
International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1884

Improving the Arithmetic Optimization Algorithm by

combining the Genetic algorithm in the selection of quality-

based web services

Farahnaz Aleahmad1 *

1Computer engineering department, Islamic Azad University (central branch), Ashrafi

Esfahani St, Tehran, Iran.

*Corresponding author

Abstract

In service-oriented software architectures, the overall quality of the software is intrinsically

tied to the quality of the services employed. Given that basic services frequently do not

adequately address the varied requirements of users, it is crucial to identify the most

effective combination of these services to optimize task performance and enhance service

quality within software applications. The task of selecting the most suitable web service is

classified as an NP-Hard problem, and an effective strategy to tackle this challenge

involves the application of meta-heuristic or evolutionary algorithms. These evolutionary

techniques, known for their strong search capabilities, have proven effective in improving

selection precision in this area. This study integrates the Arithmetic Optimization Algorithm,

which utilizes mathematical operators, with the Genetic Algorithm to bolster extraction

efficiency. The analysis of outcomes across different web services reveals that the

proposed approach achieves a higher degree of convergence with improved accuracy,

yielding an enhancement of more than 1% in precision.

Keywords: web services, service quality, Arithmetic algorithm, Genetic algorithm

Introduction

With the service-oriented architecture (SOA) approach, various tasks are executed by distinct yet interconnected

web services, enabling solutions that extend beyond the confines of organizational, corporate, or departmental

boundaries. This architecture is realized through web services, which facilitate communication between computers

in a heterogeneous environment comprising diverse systems. However, basic services often fail to meet user

requirements, highlighting the necessity to integrate web services to enhance their efficiency and deliver more

complex functionalities. This integration is a significant topic within the field of web services [1].

The optimal combination of web services is achieved by selecting them and can be categorized into two general

types: non-heuristic methods and heuristic methods. The objective of this combination is to maximize the utility

function while considering various constraints [2]. These constraints represent the quality requirements of

customers, such as response time, cost, reliability, and accessibility, which must be addressed according to user

requests.

Although research has demonstrated that non-heuristic methods are effective in small and simple environments

with a limited number of candidate web services, these methods become less suitable as the number of web

services increases and the environment grows larger and more complex. The lack of scalability, along with the

exponential increase in execution time and complexity associated with non-heuristic methods, necessitates the

development of innovative approaches [3]. Algorithms that offer higher speed and reduced complexity are more

appropriate in such scenarios, as they can identify optimal solutions within a reasonable timeframe [4-7].

Choosing web services is a complex and challenging problem. Research has demonstrated that meta-heuristic

algorithms can yield effective results in the selection of web services. The Arithmetic Algorithm, which is based

on mathematical operators, has shown strong local search capabilities and is particularly effective for high-

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1885

dimensional functions, enabling the attainment of optimal accuracy. A meta-heuristic algorithm with a robust

local search mechanism can significantly enhance the accuracy of web service selection, especially in high-

dimensional contexts where precision is crucial [8]. Therefore, this article presents the novel application of the

Arithmetic Algorithm in the selection of web services, aiming to leverage its features to improve the accuracy of

this process. This approach contributes to addressing the challenges associated with selecting web services based

on quality.

Research literature

Among the recent works, improvements to the Bee Colony algorithm have been observed, which is also selected

as the foundational research in this thesis [9-11]. Additionally, the Ant Colony algorithm has been enhanced [12].

Other methods utilized in the selection of web services include Harris's Falcon algorithm [13], which has

demonstrated high accuracy in convergence. Furthermore, improved algorithms based on the metal annealing

method [14] and the memetic algorithm [15] have also been introduced, indicating that enhancing the search

capabilities in evolutionary methods can lead to increased convergence accuracy.

In recent years, various evolutionary algorithms have been developed in this field, including the Bat Algorithm

[16] and the Fruit Fly Algorithm [17]. Research has demonstrated that different search mechanisms within

evolutionary methods can yield varying levels of optimization accuracy. Investigations into combined algorithms,

such as the Bee and Cuckoo algorithms [18], indicate that the diverse search capabilities of different evolutionary

operators can enhance movement variety and improve overall search efficiency. Additionally, algorithms like the

Learning-based Balanced Training Optimization algorithm have been applied to web service selection, showing

that they can enhance selection accuracy by increasing search power through local search techniques [19].

