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Abstract: Temperature monitoring of generator-motor rotor is extremely challenging 

under conditions of high temperature, high-speed rotation, and strong electromagnetic 

interference. In response to this requirement, a passive wireless temperature 

measurement system based on Ultra-High Frequency (UHF) RFID is developed. This 

system realizes passive transmission of temperature data through electromagnetic 

coupling of RFID technology. Structurally, it adopts a multi-antenna layout and dynamic 

threshold adjustment to enhance the system's anti-interference capability and monitoring 

stability. Experimental results indicate that within a threshold range of 0.4 to 0.6, the 

system's sensitivity reaches 91.07%-94.44%, with specificity exceeding 91.84%. The 

relative error of the Long Short-Term Memory (LSTM) prediction model is below 1.5%, 

significantly improving the accuracy of temperature anomaly detection. In summary, this 

technical solution is suitable for real-time rotor temperature monitoring and fault early 

warning in complex environments. 
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During the operation of generator-motor, the rotor operates in a high-speed rotation and high-temperature 

environment, accompanied by intense electromagnetic interference. This poses significant challenges to 

traditional wired temperature measurement methods. Traditional wired temperature monitoring systems suffer 

from complex wiring, susceptibility to interference, and difficulties in maintenance, making it difficult to meet 

the real-time monitoring requirements in complex environments [1]. Therefore, passive wireless temperature 

measurement technology, which is highly stable, highly resistant to interference, and does not require external 

power support, has gradually gained attention [2]. 

In recent years, passive wireless temperature measurement systems based on RFID (Radio Frequency 

Identification) technology have been gradually applied in special scenarios such as high temperature and 

high-speed rotation. These systems achieve energy transmission and data acquisition through electromagnetic 

coupling, effectively enhancing monitoring stability and reliability while reducing equipment maintenance 

difficulty [3]. However, traditional RFID systems are prone to data loss or unstable transmission under 

high-speed rotation conditions, and lack intelligent early warning capabilities for temperature anomalies, unable 

to meet the real-time and precise monitoring requirements of rotor [4]. 

Current research mostly focuses on improving RFID reading distance and anti-interference capabilities, 

without optimization for the specific needs of high-speed rotating rotor environments, especially lacking 

effective methods for dynamic temperature change prediction and anomaly detection [5]. Therefore, it is 

necessary to design a stable, reliable, and real-time passive wireless temperature measurement system tailored to 

the actual requirements of generator-motor rotor temperature monitoring, and explore temperature prediction 

and early warning algorithms suitable for complex operating conditions, in order to achieve precise monitoring 

of rotor temperature and early fault warning. 

1.Design of Application Scheme for Passive Wireless Temperature Measurement Technology in 

Generator-Motor Rotor 

1.1 Technology Selection and System Composition  

The application of passive wireless temperature measurement technology in generator-motor rotor 

necessitates overcoming challenges such as high-speed rotation, intense electromagnetic interference, and 

high-temperature environments. In terms of technology selection, the adoption of RFID passive wireless 

temperature measurement systems suitable for high-speed rotating structures is crucial. RFID technology does 

not require external power supply and relies on electromagnetic field coupling for energy transmission and data 

communication, boasting high stability and reliability [6]. By comparing several common passive wireless 

temperature measurement technologies, a solution based on Ultra-High Frequency (UHF) RFID was selected 

due to its excellent anti-interference capabilities and long reading distance, making it suitable for online 

temperature monitoring of rotor poles. 



International Journal of Multiphysics 
Volume 18, No. 4, 2024 
ISSN: 1750-9548 
 

1079 

The main components of the system include temperature sensors, RFID reader/writer, antennas, and 

controllers. The temperature sensors are responsible for monitoring temperature changes in the rotor poles and 

transmitting temperature data to the readers/writers via antennas. The reader/writer antennas are installed on 

stationary components and communicate with the RFID tags on the rotor through electromagnetic coupling to 

complete data acquisition. The controller is responsible for data processing and communication with the host 

computer to achieve real-time monitoring and early warning of temperature data. 

1.2 System Structure and Hardware Layout 

In the system structure design, the preliminary layout scheme diagram for the real-time rotor pole 

temperature monitoring system is shown in Figure 1. 
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Fig. 1 Preliminary Layout Scheme for Real-Time Monitoring System of Rotor Pole Temperature 

Temperature sensors are installed at the lead-out wires of the rotor poles through special fixing structures to 

ensure measurement accuracy and reliability. During sensor installation, mechanical strength and operational 

safety must be considered, utilizing high-strength, lightweight PCB thin board encapsulation to minimize the 

impact on the rotor structure. 

