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Abstract 

This study investigates the application of machine learning techniques, specifically 

Multivariate Adaptive Regression Splines (MARS) and Model Trees (MT), in estimating 

building heating performance. Accurate heating performance estimation is crucial for 

improving energy efficiency, reducing operational costs, and achieving sustainability goals. 

By leveraging real-world datasets that incorporate variables such as weather conditions, 

building characteristics, and energy consumption patterns, the study aims to evaluate the 

effectiveness of these two advanced modeling approaches. 

The results indicate that both MARS and MT models provide reliable and accurate 

predictions of building heating performance. However, the MARS model (RMSE=0.247, 

R=0.993) demonstrates superior performance compared to the MT approach (RMSE=9, 

R=0.947). The MARS model’s flexibility in capturing nonlinear relationships and 

interactions among variables contributes to its enhanced predictive accuracy. In contrast, 

the MT model, which relies on classification-based and formula-driven methods, exhibits 

limitations in handling complex variable interactions. 

This study highlights the advantages of using MARS for heating performance estimation, 

emphasizing its potential as a robust and adaptable tool for energy management in 

buildings. The findings underscore the importance of selecting appropriate machine 

learning methods tailored to specific predictive tasks, ultimately advancing the state-of-

the-art in energy modeling and building performance optimization. 

Keywords: Artificial intelligence models, building heating performance, architecture 

parameters, MARS method, MT method 

1. Introduction 

Artificial intelligence (AI) models are rapidly transforming the way we analyze and optimize building 

performance. In the context of heating systems, the integration of AI offers significant advantages over traditional 

approaches [1]. One of the most compelling benefits of AI is its ability to process vast amounts of data with 

remarkable speed and accuracy [2]. Modern buildings generate substantial datasets from sensors, energy 

consumption records, weather patterns, and occupant behavior [3]. AI models can seamlessly analyze these 

complex datasets to identify patterns, make predictions, and provide actionable insights. AI-driven approaches 

also excel in precision and adaptability [4]. Unlike conventional methods that rely on static models or generalized 
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assumptions, AI can adapt to specific building conditions and learn from real-time data [5]. This dynamic learning 

capability enables AI to deliver highly accurate heating performance estimations that account for variables such 

as fluctuating weather conditions, changes in occupancy, and the thermal properties of building materials. 

Consequently, building managers and engineers can make informed decisions to enhance energy efficiency, 

reduce operational costs, and minimize environmental impact [6-8]. 

Another key advantage of AI is its capacity for optimization. Machine learning algorithms can be employed to 

predict energy demand, optimize system settings, and even propose maintenance schedules to prevent system 

failures [9]. These proactive measures not only ensure consistent heating performance but also extend the lifespan 

of heating equipment. Additionally, the ability to simulate various scenarios through AI-powered digital twins 

allows stakeholders to explore energy-saving strategies without disrupting actual operations [10]. Fig. 1 presented 

the visualization includes architectural parameters such as building orientation, glass facades, skylights, and 

thermal walls, all annotated to illustrate their impact on heating load. 

 

This paper proposed an artificial methods (AI) named multivariate adaptive regression splines (MARS) and model 

tree (MT) techniques utilizing several functions to model the energy performance of residential structures. The 

MARS and model tree can autonomously identify the most significant predictor input variables in the model, 

establish the model structure, and determine the unknown parameters of the regression equation, all while 

optimizing for accuracy and complexity. It is thought that loads exhibit a linear and non-linear relationship 

concerning functions. Consequently, an equation is formulated using the MARS and MT approaches to forecast 

the heating load. 
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2. Materials and methods 

2.1. MARS method 

Friedman originally elucidated the use of MARS, a prominent machine learning technique, to identify a function 

that delineates the link between several predictors (Xs) and an output (Y) [11]. Nonparametric data modeling is a 

machine learning approach that does not need any assumptions on the distribution of the relevant variables. MARS 

is particularly advantageous when the mapping function varies for each subset of the acquired data. Predictive 

models utilizing MARS have been effectively created for intricate engineering datasets previously. MARS divides 

the compressive strength learning area into smaller segments throughout the learning phase [12]. (Refer to Fig. 