Furthermore, it has been established that the reliability and scalability of systems can be improved by employing

the Zebra Optimization Algorithm in conjunction with deep learning methods [20]. Table 1 presents some of the

latest research in the field of selecting web services based on quality.

Table 1. Comparison of some Meta-heuristic methods in the field of web services selection.

Article Year Method Advantage Defect

[12] 2021
Improved ant colony

algorithm

Increased accuracy in higher

number of web services

The generalizability of the

method in other applications is

not presented

[13] 2021
Algorithm of Harris

hawks

Investigating the selection

stage of web services by

presenting a new algorithm

Not investigating the ratio of

the number of web services to

the optimization time and the

effect on the convergence of

the algorithm

[14] 2022
Metal annealing

algorithm

Providing suitable annealing

method for this problem

Not checking scalability in

high number of web services

for reviewed methods

[15] 2022 Memetic algorithm
A memetic algorithm model

with added local search

Lack of Generalizability to

other applications by

considering limited qualitative

features

[16] 2023
Multi-population Flower

Pollination algorithm

Simple settings in the use of

algorithm and proper

accuracy in choosing web

services

Not investigating the ratio of

the number of web services to

the optimization time and the

effect on the convergence of

the algorithm

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1886

[17] 2023 Fruit Fly algorithm
Proper accuracy in choosing

web services

Long execution time and not

considering a large number of

web services

[18] 2023

Honey bee hybrid

algorithm with

Bat

Search carefully in a large

number of web services

Many parameters to adjust the

algorithm and more execution

time

[19] 2024

Balanced optimization

of learning-based

education

The power of convergence

Comparability in the number

of web services has not been

further investigated

[20] 2024
Zebra optimization

algorithm

Increasing the accuracy due

to the two-step algorithm in

the proposed method

Comparability in the number

of web services has not been

further investigated

By examining a variety of algorithms, it can be concluded that significant challenges remain in addressing the

issue of combining web services based on qualitative features. For instance, each method typically encounters its

own set of problems and often falls into the trap of local optimality. In the case of the basic Genetic Algorithm,

the crossover and mutation operations are executed randomly and without guidance, which can lead to a decline

in the method's performance.

Based on the research, there is no specific benchmark tool available to evaluate these algorithms. Although some

researchers have compared them using various simulation environments or datasets, the results indicate that

different methods yield varying outcomes. However, there are no established standards for enhancing the

efficiency of these algorithms.

Suggested method

The process of identifying suitable web services based on user requests consists of three stages. These stages

include creating an appropriate service quality model, discovering and selecting suitable web services, and

forming an optimal combination of the selected web services. The first step in obtaining optimal web services is

to develop a model that accurately describes the quality attributes. This model must be mutually agreed upon by

both the customer and the service provider. The quality attributes of web services are categorized into two general

types: positive attributes and negative attributes. The most significant of these attributes include response time,

cost, reliability, and accessibility. Additionally, the service quality model should specify how to calculate the

overall value of the quality characteristics of the composite web service. For this calculation, sequential patterns

can be utilized, as outlined in Table 2.

Table 2. Formulas to calculate quality characteristics of composite web service [19].

Attributes and patterns Sequential

Time Response Rt(x1) + Rt(x2)

Cost C(x1) + C(x2)

Throughput T(x1) * T(x2)

Reliability R(x1) * R(x2)

Successability S(x1) * S(x2)

After developing the desired service quality model, the next step is to identify suitable web services. The selection

of web services involves a two-stage process. In the first stage, known as operational matching, web services that

align with the customer's performance requirements are selected. In the second stage, referred to as non-

operational matching, web services that meet the necessary performance quality are identified as candidate web

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1887

services. The overall model of this process, which is tailored to the user's needs and facilitates service delivery

through appropriate web services, is illustrated in Figure 1.

