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Abstract 

In this paper, the effect of non-uniform main thermal flow on thermoacoustic heat transfer 
in a cylinder is investigated. In order to model thermoacoustic phenomenon, the 
hydrodynamic and thermal parameters of the flow are considered as the decomposition of 
a main flow and oscillating flow. The general and particular governing equations, including 
continuity, momentum, energy, and the ideal gas law, are developed assuming transient 
two-dimensional viscous flow in cylindrical coordinate. Various functions (linear, 
exponential, logarithmic, sine, and Bessel) are considered for the main flow temperature. 
From the simplification of the governing equations, a series of ordinary differential 
equations have been obtained, which have been solved semi-analytically. The semi-
analytical results of the present study are in good agreement with the analytical results of 
previous studies. The results of the present study show that the logarithmic temperature 
function for the main flow provides the highest gain of work flux density. However, the 
linear temperature function also provides a relatively good gain and can be created more 
easily than the logarithmic function. 
Keywords: Thermoacoustic heat transfer; Cylinder; Non-uniform thermal flow.

Introduction 

Thermoacoustics is a branch of engineering science that studies the interactions between thermal and acoustic 

phenomena. It focuses specifically on how sound waves are generated by temperature differences, as well as the 

effect of sound waves on temperature distribution and heat transfer. The application of thermoacoustic principles 

is observed in various fields, including engineering, environmental sciences, and even medical technology.  In a 

thermoacoustic system, a temperature gradient generates a sound wave, and the sound wave causes pressure 

oscillations and work production. Thermoacoustic systems have advantages such as simplicity of structure and 

the ability to use low-grade energy sources  (solar energy, waste heat, etc.). However, their energy conversion 

efficiency is not very high. Therefore, it is essential to study ways to increase their energy conversion efficiency. 

Various experimental and theoretical research has been conducted on modeling the basic principles of 

thermoacoustic phenomenon and its applications, some of which will be reviewed below. 

Kramers (1949) modeled thermoacoustic oscillations in a closed-ended cylinder under temperature gradient using 

boundary layer theory [1]. His modeling results differed greatly from experimental observations. From his results, 

it can be concluded that boundary layer theory is not a suitable tool for modeling thermoacoustic phenomenon. 

Rott (1969) developed a new theory for analyzing thermoacoustic phenomenon assuming transient two-

dimensional viscous flow [2]. His theory involved the decomposition of a main thermal flow and thermoacoustic 

oscillations. Rott’s theory is currently used to analyze thermoacoustic heat transfer in many practical applications. 

Wu et al. (2001) investigated the thermoacoustic heat transfer of a ferromagnetic fluid under an external magnetic 

field [3]. They pointed out that heat transfer in a ferromagnetic fluid can be improved by generating a 

thermoacoustic wave and a magnetic field. Dai et al. (2006) presented a method for determining the optimal 

operating frequency of thermoacoustic systems based on linear acoustic wave theory [4]. Their results showed 

that there is a turning point for the volume flow rate that optimizes the system operating frequency. This turning 

point is located at the boundary of the flow velocity node. Tasnim et al. (2011) modeled thermoacoustic flow and 

heat transfer in a porous medium [5]. They used the Brinkman-Forchheimer extended Darcy model and obtained 

analytical expressions for the oscillating velocity and temperature and energy flux density. The analytical results 
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of their research provide a useful tool for designing porous media (stacks) in thermoacoustic systems. Kam et al. 

