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Abstract 

The complexity of modern smart grids decentralized energy systems and renewable 

energy sources has increased, requiring advanced energy management solutions. The 

paper presents a framework for reinforcement learning for decentralized energy 

management in smart grids. Based on production, consumption, and storage dynamics, 

the proposed model adapts unit costs to the individual prosumers’ energy strategies. 

Meanwhile, external production operators (EPOs) have dynamically adjusted pricing in 

response to energy shortages and surpluses throughout the system. Through simulation, 

the framework demonstrates that actors with different energy profiles can independently 

design an optimized strategy, reducing the need for external energy supplies and 

stabilizing costs throughout the system. The research demonstrated the scalability and 

robustness of decentralized learning in energy management efficiency and adaptation and 

contributed to the development of smart grids. 
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1. Introduction 

Modern smart grids (SG) must take innovative approaches to energy management, as renewable energy is rapidly 

being used and energy systems become more complex. Smart grids facilitate decentralized energy systems by 

integrating different prosumers (producers and consumers) and optimizing resource allocation. However, these 

dynamic and decentralized systems face challenges balancing energy supply and demand and maintaining 

efficiency. Based on energy shortages and interactions with external production companies (EPOs), this paper 

examines how actors can adapt their cost-effective strategy over time. Using the proposed model, each actor 

optimizes its behavior according to production, consumption, and storage dynamics. In reinforcement learning, 

actors iteratively improve their unit cost estimates to reflect the actual cost of energy and reduce dependence on 

external providers. By dynamically adjusting its price to meet the entire system’s energy deficits or surpluses, 

external production operators create an interactive price ecosystem. The decision-making process of decentralized 

actors and the energy supply mechanism of this dual-layer learning system interact and show the potential of 

adaptive pricing models for balance and efficiency. 

Reinforcement learning (RL) has become a powerful tool for optimizing smart grid operations to address 

challenges such as decentralized decision-making, demand-supply balance, and dynamic pricing. Its applications 

include energy management, load scheduling, demand response, and market trading in a variety of smart grid-

related areas. Below, we summarize the major advances made in the RL-based approach to smart grid systems. 
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[1] In the Smart Grid application, we critically examined the safe reinforcement learning techniques and stressed 

the need for a robust framework to ensure stability while optimizing the performance of the system. The 

distributed RL approach proposed in [2] was applied to intelligent load scheduling, enabling households to 

optimize energy use while maintaining network stability. Similarly, [3] showed the use of multi-agent RL for 

industrial smart grids, focusing on coordination among various actors to maximize resource allocation. Dynamic 

pricing strategies are an important area of RL research. [4] The distributed real-time pricing mechanism has been 

developed using RL to optimize the prices of grid operators based on real-time demand and supply fluctuations. 

[5] The use of RL in the management of residential demand response demonstrates how price-based incentives 

can encourage consumers to adapt to their consumption patterns. In another study [6], an RL-based decision 

system proposed allows end-users to select the optimal electricity pricing plan, thereby further personalizing 

energy consumption. Energy storage and market participation are important applications for RL in smart grids. 

[7] combined deep learning and RL to develop profitable strategies for energy storage systems at the grid level, 

and [8] introduced the multiple agent RL algorithm (MARLA-SG) to optimize demand responses and improve 

grid flexibility and efficiency. [9] The RL's application is extended to the distributed energy market, enabling 

consumers to trade energy effectively in decentralized markets. [10] Using multiple agent RL for energy 

scheduling at vehicle charging stations, improved coordination and reduced costs are achieved. [11] Introduced a 

multi-objective RL framework based on preferences to optimize multi-microgrid systems, highlighting the 

potential of RL to manage competing objectives in smart grid environments. Similarly, [12] applied a multiagent 

deep RL for voltage control, achieving coordinated active and reactive power optimization. The hierarchical 

approach proposed by the RL for community energy trading [13] has demonstrated the power of the RL to promote 

local energy markets and to facilitate efficient energy exchange between households. Reinforcement learning 

technology is also applied to specific fields such as building energy management [14], selective power system 

application [15], and real-time autonomous control of multi-energy residential systems [16]. Despite these 

advances, RL remains challenged to extend to large-scale and complex smart grid systems, ensure safe and 

interpreting learning outcomes, and integrate RL frameworks into real-world constraints. The examined studies 

highlight the transformative potential of RL for smart grid operations and are paving the way for other innovations 

in decentralized energy management and system optimization. 