Fig. 1 The process cycle of user request and provision of web service to the user program

The user's need to create a web service model is outlined, along with the determination of its quality model and

quality calculation model. The user interacts with the server program. The service program receives the required

services from the service broker, which is responsible for discovering and selecting the appropriate web services

using the service repository and web service providers.

In the calculations, each feature is normalized. To normalize the response time, cost of the relationship, degree of

reliability, and throughput, if the values of these features in the dataset are not between zero and one, Equation 2

is used:

𝑁𝑋(𝑊𝑆𝑖) = 1 −
 𝑋(𝑊𝑆𝑖)− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
 (1)

𝑁𝑋(𝑊𝑆𝑖) =
 𝑋(𝑊𝑆𝑖)− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
 (2)

According to the significance of each feature, a weight is assigned to it. This weight is taken into account in the

simulations for the three features examined in Table 3.

Table 3. The weight values assigned to the equality of service criteria in the objective function.

Criterion name Response time Cost Reliability Throughput Ability to succeed

assigned weight 0.3 0.45 0.15 0.5 0.5

The dataset utilized comprises various web services, the characteristics of which have been evaluated and

established as a standard in the field of web services. For example, Table 4 presents several web services along

with their registered features (see Fig. 2).

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1888

Fig. 2 a view of the standard dataset of web services

As shown in Fig. 2, this standard dataset includes 2,507 real web services, each accompanied by its abbreviated

name and address, highlighting various features of each service.

In order to calculate the evaluation function for the three specified features, we utilize the evaluation function

presented in Equation 3, which is considered sequentially in each order of operation. To compute the fitness

function that optimizes all three features by maximizing the function, the features that need to be minimized

should be adjusted in Equation (3). This adjustment will ultimately allow for the selection of all optimal features

through the maximization of the fitness function.

𝑀𝐴𝑋 𝑍 = (𝑊𝑟𝑡 ∗
∑ 𝑛

𝑖=1 𝑁𝑋(𝑅𝑇𝑖)

𝑛
) + (𝑊𝑐 ∗

∑ 𝑛
𝑖=1 𝑁𝑋(𝐶𝑖)

𝑛
) + 𝑊𝑟 ∗ ∏ 𝑛

𝑖=1 𝑁𝑋(𝑅𝑖) + 𝑊𝑡 ∗ ∏ 𝑛
𝑖=1 𝑁𝑋(𝑇𝑖) + 𝑊𝑠 ∗

∏ 𝑛
𝑖=1 𝑁𝑋(𝑆𝑖) (3)

In Equation (3), the objective function is to maximize Z is performed by minimizing the characteristic of response

time (RT) and cost (C) and maximizing reliability (R), throughput (T) and successability (S), and n is the number

of web services.

In the proposed algorithm, each possible answer is presented as an index number of web services:

X= [x1,x2,... , xn]

X1 is the location of the first task to be performed in the composite service and is filled with an index of the web

service number in the list of web services.

Xn is the location of the last task to be performed in the composite service and is filled with an index of the number

of web services in the list of web services.

In the following, the different stages of the proposed algorithm are described.

1- Random generation of population of accounts in the search space (each account represents web services for

tasks)

2- The final number of repetitions has not been reached, the following steps should be performed:

2-1- Calculating the suitability of each initial solution and specifying the best solution in the variable 𝑏𝑒𝑠𝑡

2-2- parameter setting MOA and MOP using relations 4 and 5:

𝑀𝑂𝐴(𝐶_𝐼𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝐶_𝐼𝑡𝑒𝑟 ∗ (
𝑀𝑎𝑥−𝑀𝑖𝑛

𝑀_𝐼𝑡𝑒𝑟
) (4)

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1889

𝑀𝑂𝑃(𝐶_𝐼𝑡𝑒𝑟) = 1 − (
𝐶_𝐼𝑡𝑒𝑟

1
∝

𝑀_𝐼𝑡𝑒𝑟

1
∝

) (5)

In the above equations, Min and Max are respectively the minimum and maximum values for the function. 𝐶_𝐼𝑡𝑒𝑟

is the current iteration number ,and 𝑀_𝐼𝑡𝑒𝑟 the final iteration number of the algorithm. The sensitivity parameter ∝

is a fixed value (usually 5).

