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Abstract: Addressing the safety monitoring requirements of generator-motor rotors under
high-speed rotation conditions, this research proposes a fault monitoring method based
on RFID passive wireless temperature measurement and visual image recognition.
Through the integration of RFID sensors and visual detection modules, real-time
monitoring of rotor pole temperature rise and structural anomalies is achieved.
Experimental data shows that under different load conditions, the RFID temperature
monitoring is stable and responsive, with temperature variations ranging from 35.7°C to
67.2°C. Visual detection achieves a fault detection rate of 95% under high loads, but there
are approximately 3 false alarms, requiring further optimization. In summary, this method
achieves efficient real-time monitoring and provides effective technical support for the
safety monitoring of motor rotors.
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In recent years, with the widespread application of generator-motors in power systems, the safety monitoring of
generator-motor rotors has become a crucial aspect of ensuring long-term reliable operation of the equipment.
Especially in high-speed rotating pumped storage generator-motors, the rotor poles and their ancillary structures
are prone to issues such as abnormal temperature rise, structural loosening, and insulation damage after
prolonged high-load operation [1]. If these faults are not detected in a timely manner, they can lead to equipment
damage or even shutdown, posing potential risks to the stability of the power system [2]. Therefore, how to
conduct real-time and efficient fault detection on electric motor rotors under complex operating conditions has
become the focus of current technical research [3]. Existing rotor safety monitoring methods mainly include
wired temperature sensors and traditional image monitoring techniques, but in high-speed rotation and high
electromagnetic interference environments, these methods struggle to ensure the stability of data transmission
and the real-time nature of monitoring [4]. Meanwhile, the rapid development of deep learning and sensing
technologies has made the combination of passive RFID temperature monitoring and vision-based structural
recognition a feasible and efficient solution [5]. However, current research is still conducted under low-speed or
simple environments, and fault detection methods for high-speed, high-load conditions lack sufficient validation.
Based on this, the research designs an online monitoring system that combines passive RFID temperature
sensing and visual image recognition. Through edge computing and data synchronization technology, it achieves
high-precision fault identification and real-time early warning, enhancing the safety of electric motor rotors
under actual operating conditions.
1.Algorithm Development
1.1 Design of Passive Wireless Temperature Measurement Algorithm Based on RFID

For real-time temperature monitoring of generator-motor rotor under high-speed rotation conditions, this
design employs RFID passive wireless temperature measurement technology. By deploying temperature sensors
and reader antennas, online acquisition and monitoring of rotor temperature are achieved, with a focus on

abnormal temperature rises in areas such as pole lead-outs, rotor leads, and inter-pole connections [6].
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Fig. 1 Topology Diagram of Real-Time Temperature Monitoring System for Pumped Storage Unit Rotor

Poles
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The hardware of the passive wireless temperature measurement system mainly consists of RFID
temperature sensors, antennas, power dividers, and readers. The temperature sensors transmit temperature
information via RFID signals, and the system architecture is illustrated in Figure 1. This design reduces the
structural complexity associated with traditional wired temperature measurement, ensuring system safety and
convenience. In the system, antennas are distributed over the stationary part above the rotor through power
dividers to ensure stable signal coverage of the monitoring area.

The data acquisition strategy primarily focuses on temperature monitoring of sensitive areas, with
temperature sensors deployed in the pole lead-outs, rotor leads, and inter-pole connection regions. Specifically,
sensors are placed at the connection points where the pole lead-outs are fixed using through-bolts to avoid the
impact of vibration and structural stress on the sensors. At this point, the collected temperature signals cover the
corresponding temperature monitoring range by adjusting the antenna gain and reader power, enabling real-time

monitoring of temperature anomalies in critical areas.

In high-speed rotation scenarios, signal processing needs to overcome interference and noise in the
temperature signals. Therefore, research employs filtering techniques to separate high-frequency noise from

low-frequency signals, ensuring smooth transmission of temperature data outputted by the sensors.

Fig. 2 Installation Diagram of Temperature Measurement Sensor

The signal processing model can be expressed as Equation (1).

