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ABSTRACT 
Convective motions are a multi-physics phenomenon, in which flow and 

transport processes interact in a two-way coupling. The density of the fluid 

depends on the value of transport variable and this back-coupling leads to 

non-linear behaviour. For the classical constellation of a closed fluid 

container heated from below convective motions appear, when a critical 

threshold for the Rayleigh number is exceeded. The heat transfer due to 

convection is much higher than in the case of pure conduction. Here 

systems of three layers are examined in detail. Using numerical CFD 

modelling it is shown that in layered systems different convective flow 

patterns appear than in the single layer case. The number and constellation 

of convection cells characterize steady flow patterns. Using a parametric 

sweep over the relevant parameter range of layer Rayleigh numbers and 

layer thicknesses we determine diagrams that show the excess heat or 

mass transfer of the dominant convection patterns, measured by the 

Nusselt- or Sherwood numbers. 

 

 
1. INTRODUCTION 
Heat and mass transfer through a system of porous layers are relevant topics in various 
constellations within our physical environment and in technical applications. Heat transfer in 
the sub-surface of the earth is very much determined by the involved geological layers. Aside 
from the understanding of natural geology, the heat flux is relevant in geotechnical systems 
as in heat storage beds [1]. The mass transfer of CO2 is of concern for carbon sequestration in 
geological formations that are usually layered. Technical devices as packed-bed catalytic 
reactors contain layers [2]. Materials may consist of layers. When they are designed for 
thermal insulation, heat transfer is to be minimized [3]. Porous layers can be useful for 
maximizing heat dissipation, for example in electronic devices. In all these systems convection 
plays an important role.  

Convective motions result from the coupling of flow and transport processes. They are 
thus a genuine multiphysics phenomenon. The nonlinearity of the coupling results in a 
remarkable behaviour of the studied systems. Here we deal with the classical constellation 
that a fluid of higher density overlies a fluid of lower density, which is discussed also as 
Horton-Rogers-Lapwood problem [4]. Above a critical threshold for the involved parameters, 
for example the density difference, a deviation from the trivial no-flow solution appears: 
steady flow patterns consisting of convection cells with circulating fluid can be observed. 
Following a classical analytical analysis, first rigorously presented by Lord Rayleigh for free 
fluids [5], the mutiphysics systems can be characterized by a dimensionless parameter 
combination, which nowadays is named the Rayleigh-number Ra or Ra-no. Below a critical 
value of Ra the system remains stagnant - above the critical value convective motions appear.  
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The mentioned coupling of flow and transport that leads to convection arises as effect of 
buoyancy caused by variable fluid density as the major coupling parameter. Fluid density 
mainly depends on temperature and salinity. Corresponding to this one speaks of thermal or 
haline convection. More complex behavior results in case of thermohaline convection when 
both temperature and salinity come into play. That additional complexity is not considered 
here.  

The heat and mass transfer in a fluid system is significantly determined by the convective 
regime. It is convenient to describe the increased heat and mass transfer through the fluid layer 
as function of Ra. One may also characterize the transfer by dimensionless numbers: for heat 
transfer it is the Nusselt number Nu, for salt mass transfer the Sherwood number Sh. Both Nu 
and Sh are normalized to be 1 for the non-convective state with purely conductive heat or 
diffusive mass transfer. 

In the classical description of convective motions, a single fluid layer is considered. Here 
the investigation is extended to systems of layers, through which heat or mass transfer appears 
due to diffusion and convection. The here-examined constellations consist of three 
horizontally aligned porous layers. However, they deliver clues for multi-layered systems in 
general. The general set-up, notation of geometrical entities and boundary conditions are 
depicted in Figure 1. 

In order to restrict the parameter space in the three-layer system only constellations are 
considered in which the outer layers identical concerning the physical and geometrical 
properties, but differing from the intermediate layer. A dimensionless description is utilized, 
in which the geometry and the Ra-no.s are the only relevant parameters. 
 