2-3- Random production 𝑜𝑓 𝑟1 , 𝑟2, 𝑟3 with a value between zero and one

2-4- If 𝑟1 > MOA (exploration phase):

2-4-1- If the amount𝑟2is less than 0.5, perform the "division" operator, otherwise perform the "multiplication"

operator with relation 6:

𝑥𝑖.𝑗(𝐶_𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜖) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) 𝑟2 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) × (𝑀𝑂𝑃) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6)

5-2- If 𝑟1 < MOA (extraction phase):

2-5-1- If the amount𝑟3is less than 0.5, perform the "minus" operator, otherwise perform the "plus" operator with

relation 7:

𝑥𝑖.𝑗(𝐶_𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) − (𝑀𝑂𝑃) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) 𝑟3 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) + (𝑀𝑂𝑃) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

In the equations, UBj, LBj 𝑎𝑟𝑒 the upper and lower limits of the variables of the optimization problem,

respectively, and the best solution 𝑏𝑒𝑠𝑡(𝑥𝑗) has been found, and the value or control parameter 𝜇 is equal to 0.5.

2-6- Intersection with probability 0.7 for search agents with Genetic algorithm operator

2-7- Mutation with probability 0.1 for search agents with Genetic algorithm operator

2-8- Substituting children instead of parents if they are more optimal

2-9- Rendering every possible answer to an integer (mapping every answer that is in decimal form to

an integer that represents the number of the web service)

2-10- If an answer is not in the range of answers, it is deleted and generated again.

3- Count one round of evolution t=t+1

4- After the end of the number of rounds of evolution: x* as the optimality of the problem according to formula

3, which represents the best web services for tasks.

Results

In this section, the results of the tests have been reviewed in several sub-sections.

The influence of parameters on the optimal solution

One of the challenges that has frequently captured the attention of researchers working with evolutionary

algorithms is the precise determination of the number of search factors. To date, no method has been established

to ascertain the optimal number of search agents for a given problem. This difficulty may stem from the fact that

the appropriate number of search factors is highly contingent upon the specific problem at hand, making it

impossible to formulate a universal guideline. Consequently, most evolutionary algorithms resort to trial-and-

error methods to identify the correct number of parameters.

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1890

In this section, we aim to investigate the effect of increasing the number of search factors on the optimal solution.

Specifically, we seek to determine the appropriate number of search agents for the proposed solution. To achieve

this, we first execute the algorithm with five search factors, and in each subsequent run, we increment the number

of search factors by one. This process continues until we identify the optimal number of search agents. The data

presented in this section are derived from the average of ten different execution times. The required parameters

for this evaluation are shown in Table 4. The values of the weights assigned to the quality criteria will remain

consistent with those used in the convergence test, as specified in the table

.Table 4. Values of parameters needed to test the effect of the number of search factors.

Amount Parameter

variable (3 to 30) Number of search agents:

300 Number of web services:

10 Number of tasks:

Figure 3 illustrates the results of this step. The horizontal axis represents the number of search factors considered

across ten different runs, while the vertical axis displays the value of the fitting function for the best solution

obtained in each run. It is evident that increasing the number of search factors up to a limit of seventeen

consistently enhances the solution. However, as the number of search factors continues to increase, reaching a

total of thirty, the value of the fitting function for the optimal solution remains constant.

Fig. 3 effect of number of search factors on the optimal solution

When the number of search factors is small, the execution time of the algorithm is also reduced. In fact, a low

number of search factors is directly related to early convergence, which limits the algorithm's ability to generate

diverse solutions. As a result, the optimal solution identified by the algorithm may significantly differ from the

true optimal solution of the problem. Conversely, increasing the number of search factors leads to an improvement

in the value of the objective function of the final solution. The graph clearly illustrates that increasing the number

of search factors up to a certain point enhances the accuracy of the results; however, beyond that point, further

increases do not contribute to improved outcomes.