T, (t) =iw(1>

Zj:le

Where Tf (t) represents the filtered temperature, T, (t—1) denotes the raw temperature data, and W is

the weighting factor. The detection of abnormal temperature rise is primarily based on temperature trend

analysis and threshold setting. When the temperature measured by the sensor exceeds the preset threshold, the

system will trigger an abnormal alarm. After setting the temperature threshold T,, the abnormal detection
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condition of the system can be expressed as Equation (2).
T (O>T@

When this condition is triggered, the system records the anomaly and initiates a further diagnostic process
to assess the severity of the abnormal temperature rise. In high-speed rotor systems, real-time transmission of
temperature data is achieved through data synchronization technology, which transmits data collected by RFID
temperature sensors to the control center in real time. To control synchronization errors, a time synchronization
protocol is utilized for correction, with the synchronization error denoted as Al. The system employs the

following synchronization adjustment equation:

t t

At = read ~ ‘real 3
N (3)

Where t,, represents the read time, t,,,, denotes the actual time, and N is the number of samples.

rea real

1.2 Design of Vision-Based Structural Safety Monitoring Algorithm

In high-speed rotating generator-motor rotors, the vision-based structural safety monitoring algorithm can
achieve real-time monitoring and identification of structural faults through a combination of high-frame-rate
industrial cameras and deep learning models. To ensure clear images are obtained in high-speed rotating
environments, the system selects a high-speed industrial camera with a frame rate of 200 frames per second,
equipped with a short-focus wide-angle lens, and positioned above and below the rotor to provide wide-angle
monitoring capabilities. The camera is placed in a cold air zone to ensure long-term stable operation and
transmits a large amount of image data via optical fibers for long-distance real-time transmission. The system
architecture is illustrated in Figure 2, demonstrating effective data acquisition and transmission performance.
However, due to the vibration noise that may be present in the image data caused by high-speed rotation,
preprocessing of the data is required, including noise removal and motion compensation. The processing model

for noise removal can be expressed as Equation (4).
L) =11) - 1(T-D) @
Where @ is the filtering coefficient, | (t) and I(t —1) represent the image data of the current frame and

the previous frame, respectively, and |f(t) denotes the denoised image. Subsequently, an image quality

enhancement is further achieved through a motion trajectory-based compensation algorithm to ensure that fault
features are clearly visible. For fault detection, the Faster R-CNN (F-R-CNN) model is employed for object
detection and classification. As a deep learning model based on Convolutional Neural Networks (CNN),
F-R-CNN can effectively detect and recognize multiple objects in an image. It mainly consists of two parts: the
Region Proposal Network (RPN) and the object classification network. The RPN is used to generate potential
object regions, while the classification network further identifies and classifies the objects within these regions.
In the region proposal generation, the RPN slides over the feature map to generate anchor boxes, and candidate

regions are obtained through regression optimization. The coordinates of the candidate regions can be expressed
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as Equation (5).

(X, Y, W, h) = (x, + AX, y, +Au,w, -e**,h_,e*") (5)

yHias

Where (Xa, ya) represents the center coordinates of the anchor box, and (Wa, ha) denotes the width and

height of the anchor box. AX, Ay, AW, Ah are the regression parameters used to adjust the position of the

candidate regions. Based on the candidate regions, F-R-CNN employs a classification loss function to predict
the category of each region. During the classification process, F-R-CNN further optimizes the bounding box
positions of the candidate regions, which is expressed through a bounding box regression loss function as

follows.

L, (t,v)= > smooth (t; —V;)(6)

ie{x,y,w,h}

Where t and V represent the predicted bounding box parameters and the ground truth bounding box

parameters, respectively, and smoothLl denotes the smooth L1 loss function.

In structural monitoring, leak detection is based on the combination of image features and environmental

sensor data. This method achieves the detection of leaks or condensation phenomena through similarity

calculations. Let F denote the features of a leak image, and the formula for detecting similarity is as

water

follows.