 
Figure 1: Schematic view of model region with boundary conditions indicated  
 

As the porous medium Ra-no. is mainly determined by the permeability of the porous 
medium (see below), we may discuss the constellation in terms of aquifers and aquitards. In 
most cases the upper- and lowermost layers can be considered as aquifers, with a lower 
permeable layer sandwiched in between. If the intermediate layer is completely impermeable, 
convection rolls develop in the permeable layers above and below. If the sandwiched layer is 
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only slightly less permeable (leaky aquifer) than the adjacent layers, convection rolls may 
develop that extend across the entire vertical extension of the system.  

By numerical modelling Bjørlykke et al. [6] examined the onset of convection in the very 
same set-up. The set-up, in which a permeable layer is sandwiched in between less permeable 
layers has attracted scientific interest, see Lipsey et al. [7] and references therein. Convective 
motions may appear in the sandwiched layer with an effect on the geothermal gradient within 
the layer. Here the study is extended with focus on a detailed examination of the flow patterns 
and the heat or mass transfer through such systems, covering the entire relevant parameter 
space.  

The studied constellation differs from the partitioned porous layers, studied by Genç & 
Rees [8] and Rees [9], as here fluid flow in the aquitard is taken into account. It is a typical 
feature of geological layers that they are differently conductive to fluid flow as well as heat 
transport. The hydraulic conductivity of an aquitard can be several orders of magnitude lower 
than that of an aquifer. However, for moderate contrasts between the layers and long time 
scales the fluid flow within the leaky layer may not be ignored.  

McKibbin & Tyvand [10] as well as Hewitt et al. [11] are dealing with systems in which 
thin very low permeable layers cut through permeable formations. In the limit case for very 
low permeabilities high Ra-no.s are required to induce convective motions. The systems that 
are in question here have comparably moderate dimensions and are thus far away from the 
limit case examined in the former studies.  

The constellation with a porous layer overlain by a free fluid layer has attracted a lot of 
research studies [12, 13, 14, 15, 16, 17], as there are several practical applications of interest. 
The topic here is a situation with several porous layers, governed by Darcy’s Law. In the free 
fluid layer this approach is not valid. Instead such a layer is described by the Navier-Stokes 
equations. Although there convection patterns can be observed as well, the details concerning 
the onset of convection, cell shape and transfer are very different from the porous medium 
case that is in the focus here.    

 
2. DIFFERENTIAL EQUATIONS & BOUNDARY CONDITIONS 
Models of convective flow patterns are based on a system of partial differential equations, 
which result from mass and energy conservation formulations. Dependent variables are 
pressure, velocity and temperature or salinity, the latter depending on the type of convection, 
either thermal or saline. Relevant parameters are: the maximum density difference Δρ due to 
the different temperatures or salinities, the dynamic viscosity of the fluid μ, thermal or solute 
diffusivity D of the fluid-solid system and the permeability of the porous medium k.    

Depending on conditions the resulting formulation can be simplified. The Boussinesq-
Oberbeck assumption states that density variation is negligible except from its influence on 
buoyancy [18]. Another common assumption is that density is a linear function of either 
temperature (in the thermal case) or salinity (in the haline case).  

The equations for the primitive variables pressure, temperature or salinity, can be 
transformed to a non-dimensional formulation with coefficients given by dimensionless 
numbers, which are combinations of the original parameters. For convection in porous media 
the porous medium Rayleigh number Ra is the only crucial characterizing dimensionless 
number:  
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𝑅𝑅𝑎𝑎 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝜇𝜇𝜇𝜇

                                                          (1) 

 
The porous medium Rayleigh number is defined in analogy to the Rayleigh number for 

free fluids. Details of the transformation to the non-dimensional formulation, briefly presented 
below, were given by Holzbecher [18] and more recently discussed by Dillon et al. [19] and 
Chandran et al. [20].  