In fact, the number of search factors is one of the parameters of the evolutionary hybrid algorithm that combines

Arithmetic and Genetic algorithms. This parameter directly influences how movements are generated within the

problem space and is independent of the number of tasks and web services. The results indicate that the

evolutionary hybrid algorithm, which integrates Arithmetic and Genetic algorithms, does not yield accurate results

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

30

28

26

24

22

20

18

16

14

12

10

8

6

4

obtained optimal value

n
u

m
b

e
r

o
f

se
ar

ch
 f

ac
to

rs

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1891

with a smaller set of seventeen search factors. In the following section, the stability of the results produced by the

proposed algorithm will be evaluated.

Checking the stability of the proposed method

Stability is a critical factor in evaluating algorithms. It refers to the consistency of the algorithm's results, ensuring

that they are not influenced by specific conditions or obtained by chance. In this section, we assess the stability

of the proposed solution. To evaluate the stability of the algorithm, we analyze the value of the objective function

for the optimal solution across fifty different execution scenarios under identical conditions. We then calculate

the variance and standard deviation of the best solutions identified in these fifty samples. It is evident that the

variance and standard deviation have an inverse relationship with the stability of the algorithm; specifically, a

smaller variance or standard deviation in the results across different scenarios indicates greater stability, and vice

versa. In the diagram presented in Fig. 4, the vertical axis represents the run number, while the horizontal axis

denotes the value of the objective function for the best solution in each run. The number of tasks is set at ten, with

three hundred web services allocated for each task, and, as mentioned in the previous section, the number of search

agents is fixed at seventeen.

Table 5. Summary of stability results.

Amount Parameter

1 to 50 Number of executions:

0.7281
The value of the objective function for the

best answer:

0.7274
The value of the objective function for the

worst answer:

0.0000000420 Amount of variance:

0.00021 Standard deviation value:

0.72787
Average objective function for all

executions:

Fig. 4 Stability test of the suggested method

0.72810.72790.72790.7278 0.72810.7274 0.7276 0.7278 0.72810.7275 0.728 0.72810.7279 0.72810.72810.7278 0.72810.7277 0.72780.7275 0.72810.72810.7280.7279 0.72810.7275 0.7280.7279 0.72810.72810.7276 0.7278 0.72810.7277 0.72810.728 0.72810.72810.72810.7277 0.7280.72790.7278 0.72810.72810.72780.7277 0.72810.7277 0.7281

0.727 0.7272 0.7274 0.7276 0.7278 0.728 0.7282

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

Obtained optimal value

ex
e

cu
ti

o
n

 n
u

m
b

er

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1892

 As from the Table 5, it is clear that the results show that the proposed method has converged to the solution of

the problem in different implementations with a small standard deviation.

In this section, experiments with more number of web services for ten tasks are considered in order. In the

implementation of the algorithm and in comparison with the other methods for the number of different web

services are shown in the Table 6. The comparison of the results with the methods has been done because it has a

higher convergence rate among the other methods that were examined in the convergence comparison section.

Table 6. The result of applying algorithms on web services.

Candidate service number AOAGA ABCBA MFPA BTLBO

125 0.6426 0.6415 0.6405 0.64

250 0.6489 0.6459 0.6409 0.6321

375 0.6539 0.6459 0.6385 0.6325

500 0.7035 0.6944 0.6894 0.6854

625 0.709 0.7001 0.7012 0.6952

750 0.7281 0.7212 0.7162 0.6963

875 0.7246 0.719 0.709 0.703

1000 0.7154 0.7059 0.7009 0.699

1125 0.7105 0.6956 0.7016 0.6956

1250 0.7266 0.7221 0.7171 0.7211

1375 0.7252 0.7159 0.7082 0.7022

1500 0.7145 0.7066 0.7016 0.6855

1625 0.7266 0.7215 0.7204 0.7144

1750 0.7278 0.7224 0.7174 0.7201

1875 0.7212 0.7084 0.6963 0.6903

2000 0.7101 0.7024 0.6974 0.7025

2125 0.7254 0.7154 0.7196 0.7136

2250 0.7255 0.7233 0.7183 0.6933

2375 0.7281 0.7151 0.7084 0.7024

2500 0.7149 0.7064 0.7014 0.7058

Figure 4. test of the suggested proposed method.