(2016) simulated the propagation of thermoacoustic wave in a two-dimensional enclosure [6]. They solved the 

Navier-Stokes equations using a combined finite difference method and a lattice Boltzmann network. Compared 

to conventional linear analytical solutions, the numerical solution carried out has higher accuracy and can take 

into account the nonlinear effects of thermoacoustic wave propagation. Gant et al. (2021) numerically investigated 

the effect of time delay and noise on an inviscid thermoacoustic wave [7]. Their results show that the presence of 

a time delay in the thermoacoustic model preserves the intrinsic thermoacoustic states in the dynamic behavior of 

the system. Also, including noise in the thermoacoustic model provides a more realistic dynamic behavior of the 

thermoacoustic system performance. Liu et al. (2022) studied the intrinsic thermoacoustic instabilities in 

thermoacoustic systems [8]. The main instability factors include acoustic disturbances, flow oscillations, and 

pulsation of heat release. They pointed out that even if acoustic disturbances are removed from the thermoacoustic 

system, thermoacoustic instabilities due to the fluctuations of flow and heat transfer still exist. Yang et al. (2023) 

theoretically investigated the thermoacoustic flow and heat transfer of a plasma fluid under a magnetic field [9]. 

Their research results provide basic concepts for the design of closed-cycle MHD generators. Blanc and Ramon 

(2024) studied the thermoacoustic flow and heat transfer in a radiant energy absorbing medium theoretically [10]. 

Their research results showed that radiation-driven thermoacoustic systems have higher performance than 

conventional thermoacoustic systems. They also pointed out that the performance of radiation-driven 

thermoacoustic systems is highly dependent on the matching of the heat time delay and the acoustic oscillations 

period. Huang et al. (2025) simulated the effect of axial structural vibrations on the dynamic behavior of 

thermoacoustic systems [11]. They solved the nonlinear governing equations of the problem using the large eddy 

simulation method. Their research results provide in-depth knowledge regarding the interaction between intrinsic 

thermoacoustic instabilities and axial structural vibrations in thermoacoustic systems. Misra and Banerjee (2025) 

theoretically studied how thermoacoustic shocks form in complex plasma flows [12]. They solved the Bateman-

Burgers equations in the presence of a series of nonlinear terms related to the motion of charged particles in the 

plasma. Their results include investigating the effect of various parameters including thermal diffusion, thermal 

feedback, heat capacity, viscosity and particle collision on thermoacoustic shocks. Merk et al. (2025) introduced 

a new framework based on the Jacobian method to predict the dynamic behavior of thermoacoustic waves under 

jump conditions [13]. Their proposed framework has the ability to predict the dynamic behavior of thermoacoustic 

waves under various physical conditions, including different Mach numbers, real gas properties, combined and 

entropic oscillations, etc. In previous researches [1-13], the effect of various design and operating parameters on 

thermoacoustic flow and heat transfer has been investigated. However, the effect of non-uniform main thermal 

flow on the dynamic behavior of thermoacoustic waves has not been investigated. Investigating the effect of the 

main thermal flow type can provide new ideas for improving the process of thermoacoustic heat transfer. 

Therefore, in the present study, various functions (linear, exponential, logarithmic, sine, and Bessel) are 

considered for the main flow temperature, and then their effect on the thermoacoustic parameters of the flow and 

heat transfer is investigated. 

Governing equations 

The geometry of the problem is shown in Fig. 1. 

 

Fig. 1. Geometry of the problem 
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Where 𝑇𝑐, 𝑇ℎ, 𝑎 and 𝐿, are temperature of heat sink, temperature of heat source, radius of cylinder and length of 

cylinder, respectively. The governing equations for thermoacoustic phenomenon include continuity, momentum, 

energy, and the ideal gas law, which is written in the cylindrical coordinate system as follows 

Continuity: 

𝜕𝜌

𝜕𝑡
+
1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑣) +

𝜕

𝜕𝑥
(𝜌𝑢) = 0 (1) 

x- momentum: 

𝜌
𝜕𝑢

𝜕𝑡
+
𝜕𝑝

𝜕𝑥
= 𝜇

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢

𝜕𝑟
) (2) 

r- momentum: 

𝜕𝑝

𝜕𝑟
= 0 (3) 

Energy: 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
) =

1

𝑟

𝜕

𝜕𝑟
(𝑘𝑟

𝜕𝑇

𝜕𝑟
) + 𝛽𝑇

𝜕𝑝

𝜕𝑡
 (4) 