Although these approaches have advanced in the field, they are often lacking in the scale, adaptability, robustness 

of dynamic and distributed environments. Moreover, much of the previous work has focused on theoretical 

developments without taking sufficiently into account the interactions between decentralized actors and 

centralized market mechanisms (e.g., EPOs). This limits our understanding of how multi-agent systems achieve 

optimal energy strategies in real scenarios. In this paper, we propose a decentralized RL-based framework 

integrating dynamic pricing mechanisms for smart grids and EPOs. In contrast to previous studies that focused on 

the individual aspects of smart grid management, this study integrated the adaptive behavior of multiple actors 

with heterogeneous energy profiles. We combine decentralized RL with a responsive EPO pricing model to ensure 

cost optimization and stability throughout the system. The study evaluated the scalability and robustness of an RL 

model by analyzing learning processes and convergence behaviors in different energy states, including deficits, 

balanced states, and surpluses. Due to the dynamic and distributed nature of the modern smart grid, innovative 

solutions to traditional centralization approaches must be sought. The research is applied to energy management 

by applying a decentralized RL framework that allows individual actors of smart grids to optimize their energy 

strategies adaptively over time. In particular, the study investigated how actors adjusted their unit costs based on 

energy deficits and interaction with EPO, how decentralized learning stabilized system costs and reduced 

dependence on external energy, and how the model was scalable when applied to different actors and dynamic 

energy environments. This work contributes to the development of multi-agent systems in smart grids by 

demonstrating the effectiveness of the RL to achieve decentralized optimization and providing valuable insight 

into energy adaptive management. 

The rest of this paper is as follows: Part II introduces the Smart Grid Model, providing a comprehensive 

framework for the operation dynamics of the smart grid. Section III focuses on the application of reinforcement 

learning techniques within the smart grid. Finally, Section IV concludes the study and summarizes the main results 

and contributions. 
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2. Smart Grid Model 

Our proposed model builds upon and extends the framework previously introduced in [17]. The model assumes 

that the day is composed of uniform continuous intervals for several hours. For each actor, two assumptions are 

made: (1) the consumption and production values remain unchanged within each interval, and (2) the 

consumption and production values of subsequent periods can be predicted accurately. 

In this discrete-time framework, all energy parameters for each actor are treated as fixed within a single interval. 

During each period, the smart grid is represented as a multi-agent system. Let AG={ act1,…, actN} denote the 

set of N actors connected to the SG, where each actor acti  (1≤i≤N) can potentially generate electricity, 

particularly from renewable sources, and store it.  Each actor's production and storage capacity is limited and 

changes over time. The following parameters are defined for each actor acti  (1≤i≤N) and the period t: 

- Prodi
t: The energy produced by the actor during t.  

- Consi
t: The amount of electricity used by the actor during t.  

- Storei
t: the power stored by the actor at the beginning of the period t.  

- Storei
max is the maximum storage capacity, while Remi

t is the residual storage capacity, which represents 

the maximum additional energy the actor can store during a period. Remi
t = Storei

max − Storei
t 

In one period, actors cannot simultaneously consume and supply energy to storage. 

The smart grid also interfaces with an EPO, capable of supplying electricity to the grid as needed or purchasing 

surplus electricity from the grid. Importantly, the actors themselves do not directly engage with the EPO. 