In Table 6, it is evident that as the number of web services increases, the results for the quality of web services

obtained using the proposed method, which combines the bee and bat algorithm [18] (ABCBA)—the most

effective method among those evaluated—differ significantly. The multi-population flower pollination algorithm

[16] (MFPA) and the binary teaching-learning-based optimization algorithm [19] (BTLBO) also yielded

commendable results; however, they were less effective than the proposed method. Clearly, with a higher number

of web services, the proposed method has achieved greater accuracy than the other methods, indicating a more

effective search process and the attainment of a more precise optimal solution.

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1893

Fig. 5 Improvement percentage of the results from the comparison of the proposed method (AOAGA) and the

combined bee colony method with bats (ABCBA)

 Figure 5 illustrates the degree of improvement in the results from the comparison between the proposed method

(Adaptive Optimized Artificial Genetic Algorithm, AOAGA) and the combined Bee Colony method with Bat

Algorithm (ABCBA). The data indicate that the proposed method achieves an average improvement of over 1%.

4.3. Scalability of the Proposed Method

Scalability assesses how the efficiency of an algorithm is affected by increasing the dimensions of a problem. An

algorithm is considered scalable if an increase in dimensions, parameters, or variables does not adversely impact

its performance. Scalability can be evaluated through various factors, depending on the specific conditions and

nature of the problem. The scalability test for the proposed method is analyzed from two perspectives: first, the

impact of increasing the number of candidate services on the number of required iterations, and second, its effect

on the execution time of the algorithm.

In this section, we examine the effect of increasing the number of candidate services on the number of iterations

required by the algorithm to find the optimal solution. To achieve this, we run the algorithm across several

scenarios in which the number of candidate services for each task varies. In each run, only the candidate services

are variable, while the other problem parameters remain fixed, ensuring that the conditions are consistent across

all runs. The required parameters for this test are presented in Table 7.

Table 7. Required parameters for the scalability test.

The amount Parameter

17 Number of search agents:

variable (50 to 100) The number of web services:

10 Number of tasks:

In the initial run, the number of candidate services for each task is set at fifty. In the subsequent execution, this

number is increased by ten. The results of this experiment are derived from the average of ten different executions

conducted under the same conditions. Figure 6 presents the test results in graphical form.

0.17

0.46

1.24 1.31 1.27

0.96
0.78

1.35

2.14

0.62

1.30
1.12

0.71 0.75

1.81

1.10

1.40

0.30

1.82

1.20

0.00

0.50

1.00

1.50

2.00

2.50

125 250 375 500 625 750 875 1000 1125 1250 1375 1500 1625 1750 1875 2000 2125 2250 2375 2500im
p

ro
ve

m
en

t
p

er
ce

n
ta

ge
 o

f
re

su
lt

s

Number of candidate services

Average improvement 1.09 percents

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1894

Fig. 6 The effect of the number of candidate services on the number of repetitions

According to the figure, it is evident that the number of required iterations increases as the number of candidate

services rises. This increase in iterations occurs because, with a greater number of candidate services, the range

of the objective function expands, necessitating more iterations to achieve convergence. However, the increase in

the number of iterations is linear, suggesting that it does not significantly impact the efficiency of the algorithm.

Therefore, it can be concluded that the proposed method is scalable from this perspective.

In this section, we analyze the effect of increasing the number of candidate services on the execution time of the

proposed algorithm. The objective of this experiment is to assess the scalability of the algorithm in relation to the

increase in the number of candidate services. To achieve this, we initially execute the algorithm with fifty

candidate services. In subsequent runs, we increment the number of candidate services by fifty. This process

continues until the total number of candidate services reaches five hundred. The execution time for each run is

measured from the start of the algorithm until it meets the stopping condition and identifies the optimal solution.