The ideal gas law: 

𝑝 = 𝜌𝑅𝑇 (5) 

Where 𝑢, 𝑣, 𝑇, 𝑝, 𝜌, 𝑐𝑝, 𝑘,  𝜇 and  𝛽 are axial component of thermoacoustic velocity, radial component of 

thermoacoustic velocity, thermoacoustic temperature, thermoacoustic pressure, thermoacoustic density, specific 

heat capacity, thermal conductivity, dynamic viscosity and coefficient of volumetric thermal expansion, 

respectively. The thermoacoustic flow parameters are defined from the decomposition of the main flow 

parameters and thermoacoustic oscillations as follows [2, 5] 

𝑢(𝑟, 𝑥, 𝑡) = 𝑢′(𝑟, 𝑥)𝑒𝑖𝜔𝑡 (6) 

𝑣(𝑟, 𝑥, 𝑡) = 𝑣′(𝑟, 𝑥)𝑒𝑖𝜔𝑡 (7) 

𝜌(𝑟, 𝑥, 𝑡) = 𝜌𝑚(𝑥) + 𝜌
′(𝑟, 𝑥)𝑒𝑖𝜔𝑡 (8) 

𝑇(𝑟, 𝑥, 𝑡) = 𝑇𝑚(𝑥) + 𝑇
′(𝑟, 𝑥)𝑒𝑖𝜔𝑡 (9) 

𝑝(𝑥, 𝑡) = 𝑝𝑚⏟
cte

+ 𝑝′(𝑥)𝑒𝑖𝜔𝑡 
(10) 

Here, the quantities indicated by the subscript “m” are the main flow parameters. Using the concept of linearization 

and substituting the thermoacoustic parameters of Eqs. (6)-(10) into Eqs. (1)-(5), the following equations are 

obtained [2] 

𝑖𝜔𝜌′ + 𝜌𝑚
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣′) + 𝜌𝑚

𝜕𝑢′

𝜕𝑥
+ 𝑢′

𝜕𝜌𝑚
𝜕𝑥

= 0 (11) 

𝑖𝜔𝑢′ +
1

𝜌𝑚

𝑑𝑝′

𝑑𝑥
= 𝜗

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢′

𝜕𝑟
) (12) 

𝜌0𝑐𝑝 (𝑖𝜔𝑇
′ + 𝑢′

𝑑𝑇0
𝑑𝑥
) =

1

𝑟

𝜕

𝜕𝑟
(𝑘𝑟

𝜕𝑇′

𝜕𝑟
) + 𝑖𝜔𝑝′ (13) 

𝑇′ =
𝑝′

𝑅𝜌𝑚
−
𝜌′𝑇𝑚
𝜌𝑚

 (14) 

Where 𝜔, 𝜗 and 𝑅 are angular frequency, kinematic viscosity and gas constant, respectively. Eq. (12) can be 

rewritten in the following form 
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{
 

 
𝜕2𝑢′

𝜕𝑟2
+
1

𝑟

𝜕𝑢′

𝜕𝑟
− 𝜂2𝑢′ =

1

𝜗𝜌𝑚

𝑑𝑝′

𝑑𝑥

𝑢′(0, 𝑥) = finite                             
𝑢′(𝑎, 𝑥) = 0                                    

 (15) 

Here 𝜂2 = 𝑖𝜔 𝜗⁄ . The oscillating velocity is obtained from solving Eq. (15) as follows 

𝑢′(𝑟, 𝑥) =
𝑖

𝜌𝑚𝜔

𝑑𝑝′

𝑑𝑥
(1 −

𝐼0(𝜂𝑟)

𝐼0(𝜂𝑎)
) (16) 

The radial average of oscillating velocity is introduced as follows 

𝑢′̅(𝑥) = ∫ 𝑢′(𝑟, 𝑥)2𝜋𝑟𝑑𝑟

𝑟=𝑎

𝑟=0

=
2𝜋𝑖

𝜌𝑚𝜔

𝑑𝑝′

𝑑𝑥
(
𝑎2

2
−
𝑎𝐼1(𝜂𝑎)

𝜂𝐼0(𝜂𝑎)
) (17) 

Here, 𝐼0 and 𝐼1 are the modified Bessel functions of the first kind, of order zero and order one, respectively. 