The reader/writer antennas are arranged at suitable positions inside the stator, with consideration given to 

the optimization design of antenna gain and reading distance. To ensure data transmission stability under 

high-speed rotor rotation conditions, the system adopts a multi-antenna design to cover different angles of the 

rotor poles, reducing communication blind spots caused by changes in rotor position. Additionally, the reader 

are installed away from areas with strong electromagnetic interference to reduce noise interference during 

system operation. 



International Journal of Multiphysics 
Volume 18, No. 4, 2024 
ISSN: 1750-9548 
 

1080 

The design principles for the layout of sensors and antennas include ensuring the accuracy of temperature 

data, maintaining the mechanical safety of the system, and avoiding the introduction of new risks due to 

installation. Therefore, the system network diagram is shown in Figure 2. 
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Fig. 2 System Network Diagram 

1.3 Network Transmission and Data Processing 

In the design of network transmission, the wireless temperature measurement system reads temperature 

data via temperature sensors and transmits it to the control center. Industrial-grade wireless network protocols 

are employed to ensure data reliability and real-time performance. During data acquisition, the RFID reader 

communicates with the temperature sensors at a set sampling frequency, and the read temperature data 

undergoes initial processing through an edge computing module, including data validation and filtering, to 

ensure data validity. 

The real-time temperature data is transmitted to the host computer system via industrial Ethernet, 

supporting real-time display of temperatures and storage and querying of historical data. To further enhance the 

system's response speed, an event-triggered data acquisition mode is designed. When the temperature exceeds a 

set threshold, the system immediately transmits an early warning signal to notify operations and maintenance 

personnel for timely handling. This mode significantly reduces data redundancy, improves transmission 

efficiency, and enhances the system's real-time warning capabilities. 
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2.Algorithm Development 

2.1Temperature Prediction Algorithm Based on Time Series 

In this research, a Long Short-Term Memory (LSTM) neural network based on time series is employed to 

predict the rotor pole temperature of pumped storage units, aiming to achieve early fault warning. The LSTM 

model is capable of capturing the nonlinear dynamic characteristics in temperature variations. Its structure 

comprises forget gates, input gates, candidate memory, and output gates, which can retain critical information in 

long sequences, thereby enabling high-precision temperature prediction. 

In LSTM, the input vector tx  at each time step interacts with the hidden state 1−th  from the previous 

time step to update the cell state t . The formula for updating the cell state is as shown in Equation (1). 

ttttt icfc += −1 (1) 

In this context, tf  and ti  represent the outputs of the forget gate and the input gate, respectively. tf  

controls the degree of retention of the previous state 1−tc , while ti  controls the influence of the new input tx  

on the current state tc . t  serves as the candidate memory cell, which applies a nonlinear transformation to 

the input information through the Tanh activation function, resulting in values within the range of -1 to 1. 

During the construction of the temperature prediction model, key parameters such as the number of layers and 

the number of hidden units have significant impacts on the prediction performance. Therefore, to optimize the 

model structure, this project introduces the Ant Colony Optimization (ACO) algorithm for parameter tuning. By 

simulating the behavior of ants searching for the optimal path in nature, ACO can effectively search for the 

optimal solution through iterations. ACO transforms the parameter selection problem of the temperature 

prediction model into a path optimization problem, enabling the model to automatically adjust to the best 

configuration during the parameter tuning phase. 

In the ACO algorithm, each ant searches for a path in the parameter space, with the selection probability 

based on the heuristic information of the path and the distribution of pheromones already present on the path. In 

the path selection probability, the probability 
k

ip  of ant k  choosing path i  is influenced by the heuristic 

factor i  and the pheromone concentration i . The definitions are as follows: 

 

=

Allowedj jj

iik

ip








)()(

)()(
(2) 

In this context,   and   are weight parameters that regulate the pheromone and heuristic factors, 

respectively. i  represents the heuristic information on path i  (i.e., the expected benefit), which is directly 

proportional to the prediction accuracy of the model. After each iteration, the pheromone concentration on the 
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path is updated. Assuming that the pheromone concentration on path i  is i , the update formula is as follows. 

iii  +− )1( (3) 

In this context,   denotes the pheromone evaporation coefficient, which indicates the decay rate of 

pheromones. i  represents the amount of pheromone newly added to path i  in the current search iteration. 

