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Abstract

This study investigates the application of machine learning techniques, specifically
Multivariate Adaptive Regression Splines (MARS) and Model Trees (MT), in estimating
building heating performance. Accurate heating performance estimation is crucial for
improving energy efficiency, reducing operational costs, and achieving sustainability goals.
By leveraging real-world datasets that incorporate variables such as weather conditions,
building characteristics, and energy consumption patterns, the study aims to evaluate the
effectiveness of these two advanced modeling approaches.

The results indicate that both MARS and MT models provide reliable and accurate
predictions of building heating performance. However, the MARS model (RMSE=0.247,
R=0.993) demonstrates superior performance compared to the MT approach (RMSE=9,
R=0.947). The MARS model's flexibility in capturing nonlinear relationships and
interactions among variables contributes to its enhanced predictive accuracy. In contrast,
the MT model, which relies on classification-based and formula-driven methods, exhibits
limitations in handling complex variable interactions.

This study highlights the advantages of using MARS for heating performance estimation,
emphasizing its potential as a robust and adaptable tool for energy management in
buildings. The findings underscore the importance of selecting appropriate machine
learning methods tailored to specific predictive tasks, ultimately advancing the state-of-
the-art in energy modeling and building performance optimization.

Keywords: Artificial intelligence models, building heating performance, architecture
parameters, MARS method, MT method

1. Introduction

Artificial intelligence (Al) models are rapidly transforming the way we analyze and optimize building
performance. In the context of heating systems, the integration of Al offers significant advantages over traditional
approaches [1]. One of the most compelling benefits of Al is its ability to process vast amounts of data with
remarkable speed and accuracy [2]. Modern buildings generate substantial datasets from sensors, energy
consumption records, weather patterns, and occupant behavior [3]. Al models can seamlessly analyze these
complex datasets to identify patterns, make predictions, and provide actionable insights. Al-driven approaches
also excel in precision and adaptability [4]. Unlike conventional methods that rely on static models or generalized
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assumptions, Al can adapt to specific building conditions and learn from real-time data [5]. This dynamic learning
capability enables Al to deliver highly accurate heating performance estimations that account for variables such
as fluctuating weather conditions, changes in occupancy, and the thermal properties of building materials.
Consequently, building managers and engineers can make informed decisions to enhance energy efficiency,
reduce operational costs, and minimize environmental impact [6-8].

Another key advantage of Al is its capacity for optimization. Machine learning algorithms can be employed to
predict energy demand, optimize system settings, and even propose maintenance schedules to prevent system
failures [9]. These proactive measures not only ensure consistent heating performance but also extend the lifespan
of heating equipment. Additionally, the ability to simulate various scenarios through Al-powered digital twins
allows stakeholders to explore energy-saving strategies without disrupting actual operations [10]. Fig. 1 presented
the visualization includes architectural parameters such as building orientation, glass facades, skylights, and
thermal walls, all annotated to illustrate their impact on heating load.

Aruilding ? & Arcalator Skylights :
orrientation eations - TS0 dover
affecting
heating load

This paper proposed an artificial methods (Al) named multivariate adaptive regression splines (MARS) and model
tree (MT) techniques utilizing several functions to model the energy performance of residential structures. The
MARS and model tree can autonomously identify the most significant predictor input variables in the model,
establish the model structure, and determine the unknown parameters of the regression equation, all while
optimizing for accuracy and complexity. It is thought that loads exhibit a linear and non-linear relationship
concerning functions. Consequently, an equation is formulated using the MARS and MT approaches to forecast
the heating load.
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2. Materials and methods
2.1. MARS method

Friedman originally elucidated the use of MARS, a prominent machine learning technique, to identify a function
that delineates the link between several predictors (Xs) and an output (YY) [11]. Nonparametric data modeling is a
machine learning approach that does not need any assumptions on the distribution of the relevant variables. MARS
is particularly advantageous when the mapping function varies for each subset of the acquired data. Predictive
models utilizing MARS have been effectively created for intricate engineering datasets previously. MARS divides
the compressive strength learning area into smaller segments throughout the learning phase [12]. (Refer to Fig.
2).
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Fig. 2: MARS training phases

MARS constructs a linear classification model for each zone to achieve optimal data matching [13]. Figure 2
illustrates that MARS constructs a data-driven piecewise linear function to represent a global model. This unique
characteristic has enabled MARS to be utilized across several sectors. An additional crucial element of the final
prediction model's learning phase is the generation of Basis Functions (BFs) throughout this process. These BFs
articulated the correlation between experimental variables and compressive strength. A standard BF is represented
in the subsequent equations.

b, (x) = max (0,C — x) or b, (x) = max (0,X — C) 1)
In this context, b, is a BF, x signifies a predictor of compressive strength, and C is a threshold parameter identified
during the learning phase. The ultimate classification model created by MARS for predicting heating load may
be encapsulated as follows:
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2.2. MT method

Quinlan introduced the MT model, which employs a binary decision tree combined with a sequence of linear
regression functions at the terminal (leaf) nodes. The standard deviation of class values at a node serves as an
indicator of the node's error level in the first phase. The anticipated decrease in error for each feature is then
ascertained [14]. The term "Standard Deviation Reduction™ (SDR) is utilized to denote the reduction of mistakes.