Combining Eq. (13) and (14), a partial differential equation for the oscillating density is obtained as follows 

{
 
 

 
 𝜕

2𝜌′

𝜕𝑟2
+
1

𝑟

𝜕𝜌′

𝜕𝑟
− 𝜁2𝜌′ = 𝜁2 (−𝜌′

𝑤
+
𝛾 − 1

𝑐2
𝑝′) −

𝜁2

𝜔2
𝜃
𝑑𝑝′

𝑑𝑥
(1 −

𝐼0(𝜂𝑟)

𝐼0(𝜂𝑎)
)

𝜌′(0, 𝑥) = finite                                                                                                     

𝜌′(𝑎, 𝑥) = 𝜌′
𝑤
                                                                                                        

 (18) 

The oscillating density is obtained from solving Eq. (18) as follows 

𝜌′(𝑟, 𝑥) − 𝜌′
𝑤
= (−

𝛾 − 1

𝑐2
𝑝′ +

1

1 − 𝑃𝑟

𝜃

𝜔2
𝑑𝑝′

𝑑𝑥
)(1 −

𝐼0(𝜁𝑟)

𝐼0(𝜁𝑎)
) − (

𝑃𝑟

1 − 𝑃𝑟

𝜃

𝜔2
𝑑𝑝′

𝑑𝑥
)(1 −

𝐼0(𝜂𝑟)

𝐼0(𝜂𝑎)
) (19) 

Where 𝑐 and 𝑃𝑟 are sound wave speed and Prandtl number, respectively. Also, 𝜁2 = 𝑖𝜔𝑃𝑟 𝜗⁄   and 𝜃 =
1

𝑇𝑚

𝑑𝑇𝑚

𝑑𝑥
=

−
1

𝜌𝑚

𝑑𝜌𝑚

𝑑𝑥
. Combining Eqs. (11), (12) and (18) and taking the integral of ∫ 2𝜋𝑟𝑑𝑟

𝑟=𝑎

𝑟=0
, an ordinary differential 

equation for the oscillating pressure is obtained as follows 

𝛿1(𝑥)
𝑑2𝑝′

𝑑𝑥2
+ 𝛿2(𝑥)

𝑑𝑝′

𝑑𝑥
+ 𝛿3(𝑥)𝑝

′ = 0 (20) 

Here 𝛿1(𝑥), 𝛿2(𝑥) and 𝛿3(𝑥) are defined as follows 

𝛿1(𝑥) =
𝑐2

𝜔2
(1 −

2

𝜂𝑎

𝐼1(𝜂𝑎)

𝐼0(𝜂𝑎)
) (21) 

𝛿2(𝑥) =
𝑑𝛿1(𝑥)

𝑑𝑥
−
𝑐2

𝜔2
𝜃

1 − 𝑃𝑟
(
2

𝜁𝑎

𝐼1(𝜁𝑎)

𝐼0(𝜁𝑎)
−
2

𝜂𝑎

𝐼1(𝜂𝑎)

𝐼0(𝜂𝑎)
) (22) 

𝛿3(𝑥) = 1 + (𝛾 − 1)
2

𝜁𝑎

𝐼1(𝜁𝑎)

𝐼0(𝜁𝑎)
 (23) 

From Eq. (17), using the boundary conditions 𝑢′̅(0) = 𝜔𝑙 and 𝑢′̅(𝐿) = 0, two boundary conditions for Eq. (20) 

are obtained as follows [14] 

𝑑𝑝′(0)