The increment in pheromone, i , is typically proportional to the quality of path i , serving as a reward for 

the more optimal paths. The definitions are as follows. 

ii CostQ /= (4) 

In this context, Q  is a constant, and iCost  denotes the "cost" of path i , which is typically the 

prediction error of the model under the path's parameters. During the parameter optimization process, the Mean 

Squared Error (MSE) is calculated as the evaluation criterion to measure the prediction performance of the 

LSTM model under the current parameter configuration. The definitions are as follows. 


=

−=
n

t

tt yy
n

MSE
1

2)ˆ(
1

(5) 

In this context, ty  represents the actual temperature, tŷ  denotes the predicted temperature, and n  is 

the number of samples. By minimizing the MSE value, the model gradually adjusts to the optimal parameter 

configuration. Ants progressively adjust their path selection based on the pheromone distribution and prediction 

errors. After multiple iterations, they ultimately converge to the optimal solution. The optimization objective is 

defined as follows. 


=

=
k

i

total iMSEMSE
1

)(min (6) 

This objective accumulates the errors from multiple paths explored by the ants to find the optimal 

parameter combination that minimizes the mean squared error of temperature predictions. Therefore, guided by 

the ant colony algorithm, the model gradually converges to the optimal parameter settings during iterations, 

enabling the LSTM model to maintain high-precision temperature prediction outputs under varying 

environmental conditions, making it suitable for complex and dynamic temperature monitoring scenarios. 

2.2 Anomaly Detection and Early Warning Algorithm 

In the online monitoring of magnetic pole temperatures in pumped storage units, to promptly identify 

abnormal temperature rises and achieve intelligent early warning, an anomaly detection algorithm based on 

dynamic threshold adjustment is designed. This algorithm not only relies on the statistical characteristics of 

historical data but also utilizes the sliding window method and an anomaly identification mechanism based on 

the Z-Score to cope with the dynamic changes in temperature fluctuations. 
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In dynamic threshold and sliding window anomaly detection, the difference between normal and abnormal 

states of temperature changes is often manifested as abrupt changes in the temperature curve. Consequently, the 

anomaly detection algorithm employs the sliding window method to calculate the short-term mean t  and 

standard deviation t  of the temperature, dynamically reflecting the trend of temperature changes through 

rolling calculations. The mean and standard deviation of the temperature values within the sliding window are 

defined as follows. 


+−=+−=

−==
t

Wti

tit

t

Wti

it T
W

T
W 1

2

1

)(
1

,
1

 (7) 

In this context, W  represents the window length, and iT  denotes the temperature value at time step i . 

t and t  within the sliding window characterize the short-term fluctuations in temperature, aiding in 

real-time monitoring of temperature changes. At each time step, the current temperature tT  is compared with a 

dynamic threshold formed by the combination of t  and t , and the degree of temperature anomaly is 

defined using the Z-Score. 

t

tt
t

T
Z



−
= (8) 

When tZ , the temperature is deemed abnormal, where   is a preset threshold typically ranging 

between 2 and 3. The calculation of the Z-Score dynamically reflects the degree of deviation of the temperature 

from its mean. The chosen   value should take into account the noise in the temperature data to balance the 

false alarm rate and the missed detection rate. To accommodate long-term temperature trends while mitigating 

the impact of occasional fluctuations, the early warning model employs a two-tier detection structure. It 

leverages dynamic thresholds based on the sliding window for real-time monitoring and adjusts the   value 

using the Exponential Weighted Moving Average (EWMA) in conjunction with historical temperature data 

trends. The given EWMA formula is as follows. 

11 )1( −− −+= ttt Z  (9) 

Where   is the smoothing coefficient, typically ranging between 0.1 and 0.3. This method applies 

weighted processing to historical Z-Scores to adjust   in real-time, enhancing the adaptability of the 

detection. 

3.Experimental Analysis and Performance Validation 

3.1 Experimental Platform and Testing Environment 

To verify the practical monitoring performance of passive wireless temperature measurement technology 
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on generator-motor rotors, this experiment deployed a temperature sensor system within the rotor environment 

of a generator-motor at a pumped storage power station. The power station has an installed capacity of 1200MW 

(4×300MW), equipped with four single-stage vertical-shaft single-speed mixed-flow reversible pump-turbine 

electro-generator units, each with a unit capacity of 300MW. The rated speed is 428.6rpm, and the rated head 

under turbine conditions is 428m. The power station is connected to the Longsheng substation of Chongqing 

Power Grid via a single 500kV line with primary voltage. The experimental platform comprises RFID 

temperature sensors, RFID readers/writers, data acquisition equipment, and a control system. The testing 

environment is located in the high-speed rotating area of the rotor, where the ambient temperature fluctuates 

significantly, allowing for the assessment of the system's stability and reliability under high temperatures and 

strong electromagnetic interference. Experimental data is transmitted to the host computer via industrial 

Ethernet for real-time monitoring, storage, and analysis. The experimental equipment is listed in Table 1. 