In the non-dimensional formulation, it is convenient to replace the pressure variable by the 
stream function 𝛹𝛹. Using 2D Cartesian coordinates 𝛹𝛹 is implicitly defined by, 

 

𝑣𝑣 = (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,−𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)                                                         (2) 

 
where 𝑣𝑣 is the velocity field. 𝑥𝑥 denotes the horizontal and 𝑧𝑧 the vertical space direction. The 
formulation (2) ensures that the flow field is divergence free, i.e.  , a condition that results 
from the mass conservation equation and the Boussinesq-Oberbeck assumption. The 
differential equation for 𝛹𝛹 is obtained using the vorticity vector 𝜔𝜔, which in 3D is defined by 
the cross-product: 
 

𝜔𝜔 = 𝛻𝛻 × 𝑣𝑣                                                                 (3) 
 
Combining equations (2) and (3) for 2D flow in a plane yields only one nonzero vorticity 

component ω, which fulfills the equation: 
 

𝛻𝛻2𝛹𝛹 = −𝜔𝜔                                                                (4) 
 
The dimensionless formulation is obtained, using a variable transformation with space unit 

H and time unit H2/D. H denotes the total height of the layered system. The velocity unit is 
thus D/H. By this non-dimensionalization the transport equation for heat or mass is given by, 
see [18]: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝛻𝛻𝜃𝜃 = 𝛻𝛻2𝜃𝜃                                                        (5) 
 
𝜃𝜃 is the normalized transport variable, i.e. temperature for thermal convection and salinity 

for haline convection. The terms in equation (5) represent the processes of storage, advection 
and diffusion. An explicit expression is obtained for vorticity:  

 
𝜔𝜔 = ±𝑅𝑅𝑅𝑅  𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕                                                        (6) 

 
The sign in the vorticity equation of equation (6) is negative for the thermal case and 

positive for the for the haline case. The viscosity is assumed to be a constant, as we consider 
the same fluid with moderate changes of the transport variable only. In the numerical 
experiments reported here Ra mainly reflects the change of the permeability.  

In order to complete the model formulation, boundary conditions have to be formulated. 
For a closed system the stream function has a constant value on all boundaries; without loss 
of generality we chose 𝛹𝛹 = 0. The conditions for 𝜃𝜃 at the outer boundaries are as follows:  
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𝜃𝜃 =  1 Dirichlet at bottom, 𝜃𝜃 =  0 Dirichlet at top, no-flow else (thermal case) 
𝜃𝜃 =  0 Dirichlet at bottom, 𝜃𝜃 =  1 Dirichlet at top, no-flow else (haline case) 

 
At the interfaces between the layers continuity conditions are required. The temperature 

and the heat transfer, in the thermal case, and salinity and mass flux, in the haline case, across 
the interfaces have to be identical in both layers that are separated by the interface. For both 
Ψ and θ this is achieved by setting a Dirichlet condition in one layer, and a Neumann condition 
in the other. If the variables in the adjacent layers are denoted by subscripts 1 and 2, the 
requirements for the streamfunction are:   

 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 Ψ1:                   Ψ1 =  Ψ2 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 Ψ2 :                 𝜕𝜕Ψ2
𝜕𝜕𝜕𝜕

= 𝜕𝜕Ψ1
𝜕𝜕𝜕𝜕

                              (7) 
 
In the presented model for the upper- and lowermost layers we require the Dirichlet 

condition at the interfaces with the intermediate layer. For the intermediate layer the Neumann 
condition is demanded at both interfaces. 

A similar construction for θ guarantees that diffusive heat and mass fluxes on both sides 
of the interfaces are identical. For the upper- and lowermost layers we require Neumann 
conditions at the concerned interfaces, and for the intermediate layer the demand is the 
Dirichlet condition.      

In the following description we will concentrate on the thermal system, and not mention 
the haline case in particular. However, with the mentioned modifications concerning the sign 
in equation (6) and the outer boundary conditions all results are equally valid for the haline 
convection case as well.   

 
3. SIMULATION 
Numerical modeling is performed based on the system of equations (4)-(6). The coupled 
differential equations (4) and (5) are solved simultaneously. 𝑣𝑣 is computed using equation (2). 
ω is calculated using the explicit formula given in equation (6). The transient behaviour of the 
system is simulated. However, here we only discuss the steady states that are obtained after a 
sufficiently long simulation time.  