𝑑𝑥
= 𝑝1 =

𝜌𝑚𝜔
2𝑙

2𝜋𝑖 (
𝑎2

2 −
𝑎𝐼1(𝜂𝑎)
𝜂𝐼0(𝜂𝑎)

)
 

(24) 

𝑑𝑝′(𝐿)

𝑑𝑥
= 0 (25) 

The work flux density is a criterion to characterize the local energy conversion of thermoacoustic process. It is 

defined as follows [15] 
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𝑤(𝑟, 𝑥) =
1

2
Real[𝑝′̃𝑢′] (26) 

Here, the sign of ~ shows the complex conjugate of 𝑝′. The gain of work flux density can be defined as follows 

[15] 

𝐺 =
𝑤(𝑟, 𝑥)

𝑤(0,0)
 (27) 

In the present study, various functions have been considered for the main flow temperature, which are given in 

Table 1. 

Table 1. Various functions for the main flow temperature 

Function type Coefficient of 𝑨 Coefficient of 𝑩 

𝑇𝑚(𝑥) = 𝐴𝑥 + 𝐵 𝐴 =
𝑇ℎ − 𝑇𝑐
𝐿

 𝐵 = 𝑇𝑐 

𝑇𝑚(𝑥) = 𝐴𝑒
𝑥 + 𝐵 𝐴 =

𝑇ℎ − 𝑇𝑐
𝑒𝐿 − 1

 𝐵 =
𝑇𝑐𝑒

𝐿 − 𝑇ℎ
𝑒𝐿 − 1

 

𝑇𝑚(𝑥) = 𝐴𝑙𝑛(𝑥 + 1) + 𝐵 𝐴 =
𝑇ℎ − 𝑇𝑐
ln (𝐿 + 1)

 𝐵 = 𝑇𝑐 

𝑇𝑚(𝑥) = 𝐴𝑠𝑖𝑛(𝑥) + 𝐵 𝐴 =
𝑇ℎ − 𝑇𝑐
𝑠𝑖𝑛(𝐿)

 𝐵 = 𝑇𝑐 

𝑇𝑚(𝑥) = 𝐴𝐽0(𝑥) + 𝐵 𝐴 =
𝑇ℎ − 𝑇𝑐
𝐽0(𝐿) − 1

 𝐵 =
𝑇𝑐𝐽0(𝐿) − 𝑇ℎ
𝐽0(𝐿) − 1

 

 

Validation 

The Eq. (20), is an ordinary differential equation with variable coefficients. A finite difference technique is used 

to solve it  by bvp4c command of MATLAB [16].   In order to validate, the semi-analytical results of 

thermoacoustic pressure of the present research for constant main temperature (𝜃 = 0) have been compared with 

the results of Rott [2]. Rott’s ordinary differential equation for oscillating pressure is as follows [2] 

{
  
 

  
 𝑑

𝑑𝑥
(
𝑐2

𝜔2
(1 − 𝑓𝑗)

𝑑𝑝′

𝑑𝑥
) −

𝑐2

𝜔2
(𝑓𝑗

∗ − 𝑓𝑗)

1 − 𝑃𝑟
𝜃
𝑑𝑝′

𝑑𝑥
+ (1 + (𝛾 − 1)𝑓𝑗

∗)𝑝′ = 0

𝑑𝑝′(0)

𝑑𝑥
= 𝑝1                                                                                                        

𝑑𝑝′(𝐿)

𝑑𝑥
= 0                                                                                                         

 (28) 

Here 𝑓𝑗 and 𝑓𝑗
∗ are defined as follows [2] 

𝑓𝑗 =
2

𝑖𝜂𝑎

𝐽1(𝑖𝜂𝑎)

𝐽0(𝑖𝜂𝑎)
 (29) 

𝑓𝑗
∗ =

2

𝑖𝜁𝑎

𝐽1(𝑖𝜁𝑎)

𝐽0(𝑖𝜁𝑎)
 (30) 