The parameters required for this test are consistent with those used in the previous experiment, and the results are

illustrated in Figure 6.

As shown in Fig. 7, it is evident that the execution time of the algorithm increases with the number of candidate

services. However, this increase is linear; when the number of candidate services is multiplied by ten, the

execution time increases by less than three times.

Conclusion and future work

In this research, we propose a method that combines evolutionary strategies with arithmetic and genetic algorithms

for the selection of web services. By implementing necessary modifications to the structure of both the arithmetic

and genetic algorithms for discretization, we enhance the algorithm's effectiveness in addressing the web service

selection problem while improving quality. This method involves five evaluations of the proposed algorithm. We

analyze the impact of the number of search factors on the optimal solution as a key parameter of the proposed

method. The analysis reveals that when the number of search agents is low, the limited movement of these agents

results in a final solution that is significantly distant from the optimal solution.

In a separate evaluation, we discussed the standard deviation of the optimal solution across various

implementations. Through conducting different experiments under consistent conditions, we found that the

standard deviation of the objective function for the final results in all experiments is very small. This indicates a

high level of stability in the proposed method.

In reviewing the results of the proposed method, one notable observation was the impact of the number of search

factors on the optimal solution. As previously mentioned, there is currently no exact method to determine the

appropriate search factors for a given problem. One reason for this is that the number of suitable search agents

varies depending on the nature of the problem. In this article, we found that when the number of search agents

0

100

200

300

400

500

5
0

1
00

1
50

2
00

2
50

3
00

3
50

4
00

4
50

5
00

5
50

6
00

6
50

7
00

7
50

8
00

8
50

9
00

9
50

1
00

0

n
u

m
b

er
 o

f
re

p
et

it
io

n
s

number of candidate services

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1895

was limited, the incomplete formation of their movements hindered their ability to search effectively, resulting in

a final answer that was significantly distant from the optimal solution. However, it was anticipated that as the

number of search agents increased, the optimization algorithm would perform more accurately, as the agents

would be better equipped to navigate the search space. It is important to note that employing a high number of

search factors for optimization entails considerable processing effort. This is because the fitness function must be

evaluated for each search factor across various problems, leading to substantial computational overhead,

particularly when the function is complex.

The effectiveness of algorithms is best evaluated based on their stability and scalability. The method suggested in

this article demonstrates exceptionally high stability. Through conducting various tests in similar conditions, it

was discovered that the standard deviation of the objective function for the final result in all tests is remarkably

low, demonstrating the strong consistency of the method suggested. Moreover, when the quantity of candidate

services per task is raised, both the algorithm's execution time and the iterations needed to reach the final solution

increase proportionally. Thus, the suggested approach is viewed as scalable when it comes to expanding candidate

services.

The effectiveness of algorithms is best evaluated based on their stability and scalability. The method suggested in

this article demonstrates exceptionally high stability. Through conducting various tests in similar conditions, it

was discovered that the standard deviation of the objective function for the final result in all tests is remarkably

low, demonstrating the strong consistency of the method suggested. Moreover, when the quantity of candidate

services per task is raised, both the algorithm's execution time and the iterations needed to reach the final solution

increase proportionally. Thus, the suggested approach is viewed as scalable when it comes to expanding candidate

services.

The comparison between the proposed method and the Bee and Bat hybrid algorithm demonstrates that as the

number of web services increases, the evolutionary hybrid algorithm of Arithmetic and Genetic algorithm yields

a higher optimal solution value, highlighting its ability to effectively search and achieve optimal solutions.

The article recommends the following:

- The discrete applications should be explored to understand the structure of the Arithmetic and Genetic algorithm

hybrid evolution algorithm, and its mechanism can be applied to solve different engineering problems.

-To enhance the suggested algorithm, trying out different discretization operators along with the arithmetic and

Genetic algorithm operators of the evolutionary hybrid algorithm could lead to better outcomes.

-Enhancing the discovery and extraction processes in the hybrid evolution algorithm combining Arithmetic and

Genetic algorithms, along with fuzzy and chaos solutions, can enhance the effectiveness of this approach.