2). 

 

Fig. 2: MARS training phases 

MARS constructs a linear classification model for each zone to achieve optimal data matching [13]. Figure 2 

illustrates that MARS constructs a data-driven piecewise linear function to represent a global model. This unique 

characteristic has enabled MARS to be utilized across several sectors. An additional crucial element of the final 

prediction model's learning phase is the generation of Basis Functions (BFs) throughout this process. These BFs 

articulated the correlation between experimental variables and compressive strength. A standard BF is represented 

in the subsequent equations. 

𝑏𝑚(𝑥) = max (0, 𝐶 − 𝑥) 𝑜𝑟 𝑏𝑚(𝑥) = max (0, 𝑋 − 𝐶) (1) 

In this context, 𝑏𝑚 is a BF, x signifies a predictor of compressive strength, and C is a threshold parameter identified 

during the learning phase.  The ultimate classification model created by MARS for predicting heating load may 

be encapsulated as follows: 
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𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∝0+ ∑ ∝𝑚 𝑏𝑚(𝑥))

𝑘

𝑚=1

 (2) 

2.2. MT method 

Quinlan introduced the MT model, which employs a binary decision tree combined with a sequence of linear 

regression functions at the terminal (leaf) nodes. The standard deviation of class values at a node serves as an 

indicator of the node's error level in the first phase. The anticipated decrease in error for each feature is then 

ascertained [14]. The term "Standard Deviation Reduction" (SDR) is utilized to denote the reduction of mistakes.  

𝑆𝐷𝑅 = 𝑠𝑑(𝑇) − ∑
|𝑇𝑖|

𝑇
𝑠𝑑(𝑇𝑖) (3) 

𝑠𝑑 signifies the standard deviation, while Ti and T denote a subset of examples corresponding to the ith potential 

outcome and a collection of cases that reach the node, respectively. The standard deviation of a child node is less 

than that of its parent node due to the splitting process. The optimal split is determined after evaluating all possible 

splits to minimize expected error (Refer to Fig. 3). 

 [15]. 

 

Fig. 3: MT data classification for regression analysis 

2.3. Modeling database 

A database of 768 building samples, derived from 12 building shapes with a volume of 771.75 m3, utilizing 

Autodesk Ecotect Analysis, has been examined by Tsanas and Xifara [16]. Each building sample is defined by 

eight predictor input parameters: relative compactness (RC), surface area (SA), wall area (WA), roof area (RA), 

overall height (OH), orientation (OR), glazing area (GA), and glazing area distribution (GAD). Additionally, two 

outputs for heating load (HL) have been documented for each building sample throughout the AI simulation 

procedure. 

In this database, 12 buildings with a total volume of 771.75 cubic meters were examined, and measurement data 

were extracted to perform the modeling process. The levels of reflective glass in this research are 0-40%, and also 

the distribution of these levels in the direction of the building with 5 placement scenarios, including 25% in 4 

directions of the building, 55% in the south and the rest equal to 15% in other directions, 55% in the north and the 

rest in an equal amount of 15% in other directions, 55% in the east and the rest in an equal amount of 15% in other 

directions, and 55% in the west and the rest in an equal amount of 15% in the directions, has been Therefore, 
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according to the relationship number (4), the heating load in the building is a function of this relationship, and the 

models of this research were formed using this relationship of predictor variables. 

HL = 𝑓 (𝑅𝐶, 𝑆𝐴, 𝑊𝐴, 𝑅𝐴, 𝑂𝐻, 𝑂, 𝐺𝐴, 𝐺𝐴𝐷)    (4) 

2.4. Performance metrics 

This article employed the assessment criteria (Eqs. (5-7)), which include the correlation coefficient (r), Root Mean 

Square Error (RMSE), and Mean Absolute Error (MAE) [17]. 