For the case of 𝜃 = 0, the coefficients of Eq. (28) are constant, so it has an analytical solution of the following 

form 

𝑝′(𝑥) =
𝑝1
𝜆
(
𝑐𝑜𝑠(𝜆𝑥)

𝑡𝑎𝑛(𝜆𝐿)
+ 𝑠𝑖𝑛(𝜆𝑥)) (31) 

Here 𝜆2 is defined as follows 
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𝜆2 =
𝜔2

𝑐2
(1 + (𝛾 − 1)𝑓𝑗

∗)

(1 − 𝑓𝑗)
 (32) 

The design parameters of cylinder are given in Table 2. 

Table 2. Design parameters of cylinder 

Parameter Value 

Radius of cylinder 𝑎 = 0.025 m 

Length of cylinder 𝐿 = 1 m 

Diaphragm displacement 𝑙 = 0.001 m 

Temperature of heat source 𝑇ℎ = 600 K 

Temperature of heat sink 𝑇𝑐 = 300 K 

Main flow pressure 𝑝𝑚 = 101 kPa 

Specific heat capacity  𝑐𝑝 = 1007 kJ/kg. K 

Dynamic viscosity 𝜇 = 1.87 × 10−5 Pa. s 

Prandtl number  𝑃𝑟 = 0.73 

Gas constant 𝑅 = 287 J/kg. K 

 

The validation results for the thermoacoustic pressure are shown in Fig. 2. 

 

Fig. 2. Validation results for the thermoacoustic pressure 

It is observed that from Fig. 2 that the results of the semi-analytical solution and the analytical solution for the 

thermoacoustic pressure are consistent. 

Results and discussion 

It is assumed that the diaphragm receives cosine excitation, so the real part of the thermoacoustic parameters is 

plotted and examined. In Fig. 3, the thermoacoustic pressure is plotted versus axial location for the different 

functions of the main flow temperature. 
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Fig. 3. Thermoacoustic pressure versus axial location for the different functions of the main flow temperature 

It is observed from Fig. 3 that the thermoacoustic pressure change with axial location is not very large. The 

thermoacoustic pressure is a weak linear function of axial location. Therefore, thermoacoustic pressure gradient 

is approximately constant for different functions of the main flow temperature. On the other hand, if the main 

flow temperature is chosen as the Bessel function, the highest thermoacoustic pressure is achieved. Fig. 4 shows 

the change of centerline thermoacoustic velocity in terms of axial location for the different functions of the main 

flow temperature. 

 

Fig. 4. Change of centerline thermoacoustic velocity in terms of axial location for the different functions of the 

main flow temperature 

According to Fig. 4, the centerline thermoacoustic velocity varies linearly with axial location. On the other hand, 

the effect of the main flow temperature function on the centerline thermoacoustic velocity is small. In basic 

hydrodynamics knowledge, thermoacoustic velocity and thermoacoustic pressure are inversely related. The 

highest thermoacoustic pressure occurs for the Bessel function, so the lowest thermoacoustic velocity occurs for 

the Bessel function. Fig. 5 shows the change of centerline thermoacoustic density in terms of axial location for 

the different functions of the main flow temperature. 
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Fig. 5. Change of centerline thermoacoustic density in terms of axial location for the different functions of the 

main flow temperature 

It is observed from Fig. 5 that the change of centerline thermoacoustic density with axial location is a decreasing 

function. The highest value of centerline thermoacoustic density is for the Bessel function. The centerline 

thermoacoustic density decreases as axial location increases. The location of the heat sink is at the beginning of 

the cylinder and the location of the heat source is at the end of the cylinder. Therefore, the thermoacoustic 

temperature at the beginning of the cylinder is lower than at the end of the cylinder, and as a result the 

thermoacoustic density at the beginning of the cylinder is higher than at the end of the cylinder. The change of 

centerline thermoacoustic temperature in terms of axial location for the different functions of the main flow 

temperature is shown in Fig. 6. 