The discretization is performed by Finite Elements using the software COMSOL 
Multiphysics [21]. COMSOL Multiphysics has been used for simulating convection patterns 
in several studies on porous media. Holzbecher [22] examined porous systems with open top 
boundary. Holzbecher [23, 24] and recently Eckel & Pini [25] simulated flow patterns for very 
high Rayleigh-numbers in the context of CO2 storage. Systems with one horizontal interface 
have been investigated [26]. That investigation is extended here for the case of two interfaces.  

Using COMSOL Multiphysics the differential equations (4) and (5) are treated using 
coefficient pde-modes. For the system with three layers altogether a system of 6 coupled 
differential equations has to be solved. For the discretization we choose finite elements on 
triangular or quadrilateral meshes with quadratic shape functions for all variables. The 
triangular meshes for the four geometries consist of 3516 and 3610 elements, which 
corresponds to approximately 15000 degrees of freedom (dof). In the parametric sweep we 
used quadrilateral meshes between between 6000 and 8000 elements (depending on d), which 
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corresponds with up to 65526 dofs. In order to check mesh dependencies control runs are 
performed on even finer quadrilateral meshes with more than 22000 elements, corresponding 
to more than 180000 dofs. 

For the solution of the transient simulation a time-stepping approach is used, with 
automatic timestep adjustment. The nonlinear equations are gathered in one system matrix. 
The resulting linear systems are solved by a direct solver.   

As post-processing the Nusselt number Nu, for thermal convection (or Sherwood number 
Sh, in case of haline convection), are calculated. They represent the total heat (or mass) 
transfer through the system. in the non-dimensional formulation these numbers are defined by  

 
𝑁𝑁𝑁𝑁, 𝑆𝑆ℎ = ∫ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 𝑑𝑑𝑥𝑥                                                    (8) 

 
where the integral extends over an entire horizontal boundary. Nu (or Sh) respectively is 
computed using 4th order integration along the top or bottom boundary. In the steady state 
evaluations of equation (8) at the lower and upper horizontal boundary deliver the same value.  

This study focuses on steady state solutions. As the straight approach using the steady state 
versions of the equation (5) usually does not converge, we use long-term simulations of the 
unsteady equations to obtain the steady states! Only few of the simulations described below 
did not lead to a steady state. In that cases an oscillating convection pattern was reached 
instead.      

The resulting flow patterns are generally not unique. They crucially depend on the initial 
condition. In the transient simulations for this study the initial values differ at a few spots from 
the linear pure diffusion profile. Without any such disturbance the computational simulation 
may not start, because the regime with no flow and linear  profile is an analytical solution. At 
least one small disturbance is necessary to give a kick-start for the simulation, if it is physically 
unstable. The type of disturbance may have an influence on the final steady state. For example 
a single disturbance favours a system with two convection cells, a double disturbance favours 
a three cell pattern. However, despite of this the final state is not uniquely determined by the 
initial condition. A single initial disturbance may lead to steady states of 1, 4, 6 or 8 cells, as 
will be shown.    

In some cases we observe an influence of numerical settings. As small local disturbances 
play a role in some of the investigated scenarios, it can be expected that changes of the 
numerical approach may have an effect on the simulation. We use triangular and quadrilateral 
meshes, which sometimes make a difference. In some cases different results are obtained, if 
the solution algorithm worked with scaled or non scaled variables.        

 
4. RESULTS 
4.1. Flow Patterns 
The described model is run with a wide range of parameter variations. In order to limit the 
task, some constraints are set. It is assumed that the outer layers at the top and bottom of the 
model domain are of same type concerning their geophysical and geometrical properties. They 
have the same Ra-no. and the same thickness. Their Ra-no. in the sequel is referred to as Ra1, 
while the Ra-no. of the intermediate sandwiched layer is referred to as Ra2. In parametric 
sweeps Ra1 varies between 100 and 500, Ra2 varies between 10 and 300. The thickness of the 
intermediate layer d takes the dimensionless values of 0.1, 0.3, 0.5 and 0.7 from the total 
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height H=1. Altogether these variations cover cases, where a low permeable aquitard is 
sandwiched in between thicker aquifers and cases, where a highly permeable layer lies in 
between less conductive layers.   