The smart grid functions as a centralized energy container connecting all actors acti (1≤i≤N). During each period 

t, the actor acti contributes Prod_ToSGi
t units of electricity to the grid and consumes Cons_FromSGi

t units of 

electricity from the grid, ensuring that Prod_ToSGi
t and Cons_FromSGi

t cannot simultaneously be greater than 

zero. The aggregate electricity injected into the grid is denoted by 𝐼𝑆𝐺
𝑡 = ∑𝑖=1

𝑁  Prod_ToSG𝑖
𝑡, while the total 

electricity consumed from the grid is 𝑂𝑢𝑡𝑆𝐺
𝑡 = ∑𝑖=1

𝑁  Cons_FromSG𝑖
𝑡. 

If In𝑆𝐺
𝑡 < 𝑂𝑢𝑡𝑆𝐺

𝑡 , the EPO supplies a shortfall of energy 𝑞 = 𝐼𝑛𝑆𝐺
𝑡 −𝑂𝑢𝑡𝑆𝐺

𝑡 , incurring costs determined by the 

linear increasing cost function 𝜙𝐸𝑃𝑂
− (𝑞). Conversely, if 𝑂𝑢𝑡𝑆𝐺

𝑡 ≤ 𝐼𝑛𝑆𝐺
𝑡 , the smart grid sells surplus energy 𝑞 =

𝑂𝑢𝑡𝑆𝐺
𝑡 − 𝐼𝑛𝑆𝐺

𝑡   to the EPO, generating revenue based on the linear increasing benefit function 𝜙𝐸𝑃𝑂
+ (𝑞).  

At each t period, each actor acti (1≤i≤ N) selects one of the four possible operating modes, known as modei
t 

∈ {CONS+,CONS−,DIS,PROD}, based on energy requirements and production capacity. 

• CONS- and CONS+:  These modes show that actors need energy from SGs to meet consumption 

requirements (Cons_FromSGi
t >0), since their production is insufficient. 

The distinction lies in whether the actor utilizes its storage: 

o CONS+: The actor consumes stored energy in addition to energy from the SG. 

o CONS-: The actor refrains from using stored energy, relying solely on the SG. 

• DIS: This mode signifies the actor’s decision to operate independently of the SG, such that Prod_ToSGi
t 

= Cons_FromSGi
t =0. 

• PROD: This mode indicates that the actor is contributing energy to the SG (Prod_ToSGi
t >0), with its 

production being sufficient to meet its consumption. 

The choice of actors' modes depends on three different states: production (Prodi
t), storage (Storei

t), and 

consumption (Consi
t): 

➢ State Deficit: In this state, the actor’s production and storage are insufficient to meet its consumption 

needs. Prodi
t + Storei

t ≤ Consi
t 
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As a result: 

• Prod_ToSGi
t =0, and the actor must rely on the SG for energy. 

• The actor can choose:  

o CONS+: Consumes from both the SG and storage. In this case, Cons_FromSGi
t = Consi

t 

− ( Prodi
t + Storei

t), and the storage is depleted (Storei
t+1 =0). 

o CONS−: Consumes solely from the SG without using storage. Here, Cons_FromSGi
t = 

Consi
t − Prodi

t, and storage remains unchanged (Storei
t+1 = Storei

t). 

➢ State Self: In this state, the actor has sufficient resources to meet its consumption needs but does not 

have surplus production.  

Prodi
t + Storei

t > Consi
t and Prodi

t ≤ Consi
t 

The actor can choose: 

• CONS-: Consumes only from production (Cons_FromSGi
t = Consi

t − Prodi
t), leaving storage 

unchanged (Storei
t+1 = Storei

t). 

• DIS: Operates independently of the SG. In this case, Cons_FromSGi
t = 0, and storage is partially 

depleted to cover the deficit (Storei
t+1 = Storei

t − ( Consi
t − Prodi

t)). 

In both modes, the actor does not produce energy for the SG (Prod_ToSGi
t =0). 

➢ State Surplus: In this state, the actor’s production exceeds its consumption requirements.  

Prodi
t > Consi

t 

The actor can choose: 

• PROD: Supplies excess energy to the SG, where Prod_ToSGi
t = Prodi

t − Consi
t, while storage 

remains unchanged (Storei
t+1 = Storei

t). 