 

Fig. 6. Change of centerline thermoacoustic temperature in terms of axial location for the different functions of 

the main flow temperature 

As shown in Fig. 6, the change of centerline thermoacoustic temperature with axial location is an increasing 

function. On the other hand, the lowest value of centerline thermoacoustic temperature occurs for the Bessel 

function. According to the ideal gas law, the relationship between thermoacoustic temperature and thermoacoustic 

density is inverse. The thermoacoustic density is maximum for the Bessel function, so the thermoacoustic 

temperature is minimum for the Bessel function. Fig. 7 shows the change of thermoacoustic velocity in terms of 

radial location for the different functions of the main flow temperature. 
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Fig. 7. Change of thermoacoustic velocity in terms of radial location for the different functions of the main flow 

temperature 

It is observed from Fig. 7 that the effect of the function of main flow temperature on the thermoacoustic velocity 

is negligible. On the other hand, the velocity profile is uniform in the central region of the cylinder, but fluctuates 

greatly in the region near the cylinder wall due to the presence of velocity gradients. Fig. 8 shows the change of 

thermoacoustic density in terms of radial location for the different functions of the main flow temperature. 

 

Fig. 8. Change of thermoacoustic density in terms of radial location for the different functions of the main flow 

temperature. 

It can be seen from Fig. 8 that the largest density change occurs for the logarithmic function and the smallest 

density change is for the Bessel function. On the other hand, thermoacoustic density gradient is more intense near 

the cylinder wall than in the central region of the cylinder. Fig. 9 shows the change of thermoacoustic temperature 

in terms of radial location for the different functions of the main flow temperature. 
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Fig. 9. Change of thermoacoustic temperature in terms of radial location for the different functions of the main 

flow temperature 

It can be seen from Fig . 9, that the thermoacoustic temperature has the largest change for the logarithmic function 

and the smallest change for the Bessel function. Compared to Fig. 8, the behavior of the thermoacoustic 

temperature curve with radial location is the opposite of the behavior of the thermoacoustic density curve with 

radial location. Because according to the ideal gas law, thermoacoustic temperature and thermoacoustic density 

are inversely related. The gain of work flux density in terms of axial location for the different functions of the 

main flow temperature in Fig. 10. 

 

Fig. 10. Gain of work flux density in terms of axial location for the different functions of the main flow 

temperature 

It is observed from Fig. 10 that the gain of work flux density decreases with increasing axial location. On the other 

hand, the highest gain of work flux density is related to the logarithmic function and the lowest gain of work flux 

density is related to the Bessel function. Fig . 11, shows the variation of gain of work flux density as a function of 

radial location for the different functions of the main flow temperature. 
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Fig. 11. Variation of gain of work flux density as a function of radial location for the different functions of the 

main flow temperature 

It is observed from Fig. 11 that the highest absolute value of the gain of work flux density is related to the 

logarithmic function, and the lowest is related to the Bessel function. On the other hand, the difference in the gain 

value for linear function and logarithmic function is not much. However, creating logarithmic temperatures 

requires more economic cost. Therefore, from an engineering perspective, choosing linear temperature is more 

appropriate because it has lower production costs and provides relatively good gain. 

Conclusion 

The following conclusion obtained from the present study 

• The comprehensive semi-analytical solution of the present study is capable of predicting the dynamic 

behavior of the thermoacoustic system under various design and operating conditions. The results of this 

solution are in good agreement with the analytical solution results of previous researches. 

• The variation of thermoacoustic velocity with the function type of the main flow temperature is 

negligible. 

• The thermoacoustic pressure, temperature and density change greatly with the type of the function of 

main flow temperature. 

• The highest gain of work flux density is obtained for the logarithmic function of the main flow 

temperature. However, the cost of creating a logarithmic function is high from an engineering 

perspective. 

• A linear function for the main flow temperature can provide a relatively good gain of work flux density 

and is easy to create from an engineering perspective. 
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