For the different parameter combinations, some topologically distinct flow patterns can be 
observed. These are gathered and visualized in the following figures. Black horizontal lines 
depict layer interfaces. Moreover, the visualizations depict:  

 
1. A surface plot of transport variable (red for hot, blue for cold) 
2. A contour plot of isotherms for levels of θ between 0.1 and 0.9 (grey)  
3. Streamlines (thick white)  
4. A velocity arrow field (white) 
5. The minimum and maximum of the stream function (black)  
 

Fig. 2a shows a pattern with two steady state convection cells, obtained for Ra1=125, 
Ra2=50 and d=0.5. In the low permeable sandwiched layer the streamlines are nearly vertical. 
The figure depicts upward flow in the center of the domain, while at the vertical boundaries it 
is downward. One of the cells rotates clockwise, the other counter clockwise. The rotation 
sense depends on the initial condition. A flow pattern with downward flow in the domain 
center and upward flow at the vertical boundaries constitutes the same convection mode (see 
below). Two cell flow patterns are the most observed patterns in the parameter study. 
 

 
(a)                                                            (b) 

Figures 2 a, b: Two cells convection patterns; for (a) Ra1=125, Ra2=50, (b) Ra1=125, 
Ra2=90. Both for an intermediate layer thickness of d=0.5. 

 
Decreasing the contrast of the layer characteristics, represented by the Ra-no.s, leads to 

cells with a higher curvature and the horizontal temperature gradients in the intermediate layer 
become more pronounced. Fig. 2b shows two convection cells, obtained for Ra1=125 in the 
aquifers and Ra2=90 in the sandwiched lower permeable formation. The latter type of pattern 
emerges quite frequently, especially in cases, in which the Ra-no.s take relatively nearby 
values.  
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(c)                                                          (d) 

Figures 2 c, d: Four cells convection pattern; for (c) Ra1=300, Ra2=50 and 
sandwiched layer thickness d=0.5, (d) Ra1=450, Ra2=10 and d=0.3. 

 
Another frequent flow pattern consists of four flow cells as shown in Fig.s 2c and 2d. 

Obviously the convection rolls, seen in the previous figures, are partially split. The detailed 
view reveals that the flow patterns are combinations of a 2-cell pattern and a 4-cell pattern. 
Two cells extend across the entire vertical extension, circulating through the low permeable 
intermediate layer. Superposed is a pattern with four cells centered in the outer layers, but 
partially penetrating the intermediate aquitard. Fluid particles within these cells do not 
percolate through the intermediate layer. Note that upper and lower cells do not touch each 
other at a common streamline (as the elongated vertical cells do), but only meet at stagnation 
points within the low permeable layer. Related upper and lower eddies have the same rotation 
sense. The pattern becomes more pronounced, when the contrast between the layer 
characteristics increases, as can be seen in Fig. 2d.  

Also patterns with a single cell were observed, as shown in Fig. 2e. Emerging from the 
single cell we find flow patterns with 2, 3 or 4 cells. Two cells, one above the other, emerge, 
when the intermediate layer is less permeable (2f). Both cells have the same circulation sense; 
they meet at a stagnation point in the center of the model region. The four cell pattern in Fig. 
2g is characterized by two additional cells appearing in the permeable layers, one on the 
bottom left and one on the top right.  The circulation of these cells is the same, while the 
intermediate large cell rotates the opposite way. A flow field with four cells emerges, when 
two cells within the single cell appear in both aquifers (2h). The four cell pattern is different 
from the ones shown in Fig.s 2c and 2d: here the intermediate layer sees upward flow in one 
half and downward flow in the other, while in the former cases the intermediate layer is split 
in three strips concerning the vertical flow direction.  
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(e)                                                                    (f) 

 
(g)                                                                    (h) 

Figure 2 e, f, g, h: One cell convection pattern for (e) Ra1=100, Ra2=40 and 
intermediate layer thickness d=0.3, (f) two cells pattern for Ra1=450, Ra2=50 and 
d=0.5, (g) four cells pattern for Ra1=500, Ra2=90 and d=0.1, (h) four cells pattern 
emerging from a single cell for Ra1=500, Ra2=20 and d=0.5.  