𝑅 =
∑ (𝑂𝑖−𝑂).(𝑃𝑖−𝑃)𝑀

𝑖=1

√∑ (𝑂𝑖−𝑂)
2𝑀

𝑖=1 ∑ (𝑃𝑖−𝑃)
2𝑀

𝑖=1

   (5) 

𝑅𝑀𝑆𝐸 =
∑ (𝑃𝑖−𝑂𝑖)2𝑀

𝑖=1

∑ (𝑂−𝑂𝑖)
2𝑀

𝑖=1

     (6) 

𝑀𝐴𝐸 =
∑ |𝑃𝑖−𝑂𝑖|𝑀

𝑖=1

𝑀
   (7) 

3. Result and discussion 

3.1. MARS model development 

This study evaluates the developed models using the MARS method. A total of 15 models were designed and 

tested by varying the parameters of this method. Based in the Fig. 4, among these models, Model 8 was identified 

as the best-performing model, as it achieved the lowest error rate along with the highest accuracy and solution 

convergence. In this research, the penalty parameter was initially set to 1 to 8. Ultimately, the optimal penalty 

parameter value, Cbest=2, was determined through the process of error minimization using the least squares error 

method.  These findings highlight the high capability of the MARS method in optimizing models and reducing 

prediction errors. Table 1 reported the MARS training procedure for the hyper-parameters tuning. 

 

Fig. 4: Evaluation of the MARS models development 
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Table 1: MARS training procedure 

HL Output 

Piece-wise linear Function 

30 Max function 

3 Max interaction 

The MARS model was modified to optimize the prediction of the heating load of the building performance with 

a value of 18, while the greatest degree of interaction of the BFs was established at the second order. Furthermore, 

as suggested by Jekabsons, the penalty factor c was determined by trial and error within the range of 1 to 8, with 

the optimal value discovered as cbest=2. Ultimately, the subsequent non-linear equation was put out for the 

modeling of the CS. The functionalities for each BF were displayed in Table 2. 

Table 2: MARS functions for prediction of the HL. 

Functions Func. NO. Functions Func. NO. 

BF1 × max(0,0.1 -x7) BF10 max(0, x4 -122.5) BF1 

BF7 × max(0, x3 -343) BF11 max(0,122.5 -x4) BF2 

BF7 × max(0,343 -x3) BF12 max(0, x7 -0.1) BF3 

BF3 × max(0, x4 -147) BF13 max(0,0.1 -x7) BF4 

BF3 × max(0,147 -x4) BF14 max(0, x2 -637) BF5 

BF7 × max(0, x1 -0.71) BF15 max(0,637 -x2) BF6 

BF7 × max(0,0.71 -x1) BF16 BF1 × max(0, x2 -612.5) BF7 

BF3 × max(0, x8 -4) BF17 BF1 × max(0,612.5 -x2) BF8 

BF3 × max(0,4 -x8) BF18 BF7 × max(0, x1 -0.69) BF9 

Note: X1-X8 refers to relative compactness (RC), surface area (SA), wall area (WA), roof area (RA), overall 

height (OH), orientation (OR), glazing area (GA), and glazing area distribution (GAD) respectively. 

𝐻𝐿 =  45.816 − 0.682 × 𝐵𝐹1 + 0.572 × 𝐵𝐹2 + 18.285 × 𝐵𝐹3 − 82.045 × 𝐵𝐹4 − 0.533 × 𝐵𝐹5 −

0.23255 × 𝐵𝐹6 + 0.0087 ∗ 𝐵𝐹7 + 0.014 × 𝐵𝐹8 + 0.019 × 𝐵𝐹9 + 0.396 × 𝐵𝐹10 + 9.8753𝑒 − 06 ×

𝐵𝐹11 − 2.3198𝑒 − 05 × 𝐵𝐹12 − 0.09 × 𝐵𝐹13 + 0.24 × 𝐵𝐹14 + 0.02 × 𝐵𝐹15 − 0.026 × 𝐵𝐹16 −

1.080 × 𝐵𝐹17 + 0.305 × 𝐵𝐹18    (8) 

3.2. MT model development 

After separating the data into two phases, training and testing, the MT model was fitted on the training data. At 

this stage, the data were classified into groups, and a linear multivariate regression model (LM) was presented for 

each group at the following LMs. The regression equations and the governing rules for estimating the heating load 

are presented.  