SDR = sd(T) — Z @sd(ﬂ) ©)

sd signifies the standard deviation, while Ti and T denote a subset of examples corresponding to the i potential
outcome and a collection of cases that reach the node, respectively. The standard deviation of a child node is less
than that of its parent node due to the splitting process. The optimal split is determined after evaluating all possible
splits to minimize expected error (Refer to Fig. 3).

[15].
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Fig. 3: MT data classification for regression analysis
2.3. Modeling database

A database of 768 building samples, derived from 12 building shapes with a volume of 771.75 m?, utilizing
Autodesk Ecotect Analysis, has been examined by Tsanas and Xifara [16]. Each building sample is defined by
eight predictor input parameters: relative compactness (RC), surface area (SA), wall area (WA), roof area (RA),
overall height (OH), orientation (OR), glazing area (GA), and glazing area distribution (GAD). Additionally, two
outputs for heating load (HL) have been documented for each building sample throughout the Al simulation
procedure.

In this database, 12 buildings with a total volume of 771.75 cubic meters were examined, and measurement data
were extracted to perform the modeling process. The levels of reflective glass in this research are 0-40%, and also
the distribution of these levels in the direction of the building with 5 placement scenarios, including 25% in 4
directions of the building, 55% in the south and the rest equal to 15% in other directions, 55% in the north and the
rest in an equal amount of 15% in other directions, 55% in the east and the rest in an equal amount of 15% in other
directions, and 55% in the west and the rest in an equal amount of 15% in the directions, has been Therefore,
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according to the relationship number (4), the heating load in the building is a function of this relationship, and the
models of this research were formed using this relationship of predictor variables.

HL = f (RC,SA,WA,RA,OH,0,GA,GAD) (4)
2.4. Performance metrics

This article employed the assessment criteria (Egs. (5-7)), which include the correlation coefficient (r), Root Mean
Square Error (RMSE), and Mean Absolute Error (MAE) [17].

R = Zﬁl(oi_a)-(}"i—?)
\[Zgl(oi_a)zzﬁﬂpi—ﬁ)z

(5)

RMSE = Zi=1(Piz00?
=M, (0-0:)"

(6)

M \p._0.
MAE ===l )

3. Result and discussion

3.1. MARS model development

This study evaluates the developed models using the MARS method. A total of 15 models were designed and
tested by varying the parameters of this method. Based in the Fig. 4, among these models, Model 8 was identified
as the best-performing model, as it achieved the lowest error rate along with the highest accuracy and solution
convergence. In this research, the penalty parameter was initially set to 1 to 8. Ultimately, the optimal penalty
parameter value, Cpest=2, Was determined through the process of error minimization using the least squares error
method. These findings highlight the high capability of the MARS method in optimizing models and reducing
prediction errors. Table 1 reported the MARS training procedure for the hyper-parameters tuning.
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Fig. 4: Evaluation of the MARS models development
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Table 1: MARS training procedure

Output HL
Function Piece-wise linear
Max function 30
Max interaction 3

The MARS model was modified to optimize the prediction of the heating load of the building performance with
a value of 18, while the greatest degree of interaction of the BFs was established at the second order. Furthermore,
as suggested by Jekabsons, the penalty factor ¢ was determined by trial and error within the range of 1 to 8, with
the optimal value discovered as cnes=2. Ultimately, the subsequent non-linear equation was put out for the
modeling of the CS. The functionalities for each BF were displayed in Table 2.

Table 2: MARS functions for prediction of the HL.

Func. NO. Functions Func. NO. Functions

BF1 | max(0, x4 -122.5) BF10 | BF1 x max(0,0.1 -x7)
BF2 | max(0,122.5 -x4) BF11 | BF7 x max(0, x3 -343)
BF3 | max(0, x7 -0.1) BF12 | BF7 x max(0,343 -x3)
BF4 | max(0,0.1 x7) BF13 | BF3 x max(0, x4 -147)
BF5 | max(0, x2 -637) BF14 | BF3 x max(0,147 -x4)
BF6 | max(0,637 -x2) BF15 | BF7 x max(0, x1 -0.71)
BF7 | BF1 x max(0, x2 -612.5) BF16 | BF7 x max(0,0.71 -x1)
BF8 | BF1 x max(0,612.5 -x2) BF17 | BF3 x max(0, x8 -4)

BF9 | BF7 x max(0, x1 -0.69) BF18 | BF3 x max(0,4 -x8)

Note: X1-X8 refers to relative compactness (RC), surface area (SA), wall area (WA), roof area (RA), overall
height (OH), orientation (OR), glazing area (GA), and glazing area distribution (GAD) respectively.