• DIS: Prioritizes storing excess energy. In this case:  

o Storage is updated to Storei
t+1 =min (Simax, Storei

t + ( Prodi
t − Consi

t)). 

o Any energy that cannot be stored (∣Prodi
t − Consi

t − Remi
t ∣) is provided to the SG 

(Prod_ToSGi
t). In both cases, the actor does not consume energy from the SG 

(Cons_FromSGi
t =0). 

In the State Deficit, each actor acti has the option to choose its mode from {CONS+,CONS-} at each period t. In 

the State Self, the actor can select its mode from {CONS−,DIS }. In the State Surplus, the choice is between 

{PROD,DIS}. Thus, in any state, each actor always has exactly two strategic options available. 

These modes are designed to prioritize the actor's production for its consumption. Additionally, the stored energy 

of acti is exclusively replenished using its production and never imported from the SG. Essentially, each actor ai 

utilizes its total production (and possibly its current storage) before importing electricity from the SG. Therefore, 

the decision-making for actors focuses solely on the policy governing the use or replenishment of their storage. 

3. Reinforcement learning 

On the one hand, we examine the price evolution of individual actors or prosumers, driven by reinforcement 

learning processes. On the other hand, we focus on the price evolution of the Smart Grid (SG) and the External 

Production Operator (EPO). 

3.1. Adaptive Price Evolution of Prosumers Through Reinforcement Learning 

Based on the reinforcement learning framework, each actor can adjust its unit costs over multiple learning periods. 

Each actor evaluates performance by analyzing energy deficits and energy costs purchased from EPO. Various 

parameters influence the actors' learning dynamics. First, their production capacity (Prodi
t) represents the amount 

of energy they generate over each period. Second, their Consumption Requirement (Consi
t) reflects the energy 

demand in the same period. Thirdly, their storage dynamics are defined by the energy available at the beginning 



International Journal of Multiphysics 

Volume 18, No. 4, 2024 

ISSN: 1750-9548 
 

653 

of the period (current storage (Storei
t)) and the maximum storage (Storei

max) which sets the maximum amount of 

energy storage. In addition, each actor has a learning rate ( i ) that determines how quickly it adapts to changes 

in energy costs, and an initial unit cost (UInitial) that represents its baseline energy consumption cost. These 

characteristics allow actors to dynamically adapt and optimize energy strategies within the grid. 

In the smart grid system, each actor determines its actions based on the relationship between its production (Prodi
t), 

consumption (Consi
t), and storage (Storei

t). In the State Deficit (Prodi
t + Storei

t < Consi
t), the actor’s production 

and storage are insufficient to meet its consumption requirements. Consequently, the actor must import energy 

from the smart grid, which may depend on the EPO to meet the demand. During this state, the actor employs a 

reinforcement learning process to evaluate the cost incurred from importing energy. It updates its unit cost estimate 

using the formula: 
1 Cost Incurred

Energy Deficit

t t t

i i i iU U U+  
= + − 

 
,  

where i  is the actor’s learning rate, and the adjustment reflects the real cost of energy. In addition, the storage 

of the actor is fully exhausted in this state to give priority to immediate consumption needs. In a state balance or 

surplus (Prodi
t + Storei

t ≥ Consi
t), the production and storage of the actor are sufficient to meet or exceed its 

consumption. However, this simulation focuses on deficit management and does not adjust unit costs in these 

states in the learning process. This approach enables actors to dynamically optimize their energy strategy, 

particularly in deficit scenarios where cost management is important. 

Figure 1 shows the convergence of unit costs between five different intelligent actors and OEAs over 50 learning 

periods. Initially, the unit costs show significant differences due to the random initialization of the unit costs of 

the actors and different energy profiles such as production, consumption, and storage capacity. In response to the 

actual energy cost during the period of deficit, all actors adjust their unit costs as unit costs stabilize over time. 

The level of learning and energy deficits affects the convergence rate, indicating that actors have reached the best 

estimates of their energy costs. At the end of the learning process, all actors match the EPO costs reflecting the 

system balance. As a result, reinforcement learning is effective in reducing external energy dependence and 

optimizing cost strategies. 