LM num: 1         

HL = 52.7347 × Relative compactness + 0.0064 × Wall area   + 12.8684 × Glazing area - 21.759             

LM num: 2 

HL = 52.7347 × Relative compactness + 0.0064 × Wall area   + 8.4506 × Glazing area - 21.1103 
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LM num: 3 

HL = 52.7347 × Relative compactness + 0.0064 × Wall area   + 7.4641 × Glazing area  - 20.4313 

LM num: 4 

HL = 44.9747 × Relative compactness + 0.0064 × Wall area   + 15.4286 × Glazing area - 0.0295 × Glazing area 

distribution - 13.7995 

LM num: 5 

HL = 44.9747 × Relative compactness + 0.0064 × Wall area + 9.3712 × Glazing area - 0.1633 × Glazing area 

distribution - 12.8929 

LM num: 6 

HL = -10.0707 × Relative compactness + 0.0064 × Wall area+ 20.6848 × Glazing are+ 17.1893 

LM num: 7 

HL = -10.6277 × Relative compactness + 0.0064 × Wall area + 10.5852 × Glazing area - 0.1234 × Glazing area 

distribution + 18.7905 

LM num: 8 

HL = 105.5609 × Relative compactness + 0.0119 × Wall area + 17.9549 × Glazing area - 52.6766 

LM num: 9 

HL = 42.8508 × Relative compactness   + 0.0225 × Wall area    + 33.2161 × Glazing area - 18.6578 

LM num: 10 

HL = 4.6956 × Relative compactness   + 0.0225 × Wall area + 15.024 × Glazing area + 0.106 × Glazing area 

distribution + 14.3216 

LM num: 11 

HL = 9.1387 × Relative compactness + 0.0371 × Wall area   + 17.3941 × Glazing area + 5.6521 

LM num: 12 

HL = 6.1985 × Relative compactness + 0.1301 × Wall area + 0.2605 × Orientation   + 18.1584 × Glazing area - 

18.8164 

The HL variable divides the two-branched tree pattern associated with cooling load estimation into two categories. 

Next, each category undergoes another binary branching process. We repeatedly branch each node until we reach 

the final node (leaf), where the sum of the squared deviations from the average of the data is approximately zero. 

After pruning the extra branches, the optimal tree emerges. Finally, we built a tree model for the output variable 

based on the relevant equations and calculated the values predicted by the model using the training and test data. 

The proposed MT technique includes 7 input parameters and 1 output parameter (heating load), which was 

developed using 12 conditional rules in the form of linear equations. Therefore, Fig. 5 displays the outline diagram 

of the MT method's tree formation in the form of rules for heating load estimation. 
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Fig. 5: MT structure for HL estimation 

Based on the tree structure, the branching variable to provide LM1 is the HL parameter, and its corresponding 

values are 0.75, 0.65, and 0.63. In addition, the value of the GA variable was considered to be 0.325 and 0.175 to 

produce the LM1. In LM2, the branching parameter in the tree structure was GA, with a value of 0.175. Using all 

variables as input variables, the model showed that selecting these parameters based on architectural features had 

a significant impact on the structure's heating load. It shows how to develop the tree model and settings of effective 

parameters in Weka 3.7 software. Additionally, the LMs also display the models that were developed using the 

decision tree method. To select the optimal model, 50 models have been developed in this section, and 20 models 

are presented in Fig. 6. The MT4 model with a correlation coefficient of 0.979 has performed better than other 

models. 

 

Fig. 6: Evaluation of the MT models development 
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3.3. Performance assessment 

As shown in Table 3, the correlation coefficient in the training phase for the March model and the tree model is 

0.995 and 0.979, respectively. is Also, the value of the RMSE statistical index for the proposed model for the 

March model and the tree model has been obtained as 0.216 and 0.315, respectively. The results showed that the 

models had excellent results in the training phase of convergence conditions (R≥0.8). Also, the MAE statistical 

index in the testing phase for March (0.376) was better than the other two proposed models and reported lower 

error values. So, the numbers show that MARS's non-parametric and non-linear model that can come up with 

values works well and is very accurate during the training phase compared to other models. The use of a non-

linear and non-parametric approach in model training played an essential role in model accuracy. 

