each testing process, Python was utilized. The study's findings showed a strong relationship correlation study 

between maximum energy usage and the simulations that were chosen. The primary findings from many models 

were used to determine the months and seasons of peak demand. 

Correlation Analysis: Eight distinct energy datasets were used in this study to evaluate the ML model: IT, IH, VT, 

HT, OT, HSR, TD, and COP. This has made it more difficult to record each energy parameter since sensor readings 

are either unavailable or ambiguous. The most used technique for analyzing the connections between the qualities is 

the correlation coefficient approach, which is used. The strength of the relationship between the independent and 

dependent variables can be ascertained using this kind of correlation test is shown in Table 1. 

Table 1: Correlation test analysis 

Energy 

Data 

IT IH VT HT OT HSR TD COP 

IT 1 - - - - - - - 

IH 0.092 1 - - - - -  

VT 0.44 -0.077 1 - - - - - 

HT 0.6 -0.037 0.72 1 - - - - 

OT 0.77 0.4 0.15 0.33 1 - - - 

HSR 0.49 -0.091 0.52 0.58 0.27 1 - - 

TD 0.33 -0.32 0.085 -0.071 -0.5 -0.021 1 - 

COP -0.035 -0.01 -0.011 -0.016 -0.037 -0.01 0.034 1 

 

Seasonal Energy Usage by Months: Greenhouse holders can provide real-time environmental energy usage 

statistics by deploying sensors on the demand side of the smart farm. In the temporal dimension, the energy 

consumption patterns of smart farms might last for a day, an hour, a month, or even a year. As a consequence, in a 

range of periods, from an hour to a year, greenhouses can be used to describe the power action of the surroundings. 

The hourly average of a smart farm's environmental energy use is very variable. The greenhouse's application of the 

maximum ambient temperature during the day varies at various periods. The monthly peak energy fluctuations are 
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influenced by a wide range of external circumstances. The annual environmental peak energy variance of a smart 

farm's use is depicted in Figure 4. 

 

Figure 4: Temperature values acrossOctober 2020 to April 2022 

Comparison Analysis: In this study, our proposed XGS-RF approach is to build a system that can autonomously 

monitor energy consumption in smart agriculture. The effectiveness of load forecasting has been evaluated using the 

Mean Absolute Error (MAE), Root Mean Square Percentage Error (RMSPE), and Root Mean Square Error (RMSE). 

The suggested method's effectiveness is contrasted with current methods, such as (long short-term memory (LSTM) 

[18], Random Forest (RF) [18], and SARIMA [18]). Table 2 represents the outcome of the existing and proposed 

methodologies. 

Table 2: Outcome of Existing and proposed methods 

Methods MAE RMSE RMPSE 

SARIMA  1532.63 2018.28 8.69 

Random forest  1652.13 2353.76 7.98 

LSTM  3229.02 3463.04 13.5 

XGS-RF [Proposed] 1384.15 1998.12 6.53 

 

RMSE: When evaluating the effectiveness and precision of prediction models, the RMSE is an essential statistic. It 

acts as a measure for the difference between values that a model predicts and the actual observations are made from 

the environment that is being studied. The quadratic evaluation method known as RMSE measures the mean size of 

errors. When compared to other existing methods, our proposed achieve the lowest RMSE value of 6.53. 

RMSPE: The average of the squared percentage errors squared root is determined by RMSPE, nonetheless. Except 

for the findings being reported in percentages, it is identical to RMSE in terms of characteristics. Squared error 

represents the measure's loss function. Our suggested XGS-RF approach produced the lowest RMSPE values of 

1998.12 when compared with other current techniques. 

MAE: The model's generic and bounded performance metric given by MAE matches an approximation of the 

absolute error. The real and anticipated values' average magnitude is shown by this level. The model's accuracy 

increases as the MAE gets closer to zero. Figure 5 shows the comparison of Metrics. In comparison to other existing 

approaches, our suggested XGS-RF approach produced the lowest MAE values, at 1384.15. 
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Figure 5: (a) RMSE, (b) RMSPE, (c) MAE Comparison 

5. Conclusion 

The agricultural industry is one of the most energy-dependent industries, it is important to estimate power 

consumption according to the monsoon or season. This article examined the agricultural sector's seasonal peak 

demand for electricity usage. The proposed study uses XGS-RF methods to compare and forecast trends in power 

use. Among these models, this method finds peak demand and performs better. The outcome indicates that the 

season from months when demand peaks. Based on the link in smart agricultural systems between energy and 

climate modifications, the results demonstrate that XGS-RF models are useful in identifying important inputs 

connected to agricultural production's energy consumption. In terms of our proposed XGS-RF achieved the lowest 

values RMSE (1998.12), RMPSE (6.53), and MAE (1384.15) in the result simulation of current approaches. Using 

variable-temperature data from the smart farm, future studies will concentrate on identifying the worst and best 

projected days. Use deep learning with big data and ML algorithm model analysis to determine the optimal crop 

growth day by adjusting the parameters of different data measurement techniques. 
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