 

Figure 1. Convergence of Unit Costs for Smart Grid Actors Over Learning Periods 

In Figure 1, some key lessons can be drawn from the proposed learning framework and its impact on smart grid 

energy management. As a first step, the actors demonstrate how their unit costs adapt over time and achieve 

convergence despite different starting conditions. Furthermore, each actor learns independently and shows how 

decentralized learning can help to effectively manage energy in smart grids. In addition, unit cost convergence 

reflects the actors' ability to estimate and adapt to external energy prices, which leads to more efficient energy use 

and lower costs. Finally, it illustrates the scalability of learning models in which several actors with different 

energy profiles independently converge on optimal strategies without central control. Because all actors align 
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costs with the conditions of the external market, the model demonstrates its ability to achieve equilibrium in 

dynamic energy environments and demonstrates the robustness of learning mechanisms. 

3.2 Price Evolution of the Smart Grid (SG) and External Production Operator (EPO) 

The learning dynamics of SGs can be classified as decentralized RL, and SGs adjust their internal prices 

dynamically based on the behavior of individual actors (prosumers) and the aggregated state of the grid, such as 

energy shortages.  

The SG does not dictate actor decisions but instead reacts to their behaviors, creating a decentralized optimization 

process. The SG’s pricing mechanism evolves through feedback: it observes the total energy deficit (state), adjusts 

its unit cost (action), and responds to changes in demand and actor behavior over time (feedback). Through 

improved efficiency or locally generated energy, actors can reduce deficits and stabilize SG prices. Through 

demand-driven optimization, SG indirectly learns from the network to manage costs dynamically and ensure 

network efficiency. 

The SG updates its price (
0
−

) dynamically based on the total energy deficit in the grid. The formula for the 

update can be expressed as: 0

Total Deficit
Base Cost ·

Number of Actors
 − = +  

Where: 
0
−

is the unit price set by the SG for the current period, dynamically adjusted to reflect real-time grid 

conditions. The Base Cost represents the baseline price, accounting for the SG’s fixed operating costs, such as 

infrastructure and maintenance.   is the adjustment factor, a scaling parameter that determines how sensitive the 

SG price is to changes in the total energy deficit, ensuring the pricing mechanism reacts proportionally to system 

demands.  Due to the unsatisfactory energy demand of the grid, a total deficit means a cumulative energy deficit 

experienced by all actors in deficits. To ensure a fair distribution of price adjustments, SG can adjust pricing 

dynamically based on the real-time state of the network. When the total deficit increases, prices rise, encouraging 

actors to optimize energy use and increase local production. In addition, when the deficit is low, prices stabilize 

close to the basic cost and ensure the equilibrium of the system. 

The EPO employs Decentralized Reinforcement Learning through a dynamic pricing mechanism defined by the 

cost function: ( ) ·ln(1 · )EPO q q  − = +  

This logarithmic function ensures that the cost grows linearly with the energy deficit (q), which is a realistic 

approach for bulk energy pricing. The parameters α and β control the scale and sensitivity of the cost, allowing 

the EPO to adapt pricing dynamically to changing energy demands.  

This structure prevents runaway costs while maintaining responsiveness to energy shortfalls. In contrast, the SG 

also employs reinforcement learning, dynamically adjusting its internal pricing to reflect the collective behavior 

of prosumers and the total energy deficit. Unlike the EPO, the SG indirectly learns from actor responses, making 

its approach more adaptive and decentralized as it bridges the gap between local prosumers and the external energy 

market. Table 1 highlights the distinctions between the pricing mechanisms of SG and EPO. 

Table 1. Comparison of Pricing Mechanisms Between SG and EPO 

Aspect Smart Grid (SG) External Production Operator (EPO) 

State Aggregate system deficit or surplus Energy flow (deficit or surplus) 

Action Adjust internal pricing  Adjust external pricing  

Feedback System-wide energy dynamics Immediate energy flow (demand/supply) 

Objective Minimize costs and stabilize prices Respond dynamically to supply and demand 

Adaptability High (influenced by actors) Medium (driven by predefined cost/benefit functions) 
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The SG learns adaptively, optimizing its pricing strategy through reinforcement learning to balance internal 

efficiency while responding to external conditions, such as the pricing set by the EPO. SG's energy demand and 

supply are dynamically adjusted by the EPO based on predefined cost-benefit functions. Although the EPO does 

not "learn" as SG does, its reactive price influences SG's reinforcement learning and creates a feedback loop 

between internal and external energy systems.  