HL = 45.816 — 0.682 X BF1 + 0.572 X BF2 + 18.285 x BF3 — 82.045 X BF4 — 0.533 X BF5 —
0.23255 X BF6 + 0.0087 * BF7 + 0.014 X BF8 + 0.019 X BF9 + 0.396 X BF10 + 9.8753e — 06 X
BF11 —2.3198e — 05 x BF12 —0.09 x BF13 4+ 0.24 X BF14 4+ 0.02 x BF15 — 0.026 X BF16 —
1.080 x BF17 + 0.305 x BF18 (8)

3.2 MT model development

After separating the data into two phases, training and testing, the MT model was fitted on the training data. At
this stage, the data were classified into groups, and a linear multivariate regression model (LM) was presented for
each group at the following LMSs. The regression equations and the governing rules for estimating the heating load
are presented.

LM num: 1
HL =52.7347 x Relative compactness + 0.0064 x Wall area + 12.8684 x Glazing area - 21.759
LM num: 2

HL = 52.7347 x Relative compactness + 0.0064 x Wall area + 8.4506 x Glazing area - 21.1103
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LM num: 3

HL = 52.7347 x Relative compactness + 0.0064 x Wall area + 7.4641 x Glazing area - 20.4313
LM num: 4

HL = 44.9747 x Relative compactness + 0.0064 x Wall area + 15.4286 x Glazing area - 0.0295 x Glazing area
distribution - 13.7995

LM num:5

HL = 44.9747 x Relative compactness + 0.0064 x Wall area + 9.3712 x Glazing area - 0.1633 x Glazing area
distribution - 12.8929

LM num: 6
HL =-10.0707 x Relative compactness + 0.0064 x Wall area+ 20.6848 x Glazing are+ 17.1893
LM num: 7

HL =-10.6277 x Relative compactness + 0.0064 x Wall area + 10.5852 x Glazing area - 0.1234 x Glazing area
distribution + 18.7905

LM num: 8

HL = 105.5609 x Relative compactness + 0.0119 x Wall area + 17.9549 x Glazing area - 52.6766
LM num: 9

HL = 42.8508 x Relative compactness + 0.0225 x Wall area + 33.2161 x Glazing area - 18.6578
LM num: 10

HL = 4.6956 x Relative compactness + 0.0225 x Wall area + 15.024 x Glazing area + 0.106 x Glazing area
distribution + 14.3216

LM num: 11
HL = 9.1387 x Relative compactness + 0.0371 x Wall area + 17.3941 x Glazing area + 5.6521
LM num: 12

HL = 6.1985 x Relative compactness + 0.1301 x Wall area + 0.2605 x Orientation + 18.1584 x Glazing area -
18.8164

The HL variable divides the two-branched tree pattern associated with cooling load estimation into two categories.
Next, each category undergoes another binary branching process. We repeatedly branch each node until we reach
the final node (leaf), where the sum of the squared deviations from the average of the data is approximately zero.
After pruning the extra branches, the optimal tree emerges. Finally, we built a tree model for the output variable
based on the relevant equations and calculated the values predicted by the model using the training and test data.
The proposed MT technique includes 7 input parameters and 1 output parameter (heating load), which was
developed using 12 conditional rules in the form of linear equations. Therefore, Fig. 5 displays the outline diagram
of the MT method's tree formation in the form of rules for heating load estimation.
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Fig. 5: MT structure for HL estimation

Based on the tree structure, the branching variable to provide LM1 is the HL parameter, and its corresponding
values are 0.75, 0.65, and 0.63. In addition, the value of the GA variable was considered to be 0.325 and 0.175 to
produce the LM1. In LM2, the branching parameter in the tree structure was GA, with a value of 0.175. Using all
variables as input variables, the model showed that selecting these parameters based on architectural features had
a significant impact on the structure's heating load. It shows how to develop the tree model and settings of effective
parameters in Weka 3.7 software. Additionally, the LMs also display the models that were developed using the
decision tree method. To select the optimal model, 50 models have been developed in this section, and 20 models
are presented in Fig. 6. The MT4 model with a correlation coefficient of 0.979 has performed better than other

models.
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Fig. 6: Evaluation of the MT models development
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3.3. Performance assessment