Table 3: MARS functions for prediction of the HL. 

Performance Models 
Metrics 

r RMSE MAE 

Training 
MARS 0.995 0.216 0.338 

MT 0.979 0.315 0.405 

Testing 
MARS 0.993 0.247 0.376 

MT 0.956 0.749 0.607 

In this research, Figs. 7 and 8 illustrated the observed and predicted HL values by the proposed model for the 

training stages. In the training phase, the MARS model has less error compared to the MT model in predicting the 

HL of the building. In a qualitative comparison, most of the HL values are concentrated on the regression line 

(ideal line), and only a small number of these points are outside the concentration area. In the evaluation of the 

models, a deviation of more than 20% has been observed in the prediction of the estimated points in the range of 

20-30% (over estimation) in the models and 35-45% in the models (under estimation). In the MARS model, when 

the estimation values increase, they typically align with the software's measurement values. Overall, this study's 

methods have undergone proper training for evaluation. During the testing phase, as shown in Fig. 8, the models 

accurately predicted the HL values. Predicting these values is mostly less than 20%, and the correlation between 

actual and predicted laboratory values is at least 90%. Also, the percentage of absolute error in the testing phase 

has shown that the MARS model has decreased by 4 and 5% compared to the neural network and regression 

model. The red line in the figure indicates that the indicated values overestimate or underestimate data with weaker 

prediction (less fitting). In summing up the evaluations, this error rate has been reduced in the MARS model, and 

a more efficient and accurate model has been presented. 

 

Fig. 7: Scatterplots of the training performance of the HL models 
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Fig. 8: Scatterplots of the testing performance of the HL models 

4. Summary and Conclusion 

Nowadays, life requires energy at a rapid pace, a time when energy resources are limited. In recent years, this 

need has significantly increased globally. The importance of using energy to achieve thermal comfort in buildings 

has always been the focus of researchers. Among the cases of thermal comfort in the cold season is the heating 

load of the building, which gives satisfaction to people in terms of the feeling of heat, air conditioning and proper 

heat transfer due to the temperature difference. In the cold season, the temperature outside is lower than the 

temperature of the comfort conditions inside. This temperature difference causes heat to be transferred from inside 

the space to outside it in different ways. We refer to this heat transfer as a "heating load" because, in order to 

maintain the comfort temperature of our desired space, we must add heat to the space using heat-generating 

equipment (such as radiators), equal to the amount of heat that has already left the space. 

The heating load of a building is a vital determinant of its energy performance, affecting both comfort and energy 

efficiency. It denotes the quantity of thermal energy necessary to sustain a building's interior at a specified 

temperature during colder seasons. Principal elements influencing heating demand encompass: The design, 

dimensions, and orientation of the building significantly influence heat retention and dissipation. South-facing 

windows can capture passive solar energy. In this attempt, AI models used to evaluate the simulation and analysis 

of building performance. To this end, MARS and MT method were developed to fast and accurate formula-based 

models to estimate the heating load of the buildings. The following result were explored for this paper: 

• This study's statistical analysis approach offers critical insights into the subject at hand, which is often 

overlooked in the literature within this area. The density and scatter plots provide substantial evidence that non-

linear approaches are unsuitable for the data in this application. 

• The results of this study align with the AI literature that robustly supports the implementation of the 

MARS and MT in intricate scenarios. 

• The MARS model (RMSE=0.247, R=0.993) does a better performance of predicting heating loads than 

the MT (RMSE=9, R=0.947), as presented by the performance measures used during the training phase. 

• The MAE statistics indicator for MARS (0.376) indicates a reduced average error. Based on the statistical 

indicators, the models created from the MARS formula perform better and more accurately during the training 

phase compared to other models. This study indicates that non-linear models yield greater accuracy in training 

compared to linear correlations. 
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