Table 1. Experimental Equipment and Parameter Settings 

Equipment Name Model Parameters Installation Location 

RFID Temperature 

Sensor 

UHF RFID 

T100 
-40°C to 125°C, Accuracy ±0.5°C Rotor magnetic pole lead 

RFID Reader R2000 
Frequency 860-960 MHz, Reading 

Range 1.5m 

Stationary components 

above 

Data Acquisition 

Device 
DAC-6000 Sampling Rate 1 kHz, Resolution 16-bit Central Control Room 

 

3.2 Algorithm Performance and Experimental Results 

During the temperature monitoring process, temperature data (in °C) from different time periods before and 

after Kalman filtering were compared to assess data fluctuation and noise reduction effects. The experiment 

utilized temperature data with a sampling interval of 5 seconds to observe temperature fluctuations. The results 

after Kalman filtering were compared with the original data, as shown in Table 2. The data indicates that after 

Kalman filtering, the fluctuation range of the temperature data was significantly reduced, and the overall trend 

became more stable. The original data exhibited large fluctuations between 00:00:30 and 00:00:35, with the 

temperature rapidly rising from 49.0°C to 51.5°C and then reaching 52.8°C. In contrast, the filtered data showed 

smooth fluctuations during the same time period, with the temperature gradually increasing from 48.2°C to 

50.2°C, maintaining the trend of temperature change while effectively avoiding instantaneous peaks. Between 

00:00:50 and 00:01:00, the original data showed a sharp drop to 46.3°C, with significant fluctuations. After 

smoothing with Kalman filtering, the data changes were more continuous, and the temperature finally stabilized 

at 46.5°C. Overall, the filtering process successfully reduced noise interference, effectively weakening sudden 

fluctuations in the temperature curve while preserving its trend. 
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Table 2. Data for Evaluating Filtering Effects 

Time Raw Data Post-Kalman Filter Data 

0:00:05 46.2 46.1 

0:00:10 47 46.5 

0:00:15 48.3 47.6 

0:00:20 47.8 47.4 

0:00:25 49 48.2 

0:00:30 51.5 49.1 

0:00:35 52.8 50.2 

0:00:40 50.4 50 

0:00:45 49.9 49.8 

0:00:50 47.6 48 

0:00:55 46.3 47 

0:01:00 45.7 46.5 

 

To validate the accuracy of the LSTM model in temperature prediction, Mean Squared Error (MSE) and 

Mean Absolute Percentage Error (MAPE) were adopted as evaluation metrics. Historical temperature data were 

selected for training and prediction, and the prediction errors of the model at different time points were 

calculated to analyze LSTM's ability to capture temperature trends and changes. The experimental data were 

collected every 10 seconds, covering temperature variations over one hour. The results are presented in Table 3. 

The LSTM model maintained small absolute and relative errors at different time points, with absolute errors 

generally ranging from 0.3°C to 0.9°C and most relative errors below 1.5%, demonstrating high prediction 

accuracy. During the period from 00:00:10 to 00:00:40, the absolute errors remained between 0.3°C and 0.5°C, 

with relative errors of approximately 0.6% to 1.0%, indicating that the model could accurately predict 

temperature changes within this time frame. However, during periods of larger temperature fluctuations, such as 

from 00:01:10 to 00:01:20, the relative errors increased to 1.7% and 1.68%, with an absolute error of 0.9°C, 

suggesting a slight decrease in prediction accuracy for this time period. In subsequent periods, such as from 

00:01:30 to 00:02:00, the model regained higher accuracy, with absolute errors ranging from 0.3°C to 0.4°C and 

relative errors within the range of 0.5% to 0.8%. This indicates that the model performs well in predicting 

temperatures after they stabilize, making it suitable for monitoring relatively stable temperature fluctuations. 
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Table 3. Prediction Error Data 

Time Actual Temperature Predicted Temperature Absolute Error Relative Error (%) 