 
When the contrast between the layers is high, i.e. if the aquitard is much lower permeable 

than the aquifers, flow cells appear which only marginally penetrate the intermediate layer. 
Two examples are shown in Fig.s 2i and 2j. One shows a six cells pattern with three cells in 
both aquifers. For a thinner intermediate layer the simulation leads to a flow pattern with eight 
cells, with four eddies in each aquifer. 
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(i)                                                                 (j) 

Figure 2 i, j: Six cells pattern for (i) Ra1=500, Ra2=10 and d=0.3 and (j) eight cells 
pattern for Ra1=500, Ra2=10 and d=0.1. 

 
4.2. Convection Modes 
A parametric study is performed with the described model. The model is run for all 
combinations of parameters, listed in Table 1. The range of the parameters represents the 
relevant cases with steady convection flow patterns. For higher Ra-no.s one partially enters in 
the region, where oscillatory flow pattern become more likely. A transition to oscillatory 
patterns was observed in some model runs here. For single homogeneous layers Holzbecher 
[27] investigated this transition, but this is not in the focus here. 
 
Table 1: Parameter values selected for parametric sweep 
𝐑𝐑𝐑𝐑𝟏𝟏  𝐑𝐑𝐑𝐑𝟐𝟐  d 
100 10 0.1 
125 20 0.3 
150 30 0.5 
175 40 0.7 
200 50   
250 60   
300 90   
350 120   
400 150   
450 200   
500 250   
  300   
 

For each of the four variations of the geometry we make a parametric sweep with variations 
of Ra1 and Ra2, i.e. 132 simulations. In all cases a steady state flow is found, that falls into 
one of the pattern types described above. For few parameter combinations the cell pattern is 
not unique: depending on the initial conditions and options for the numerical solution different 
 

  



63 Int. Jnl. of Multiphysics Volume 14 · Number 1 · 2020 

 

 
 
modes are obtained. In those cases several convection solutions exist. For few combinations 
also oscillating patterns are observed. For all runs in this study, for each parameter set at least 
one steady solution emerges.  

Figure 3 shows the dominant cell pattern observed for the four geometry constellations 
with different layer thicknesses. The dominant patterns are those with a single cell, as shown 
in Fig. 2e, with two cells, as shown in Fig.s 2a and 2b, and with four cells, as shown in Fig.s 
2c and 2d. The 0-cell cases represent no convective, i.e. pure diffusive flow.  

In case of the thin intermediate layer (d=0.1) the 4-cell mode is observed in almost all 
cases, where an aquitard is sandwiched in between two aquifers. If the intermediate layer has 
a lower Ra-no. the 2-cell mode prevails. For Ra1=100 the single cell mode can be preferred. 

 

 
 
 
Figure 3: Dominant convection cell pattern as function of layer Rayleigh-no.s and 
layer thickness; ‘4#’ refers to the 4-cell pattern, depicted in Fig. 2g; (top left: d = 
0.1; top right: d = 0.3; bottom left: d = 0.5; bottom right: d = 0.7)  
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With increasing thickness of the intermediate layers we observe the appearance of the no-
flow pure conductive solution, with no flow cells. While there are few cases for d=0.3, the 0-
cell solution becomes more frequent if the intermediate layer is thicker. Also, with increasing 
thickness the 2-cell mode becomes more and more dominant in the studied parameter range. 
For d=0.7 the appearance of the 4-cell mode is limited due to the frequent appearance of the 
no-flow and the 2-cell modes. 