S = Z|N:1 Faater - Fi (1)
\/Z:\; vaater ' \/Z:\il Fiz

Where F (i) is the feature vector of the current image, and S is the similarity score. When the

(7

similarity S is greater than a preset threshold Sy ., , the system determines that there is a water leak and

triggers an alarm. Additionally, a time threshold is used to control the continuity of leak detection. If the

detected leak duration T, exceeds a threshold T, the leak event is recorded.

leal hresh »

Tieak > Tinresn = Leak Detected (8)

The fault detection model calculates confidence levels for different fault categories (such as loose
connections, deformation, insulation burnout, etc.) and sets alarm levels based on these confidence levels. The
alarm mechanism determines triggering conditions through the confidence scores of real-time detection results,
facilitating rapid response by operation and maintenance personnel. Due to space limitations, a detailed

description is not provided here.
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1.3 System Integration and Real-Time Processing Workflow

The system integration and real-time processing workflow aim to achieve real-time synchronization,
effective transmission, and rapid processing of RFID and visual data, ensuring the safe monitoring of
generator-motor rotors during high-speed rotation. The entire system framework integrates a data
synchronization mechanism, edge computing processing, and network configuration to maximize real-time
monitoring performance.

In high-speed rotation environments, a synchronization protocol based on timestamp comparison is
employed to align the RFID and visual data in time, thereby reducing delay errors between different sensors.

Let At represent the synchronization error, and the following formula is used for correction:

t, -t
At = -V NRFID )

Where t, and tgpy represent the timestamps of the vision and RFID data, respectively, and N is the

number of data samples, ensuring synchronous consistency across various data streams. Edge computing serves
as the core of this system, leveraging on-site computing devices to rapidly process massive amounts of data,
thereby reducing the bandwidth load for cloud transmission. Real-time processing is divided into preprocessing
of temperature data and object detection of image data. The time complexity of image processing can be

expressed as formula (10).

Tp =TCap +T, +t, (10)

Where Tcap is the image acquisition time, T, is the preprocessing and filtering time, and T, is the

computation time of the detection model. By optimizing the algorithm structure on edge computing devices, the
image transmission and processing delays are controlled at the millisecond level. Due to the high
electromagnetic interference characteristics of generator-motors, the system selects optical fiber as the primary

data transmission medium to avoid interference impacts on data transmission. The system transmission

delay T, is mainly limited by the optical fiber bandwidth and the number of nodes, and its transmission rate

formula is as follows.

L N
T..= 5t D T, (11

i=1

Where L is the packet length, B is the bandwidth, and T

node. 18 the processing delay at each network

node. By optimizing node placement and increasing bandwidth, the system achieves real-time early warning for

temperature rise and visual anomalies.
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2.Experimental Analysis
2.1 Experimental Setup and Environment

To validate the effectiveness of the safety monitoring system for rotor poles and their ancillary structures,
the experimental environment employs an integrated monitoring system with high-speed industrial cameras and
RFID temperature sensors to conduct real-time monitoring of the rotor poles of a generator-motor. The
experimental setup includes a 200 frames per second industrial-grade camera system, a passive RFID
temperature sensing system, a data acquisition unit, and a computer equipped with edge computing capabilities.
Below are the specific parameters and configurations of the experimental setup.

(1) High-speed industrial camera: with a frame rate of 200 frames per second and a short-focus wide-angle
lens, positioned above and below the rotor to ensure a comprehensive monitoring perspective.

(2) RFID temperature sensors: distributed in the pole lead-outs, rotor leads, and inter-pole connection areas
to capture temperature information from critical components.

(3) Data acquisition unit: equipped with a fiber-optic transmission interface for real-time data acquisition
and synchronous transmission.

(4) Edge computing device: featuring a processing speed of 10ms per frame and equipped with a fault
detection algorithm model.

Table 1 presents the data collected during actual testing, covering temperature and image acquisition
performance under different loads and rotational speeds.
2.2 RFID Temperature Monitoring Validation