Conflict of interest: The authors declare that they have no conflict of interest.

References

[1] Mohammadi Sh, Shamsi M, Qobaei Arani M (2015) Combining web services using linear equations. In: The first

international conference on new perspectives in electrical and computer engineering, Tehran

[2] Galea-Holhoș, L. B., Delcea, C., Siserman, C. V., & Ciocan, V. (2023). Age estimation of human remains using the dental

system: A review. Annals of Dental Specialty, 11(3), 14–18.

[3] Delcea, C., Bululoi, A. S., Gyorgy, M., & Rad, D. (2023). Psychological distress prediction based on maladaptive

cognitive schemas and anxiety with random forest regression algorithm. Pharmacophore, 14(5), 62–69.

[4] Alipour S, Babazadeh Share M (2015) Review of the composition of web services. In: The third national conference on

the development of engineering sciences, Mazandaran

[5] Shivandi S, Emadi S (2015) Using modified coloring graph in automatic selection and services. In: The 4th international

science and engineering conference, Italy-Rome

[6] Hamtian Chahardeh Cheriki F, Emadi S (2015) A review of service replacement methods for service combination. In:

International Conference on New Researches in Engineering Sciences, Tehran

[7] Roshan M, Nemat Bakhsh N (2015) Optimal combination of web services based on service quality features. In: The

second international conference on web research, Tehran

International Journal of Multiphysics

Volume 18, No. 3, 2024

ISSN: 1750-9548

1896

[8] Delcea, C., Fabian, A. M., Radu, C. C., & Dumbravă, D. P. (2019). Juvenile delinquency within the forensic context.

Romanian Journal of Legal Medicine, 27(4), 366–372.

[9] Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The Arithmetic Optimization Algorithm.

Computer Methods in Applied Mechanics and Engineering 376: 113609

[10] Chandra M, Niyogi R (2019) Web Service Selection Using Modified Artificial Bee Colony Algorithm. IEEE Access 7:

88673 - 88684

[11] Dahan F, Mathkour H, Arafah M (2019) Two-Step Artificial Bee Colony Algorithm Enhancement for QoS-Aware Web

Service Selection Problem. IEEE Access 7: 21787 - 21794

[12] Dahan F, Hindi KE, Ghoneim A, Alsalman H (2021) An Enhanced Ant Colony Optimization Based Algorithm to Solve

QoS-Aware Web Service Composition. IEEE Access 9: 34098–34111

[13] Li C, Li J, Chen H, Heidari AA (2021) Memetic Harris Hawks Optimization: Developments and perspectives on project

scheduling and QoS-aware web service composition. Expert Systems with Applications 171: 114529

[14] Bouhouche A, Benmohammed M (2022) A New Collective Simulated Annealing with Adapted Objective Function for

Web Service Selection. International Conference on Computing and Information Technology 2022: 15-26

[15] Abdel-salam M, El-hasnony IM, Elhoseny M, Tarek Z (2022) Intelligent PSO approach for QoS-aware web service

selection. IET 2022: 24-36

[16] Lv D, Zhou L, Luo N (2023) A hybrid optimized multi-population flower pollination algorithm for web service

composition problem. In: The Fifth International Conference on Computer Information Science and Artificial Intelligence

(CISAI 2022)

[17] Chandra M, Niyogi R (2023) QoS aware web service selection using orthogonal array learning on fruit fly optimization

approach. International Journal of Pervasive Computing 2023: 31-39

[18] Ahanger TA, Dahan F, Tariq U (2023) Hybridizing Artificial Bee Colony with Bat Algorithm for Web Service

Composition. Computer Systems Science and Engineering 46(2): 2429-2445

[19] Khelil H, Brahimi M (2024) Toward an efficient web service composition based on an improved BTLBO algorithm. The

Journal of Supercomputing 2024: 12-25

[20] Gokulakrishan D, Ramakrishnan R, Saritha G, Sreedevi B (2024) An advancing method for web service reliability and

scalability using ResNet convolution neural network optimized with Zebra Optimization Algorithm. Artificial

Intelligence 2024: 245-259.