The flow modes that do not appear in Figure 3, i.e. the ones depicted in Fig.s 2e-2j, are 
observed for relatively few cases of the parametric sweep. Depending on the chosen initial 
conditions and numerical options, as outlined above, for the same parameter combination also 
one of the dominant modes, considered in Fig. 3, appears. For d=0.3 we find Ra-No. 
combinations leading to the pattern, shown in Fig. 2g and to the 6-cell mode.   

 
4.3. Heat- or Mass Transfer 
The Nusselt-no. Nu, defined by equation (8), represents the heat transfer through the layered 
system. For the pure diffusive situation with no flow in the entire domain Nu is 1. Nusselt-
no.s above 1 measure the increased transfer due to convection.  

Nu depends on the layer Ra-no.s and on the geometry. For the here considered model set-
up the geometry is uniquely represented by the thickness d of the intermediate layer. Moreover 
the transfer is also dependent on the convection mode.  For the dominant modes of the 
parametric sweep the Nu-numbers are depicted in Figure 4. For all geometries the range of 
the Nu-no.s is between 1 and 7.  

For the thin intermediate layer (d=0.1) Nu-no. results show a strong dependence on Ra1, 
which characterizes the higher permeable regions. Between 150<Ra1<300 the contour lines 
are almost vertical, indicating no dependence on Ra2. The transition to higher transfer rates 
for Ra1=100 and high values of Ra2 can be explained by a change of the convection pattern. 
As the corresponding sub-plot in Figure 3 shows, the 1-cell mode is dominant for that 
parameter combination. 

For d=0.3 a small irregularity of the prevailing pattern can be observed in the lower left 
corner and a strong deviation on the lower right corner of the figure. Both emerge from a 
change of the dominant flow pattern, as can be seen in the corresponding sub-plot in Fig. 3.     

For d=0.5 there is a stronger dependency on Ra2 in the lower part of the plot, but a stronger 
dependency on Ra1 in the upper part. A comparison with Figure 3 shows that that roughly 
coincides with the modes. In the part with dominant 4-cell mode Ra2 is more important, while 
for the 2-cell pattern Ra1 plays a bigger role.  

For a thick intermediate layer, d=0.7, the just described behavior is still recognizable, but 
on a weaker scale. Comparison with Figure 3 shows that the 2-cell pattern is the dominant 
mode for this geometry.   
 
 

  



65 Int. Jnl. of Multiphysics Volume 14 · Number 1 · 2020 

 

 
 

 
Figure 4: Nu-no.s as function of layer Ra-no.s and layer thickness (top left: d = 0.1; 
top right: d = 0.3; bottom left: d = 0.5; bottom right: d = 0.7)   

 
5. DISCUSSION & CONCLUSION 
In a layered system convection patterns appear that cannot be observed in homogeneous 
systems. Convection cells emerge that are connected to layers: there are solutions with 2x2, 
2x3 and even 2x4 cells in the square unit domain. Moreover superposition of cells occurs, 
when within a larger cell two smaller cells appear. Various complex circulation patterns 
emerge that are described above.   

Heat and mass transfer depends on the geometrical constellation, i.e. here the height of the 
different layers and the Ra-numbers, as given parameters. It also depends on the flow pattern, 
which is not unique for the non-linear system. This can be of interest in technical systems, in 
which minimal or maximal transfer is to be achieved. The current study gives an aid on which 
parameters can be chosen do reach a state of optimum heat or mass transfer.  

Attention is to be paid on the decrease of heat transfer with Ra2 in the high Ra-numbers 
regions. It can be observed in the upper left corners of sub-plots in Fig. 4 for d=0.1, 0.3 and 
0.5. Nu can generally be expected to increase with increasing Ra, what the mentioned figures 
seem to contradict. However, a comparison with the corresponding sub-plots in Fig. 3 reveals, 
that there is a transition of the flow-pattern in the concerned regions of the plots. Raising Ra2 
there can lead to a change from the dominant 2-cell pattern to the 4-cell pattern. This is 
accompanied with a change of the Nu-no., which is lower for the 4-cell mode. However, 
detailed investigation of the obtained results shows that the mentioned decrease of Nu-no.s 
appears also without mode change - a phenomenon that is not completely understood. 
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