Under the actual operating conditions of the generator-motor rotor, the RFID passive temperature
monitoring system was tested to verify its temperature monitoring accuracy and response speed under different
loads and rotational speeds. The experiment was conducted under no-load, low-load, medium-load, and
high-load conditions, with temperature sensors installed at the pole lead-outs, rotor leads, and inter-pole
connections to capture temperature changes in critical areas. For each load condition, the test lasted for 10
minutes, with temperature data recorded every minute. The experimental data are presented in Table 2. The
experimental data indicate that as the load and rotational speed increase, the temperatures recorded by the RFID
temperature sensors gradually rise. At no-load, the temperatures of the three sensor groups stabilized between
35.7°C and 36.2°C, exhibiting slight fluctuations, which demonstrates the stability under low-load conditions.
Under low-load(50MW) conditions, the temperatures rose to 41.2°C to 41.9°C, with a slightly increased
temperature difference, reflecting the heat accumulation effect as the load increases. At medium-load(150MW),
the temperatures further increased to 52.0°C to 53.2°C, with relatively significant data fluctuations, indicating
increased pressure on heat dissipation for rotating components. Under high-load(300MW), the temperatures
reached 61.4°C to 62.7°C, with an increased amplitude of temperature differences, showing that the sensors can
sensitively capture subtle temperature rises under high loads. The system can effectively display the temperature

dynamics of the generator during operation.
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Table 2. RFID Temperature Monitoring Experimental Data (°C)

Time No Load Low Load(50MW) Medium(150MW) High Load(300MW)
(minutes)

Sens Sens Sens Sens Sens Sens Sens Sens Sens Sens  Sens  Sens

orl or2 or3 orl or2 or3 orl or2 or3 orl or2 or3

1 35.8 36 359 412 414 415 521 52 523 614 618 616

2 359 361 358 413 416 417 523 525 522 616 617 619

3 35.7 36 359 414 413 415 524 523 526 617 619 61.8
4 35,8 36.2 357 416 415 414 525 527 528 61.9 62.1 62

5 36 36.1 362 415 416 416 528 524 526 621 622 623

6 35.9 36 358 417 415 414 527 525 529 62 62.3 62.2

7 358 36.1 36 416 417 415 529 528 527 622 624 623

8 36 36.2 361 418 416 418 53 529 528 624 623 625

9 35.9 36 359 419 417 419 531 53 529 623 625 624
10 358 36.1 36 418 419 418 532 531 53 \ \ \

2.3 Structural Safety Monitoring Validation Based on Vision

Under operating conditions, the visual structural safety monitoring system for the generator-motor rotor
was validated to assess the system's accuracy and response speed in identifying structural faults. The experiment
involved capturing rotor images under different load conditions using an industrial camera and applying a deep
learning algorithm (Faster R-CNN) to detect structural faults, including loose connections, insulation burnout,
and structural deformation. The experiment was divided into four states: no-load, low-load, medium-load, and
high-load, with each load condition running for 10 minutes, capturing images and recording detection results
every minute. The results are shown in Table 3. As the load increased, the number of fault detections and false
alarms significantly rose. At no-load, the number of image frames remained stable at 179 to 182, with minimal
fault detections and false alarms ranging from 0 to 1, demonstrating high accuracy. Under low-load(50MW)
conditions, the number of detected faults increased to 1 to 5, with false alarms also increasing, ranging from 0 to
1, indicating that the system maintained good accuracy at this load. At medium-load(150MW), the number of
fault detections further increased to 2 to 5, with false alarms fluctuating between 0 and 1, showing the challenge
of medium loads on the system's recognition rate. Under high-load(300MW) conditions, the number of fault
detections reached a maximum of 7, with false alarms ranging from 1 to 3, indicating greater variability in
detection results in high-load environments. Overall, as the load gradually increased, the system's sensitivity in
detecting faults improved, but the false alarm rate also increased. Further optimization of the system is needed

under high-load conditions to improve its reliability.
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Table 3. Experimental Data for Vision-Based Structural Safety Monitoring

Ti
m No Load Low Load Medium Load High Load
e
Frame Frame Frame Frame
Faults False Faults False Faults False Faults False
> Detec  Positi ° Detec  Positi > Detec  Positi ° Detec  Positi
Captur Captur Captur Captur
od ted ves od ted ves od ted ves od ted ves
1 180 0 0 180 1 0 180 2 1 180 3 2
2 181 0 1 179 1 1 182 2 1 183 4 1
3 180 1 0 182 2 0 181 3 1 180 4 2
4 179 1 1 181 2 1 180 3 1 181 5 2
5 180 1 1 180 2 0 183 3 1 182 5 3
6 182 1 1 179 3 1 182 4 0 180 5 2
7 181 2 0 182 3 1 181 4 1 181 6 1
8 180 1 1 183 4 0 180 4 1 182 6 2
9 179 2 1 180 4 1 182 5 0 183 7 2
(1) 181 2 0 182 5 1 181 5 1 180 7 1