As shown in Table 3, the correlation coefficient in the training phase for the March model and the tree model is
0.995 and 0.979, respectively. is Also, the value of the RMSE statistical index for the proposed model for the
March model and the tree model has been obtained as 0.216 and 0.315, respectively. The results showed that the
models had excellent results in the training phase of convergence conditions (R>0.8). Also, the MAE statistical
index in the testing phase for March (0.376) was better than the other two proposed models and reported lower
error values. So, the numbers show that MARS's non-parametric and non-linear model that can come up with
values works well and is very accurate during the training phase compared to other models. The use of a non-
linear and non-parametric approach in model training played an essential role in model accuracy.

Table 3: MARS functions for prediction of the HL.

Metrics
Performance = Models
RMSE MAE
Trainin MARS 0.995 0.216 0.338
9  MT 0979 0315 0405
. MARS 0.993 0.247 0.376
Testing

MT 0.956 0.749 0.607

In this research, Figs. 7 and 8 illustrated the observed and predicted HL values by the proposed model for the
training stages. In the training phase, the MARS model has less error compared to the MT model in predicting the
HL of the building. In a qualitative comparison, most of the HL values are concentrated on the regression line
(ideal line), and only a small number of these points are outside the concentration area. In the evaluation of the
models, a deviation of more than 20% has been observed in the prediction of the estimated points in the range of
20-30% (over estimation) in the models and 35-45% in the models (under estimation). In the MARS model, when
the estimation values increase, they typically align with the software's measurement values. Overall, this study's
methods have undergone proper training for evaluation. During the testing phase, as shown in Fig. 8, the models
accurately predicted the HL values. Predicting these values is mostly less than 20%, and the correlation between
actual and predicted laboratory values is at least 90%. Also, the percentage of absolute error in the testing phase
has shown that the MARS model has decreased by 4 and 5% compared to the neural network and regression
model. The red line in the figure indicates that the indicated values overestimate or underestimate data with weaker
prediction (less fitting). In summing up the evaluations, this error rate has been reduced in the MARS model, and
a more efficient and accurate model has been presented.

50 50
= 45 © MARS - 45 ® MT
S 40 Pt 2 40 @
£ 35 o e 35 :
= = 1=
g 30 & 5 30
= 25 & = 25
220 ?g 20
215 3 15
S 10 ° 2 10

5 & 5

0 0

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Predicted Heating Load Predicted Heating Load

Fig. 7: Scatterplots of the training performance of the HL models
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Fig. 8: Scatterplots of the testing performance of the HL models

4. Summary and Conclusion

Nowadays, life requires energy at a rapid pace, a time when energy resources are limited. In recent years, this
need has significantly increased globally. The importance of using energy to achieve thermal comfort in buildings
has always been the focus of researchers. Among the cases of thermal comfort in the cold season is the heating
load of the building, which gives satisfaction to people in terms of the feeling of heat, air conditioning and proper
heat transfer due to the temperature difference. In the cold season, the temperature outside is lower than the
temperature of the comfort conditions inside. This temperature difference causes heat to be transferred from inside
the space to outside it in different ways. We refer to this heat transfer as a "heating load" because, in order to
maintain the comfort temperature of our desired space, we must add heat to the space using heat-generating
equipment (such as radiators), equal to the amount of heat that has already left the space.

The heating load of a building is a vital determinant of its energy performance, affecting both comfort and energy
efficiency. It denotes the quantity of thermal energy necessary to sustain a building's interior at a specified
temperature during colder seasons. Principal elements influencing heating demand encompass: The design,
dimensions, and orientation of the building significantly influence heat retention and dissipation. South-facing
windows can capture passive solar energy. In this attempt, Al models used to evaluate the simulation and analysis
of building performance. To this end, MARS and MT method were developed to fast and accurate formula-based
models to estimate the heating load of the buildings. The following result were explored for this paper:

. This study's statistical analysis approach offers critical insights into the subject at hand, which is often
overlooked in the literature within this area. The density and scatter plots provide substantial evidence that non-
linear approaches are unsuitable for the data in this application.

. The results of this study align with the Al literature that robustly supports the implementation of the
MARS and MT in intricate scenarios.

. The MARS model (RMSE=0.247, R=0.993) does a better performance of predicting heating loads than
the MT (RMSE=9, R=0.947), as presented by the performance measures used during the training phase.

. The MAE statistics indicator for MARS (0.376) indicates a reduced average error. Based on the statistical
indicators, the models created from the MARS formula perform better and more accurately during the training
phase compared to other models. This study indicates that non-linear models yield greater accuracy in training
compared to linear correlations.
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