Through dynamic multilayer systems, SG and EPO are interdependent to maintain network efficiency and 

stability. For EPOs and SG, this graph shows the evolution of unit costs over time. As a result of the fluctuating 

demand for smart grids, the blue line represents the unit cost of energy purchased from EPO. The peak in EPO 

costs is reflected in periods of high energy shortages where the SG relies heavily on external energy supply. On 

the other hand, a solid green line shows the energy unit cost of SG, which is always lower than EPO costs. The 

SG is devoted to local production and storage energy and minimizes the costs of participants. SG costs are 

relatively stable and less volatile, reducing dependence on EPO and providing local energy sources to meet 

demand. Figure 2 shows the ability of SG to stabilize energy costs while reducing dependence on expensive 

external sources. 

 

Figure 2. Comparison of Unit Costs Between External Production Operator (EPO) and Smart Grid (SG) Over 

Time 

There are several reasons why the price of the SG is consistently lower than the EPO. First, the SG is a buffer 

system that optimizes resource allocation between prosumers and uses energy generated and stored internally, 

resulting in lower operational costs than EPO purchases. As a second factor, the pricing logic of the SG is weighed, 

combining a basic cost with an EPO part when external energy is needed. SG prices reflect operational efficiency 

and are still lower unless the network becomes too dependent on the EPO. Thirdly, the smart grid reduces the 

overall cost of prosumers by minimizing dependence on external suppliers and deliberately keeping internal costs 

lower than those of the EPO. Finally, the location of energy through the contributions of consumers reduces the 

average internal costs of SG by reducing the need for external energy purchases. As a result, SG efficiently 

manages energy and reduces member costs.  

The convergence of the unit costs of actors demonstrates the adaptive learning and optimization of energy strategy. 

Initially, because actors are relying on external energy from the EPO to offset deficits, unit costs rise. Each actor 

follows a unique trajectory, influenced by its learning rate and specific energy conditions, such as production, 

consumption, and storage capacity. This variation in convergence rates reflects the diversity in actors’ behaviors 

and initial states. Over time, the unit costs stabilize, indicating that actors have successfully learned to balance 

their energy usage and minimize reliance on external resources. The convergence highlights the effectiveness of 

the learning process, as actors in deficit states gradually refine their strategies to achieve greater efficiency in 

energy management. 
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4. Conclusion 

The study aims to develop a reinforcement learning framework for the decentralized energy management of smart 

grids, allowing actors to optimize energy strategies adaptively while interacting with external production operators 

(EPOs). This work provides for the development of multi-agent reinforcement learning models with scalable and 

robust features to support decentralized decision-making, the integration of dynamic price mechanisms for smart 

grids and EPOs, and the complete analysis of the convergent behaviors of actors with different energy profiles. 

Based on the results, decentralized learning is effective in stabilizing unit costs, minimizing external energy 

dependence, and achieving cost reductions throughout the system. The practical applications of the proposed 

framework include improving energy allocation, encouraging participants, and balancing local energy production 

with market requirements in smart grid systems in the real world. Through adaptive pricing and specific learning, 

this model supports dynamic energy environments, making it particularly relevant to grids that integrate renewable 

energy sources and local storage.  

To strengthen the proposed framework, future research can explore several directions. Among these, the extension 

of the model incorporates elastic demand responses, the integration of advanced actor interactions, such as 

cooperative energy sharing, and the assessment of performance in large-scale systems with real-world constraints. 

Additional research is needed to address the need for interpretation and safety in the reinforcement of learning in 

critical energy systems. Future research can use this research to improve the efficiency, scale, and sustainability 

of smart grids. 
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