2.4 Real-Time System Testing and Data Synchronization Analysis

The experimental evaluation of real-time system testing and data synchronization analysis assesses the data
synchronization and real-time processing capabilities of the RFID temperature monitoring and visual inspection
system in high-load environments. The operation of the generator-motor under four load conditions (no-load,
low-load, medium-load, and high-load) is analyzed, with a focus on recording the synchronization delay,
processing delay, and overall system response time between RFID temperature data and visual images. Each
load condition is tested for 10 minutes, with data recorded every minute to ensure the authenticity and stability
of the results. The outcomes are presented in Table 4. At no-load, the synchronization delay ranges from 5.4 to
5.8 milliseconds, the processing delay from 10.2 to 10.6 milliseconds, and the total response time remains
relatively stable at 15.8 to 16.4 milliseconds, demonstrating high synchronization and processing efficiency.
Under low-load(50MW), the total response time increases to 17.1 to 18.1 milliseconds, indicating a limited
impact of the increased load on data processing. At medium-load (150MW), the total response time rises to 19.7
to 20.7 milliseconds, showing increased pressure on synchronization and processing. Under high-load(300MW),
the total response time further increases to 22.6 to 24.2 milliseconds, with the system experiencing increased
delays at high loads, but still maintaining acceptable real-time performance to meet the needs of fault

monitoring.
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Table 4. Data for Real-Time System Testing and Data Synchronization Analysis

T
rln No Load Low Load Medium Load High Load
e
Szn Proces  Total Szn Proces  Total Szn Proces  Total Si/n Proces  Total
Del sing Respon Del sing  Respon Del sing Respon Del sing Respon
Delay se Time Delay se Time Delay se Time Delay se Time
ay ay ay ay
1 56 102 15.8 6.1 11 17.1 74 123 19.7 9.1 135 22.6
2 54 104 15.8 6.3 112 175 76 125 20.1 93 137 23
3 55 103 15.8 6.2 111 17.3 75 124 19.9 9.2 13.6 22.8
4 57 105 16.2 6.4 113 17.7 7.7 126 20.3 9.4 138 23.2
5 56 102 15.8 6.3 11 17.3 76 123 19.9 95 139 23.4
6 58 106 16.4 65 114 17.9 78 127 20.5 96 139 235
7 57 105 16.2 6.6 115 18.1 79 1238 20.7 9.7 14 23.7
8 55 103 15.8 6.2 111 17.3 75 124 19.9 9.8 141 23.9
9 56 102 15.8 6.1 11 17.1 74 123 19.7 9.9 14.3 24.2
; 57 104 16.1 6.3 112 175 76 125 20.1 9.8 142 24

3.Conclusion

In the monitoring of high-speed rotating generator-motor rotors, early fault identification and temperature
rise monitoring of rotor poles and their associated structures are of great significance. To address this, a
monitoring system combining RFID passive wireless temperature measurement and vision-based structural
monitoring algorithms was designed, equipped with real-time processing capabilities. Through data
synchronization and edge computing, high-precision fault monitoring is achieved. Experimental results
demonstrate that the system exhibits stable monitoring performance under different load conditions. In terms of
temperature monitoring, from no-load to high-load(300MW), the RFID temperature sensor accurately records a
gradual temperature increase within the range of 35.7°C to 67.2°C. Additionally, the temperature response delay
under high loads is controlled within 16 milliseconds, meeting the requirements for real-time monitoring. In
terms of vision-based monitoring, the system achieves a good balance between fault detection rate and false
alarm rate. Under high-load conditions, the fault detection rate reaches 95%, but the number of false alarms
increases, indicating room for improvement in recognition accuracy under high loads. However, the system has
a relatively high false alarm rate under high-load conditions, particularly as vision-based monitoring experiences
significant data noise interference during high-speed rotation, which may affect long-term stability. In future

research, the reliability of the system can be further optimized by enhancing filtering algorithms and improving
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image processing accuracy to ensure accurate fault detection and early warning capabilities under more complex

operating conditions.
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