0:00:10 46.5 46.2 0.3 0.65 

0:00:20 47.3 47 0.3 0.63 

0:00:30 48.1 47.8 0.3 0.62 

0:00:40 49 48.5 0.5 1.02 

0:00:50 50.4 49.7 0.7 1.39 

0:01:00 51.2 50.6 0.6 1.17 

0:01:10 52.8 51.9 0.9 1.7 

0:01:20 53.5 52.6 0.9 1.68 

0:01:30 54.2 53.8 0.4 0.74 

0:01:40 53.1 53.4 0.3 0.56 

0:01:50 52.5 52.8 0.3 0.57 

0:02:00 51.7 52.1 0.4 0.77 

 

The sensitivity and specificity of the temperature anomaly detection and warning model were evaluated 

through the ROC curve to assess the model's prediction performance at different thresholds. Table 4 presents the 

actual performance of the model in detecting abnormal temperatures at various thresholds. It can be observed 

that as the threshold gradually increases, the sensitivity remains high between thresholds of 0.1 to 0.6, with 

values of 85.45%, 87.50%, 89.29%, 91.07%, 92.86%, and 94.44%, respectively. This trend indicates that the 

model can more effectively detect temperature anomalies at lower thresholds. However, as the threshold 

continues to increase to 0.7 to 0.9, the sensitivity decreases to 94.23%, 92.16%, and 90.00%, respectively, 

suggesting a potential risk of missed detections at high thresholds, although still within an acceptable range. On 

the other hand, specificity exhibits an opposite trend to sensitivity. The specificity reaches its highest point at a 

threshold of 0.1, with a value of 97.32%, and slightly decreases to 91.84% as the threshold rises to 0.6, further 

decreasing to 87.67% at 0.9. This indicates that at high thresholds, the model is more effective in avoiding false 

alarms, but the accuracy of detecting anomalies decreases. Overall, within the range of thresholds from 0.4 to 

0.6, the model demonstrates a good balance: with a sensitivity of approximately 91.07%-94.44% and a 

specificity maintained above 91.84%, it is suitable for use in temperature anomaly detection systems, as it can 

effectively detect abnormal temperatures while controlling false alarms. 

 

Table 4. ROC Data 

Threshold 

True 

Positive 

(TP) 

False 

Positive 

(FP) 

True 

Negative 

(TN) 

False 

Negative 

(FN) 

Sensitivity 

(%) 

Specificity 

(%) 

0.1 47 4 145 8 85.45 97.32 
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0.2 49 6 143 7 87.5 95.97 

0.3 50 8 141 6 89.29 94.63 

0.4 51 9 139 5 91.07 93.92 

0.5 52 10 137 4 92.86 93.2 

0.6 51 12 135 3 94.44 91.84 

0.7 49 14 133 3 94.23 90.47 

0.8 47 16 130 4 92.16 89.04 

0.9 45 18 128 5 90 87.67 

 

4.Conclusion 

This study addresses the high-temperature and intense electromagnetic environment of generator-motor 

rotor by introducing passive wireless temperature measurement technology to achieve online monitoring of rotor 

pole temperatures, thereby enhancing the safety and reliability of unit operation. The research employs 

Ultra-High Frequency (UHF) RFID technology and designs an RFID temperature monitoring system suitable 

for high-speed rotating conditions. By incorporating dynamic threshold adjustment and a Long Short-Term 

Memory (LSTM) temperature prediction algorithm based on time series, the system's accuracy for anomaly 

detection and early warning is further improved. Experimental data demonstrates that the temperature anomaly 

detection and early warning model exhibits excellent sensitivity and specificity at different thresholds. Within 

the threshold range of 0.4 to 0.6, the model's sensitivity reaches 91.07% to 94.44%, and its specificity remains 

above 91.84%, achieving a good balance between detection efficiency and false alarm control. Additionally, the 

Ant Colony Optimization (ACO) algorithm optimizes LSTM parameters, significantly improving the model's 

prediction accuracy, enabling the LSTM model to possess high-precision temperature prediction capabilities in 

complex environments. Through the use of dynamic thresholds and a sliding window method, the anomaly 

detection system can adjust temperature change thresholds in real-time, enhancing the adaptability of the early 

warning model during high-temperature fluctuations. Despite achieving certain results, the stability of data 

acquisition in scenarios with strong electromagnetic interference still needs further improvement. RFID data 

transmission may be interfered with under extreme conditions, affecting the continuity and real-time nature of 

monitoring. In the future, the reliability of the system can be further enhanced by improving antenna design and 

adding interference filtering mechanisms. 
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