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ABSTRACT 
Short-term prediction of liquefied gas concentration is helpful to assisted 

analysis of storage tank operation status and trend, can discover the 

potential safety hazards timely inside the storage tank, and then take 

effective measures to prevent and control the risks, so as to ensure the 

safety and stability of the oil and gas gathering and transportation industry. 

Within the limited space, affected by factors such as complexity, high 

dimension, strong correlation and weak regularity of storage tank operation 

data, the existing short-term prediction method of liquefied gas 

concentration is difficult to ensure the real-time performance and accuracy 

of prediction results. Therefore, we propose a short-term prediction method 

of liquefied gas concentration based on mixed intelligence. Firstly, we bring 

in an Extreme Change Function, and calculate the weighted set kurtosis 

value of the feature curve to realize feature dimension reduction. Secondly, 

the Convolutional Neural Network is used to mine the correlation between 

features and extract effective feature vectors. Meanwhile, we use Long 

Short-Term Memory Network to learn the change law of the data, so as to 

obtain the predicted value of liquefied gas concentration. Finally, our method 

is applied to a real scenario to demonstrate that the short-term prediction 

method of liquefied gas concentration achieves superior results in prediction 

accuracy, running speed and stability compared with other methods. 

1. INTRODUCTION
Short-term prediction of liquefied gas concentration is based on tank operation data, use 
intelligent analysis methods to predict potential hazards of tank operation, such as gas leakage, 
excessive concentration, abnormal pressure, etc. It can provide a reliable objective basis for 
the production decision-making department to formulate scientific and effective risk 
prevention and control measures. It is one of the auxiliary decision-making methods to ensure 
the safety and stability of oil and gas gathering and transportation industry [1-2]. Due to the 
complexity, high dimension, strong correlation and weak regularity of storage tank operation 
data, the existing prediction methods have low accuracy, so the short-term prediction method 
[3-4] of liquefied gas concentration is regarded as one of the key problems in the field of safe 
production in petroleum industry. 
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Traditional prediction methods of liquefied gas concentration include two types. One type 
is the statistical method represented by the auto regressive inter grated moving average model 
(ARIMA) [5]. However, such method has a large calculation amount and low prediction 
accuracy [6] when dealing with multi-dimensional features. The other type is the machine 
learning method represented by support vector machine (SVM) [7] and BP (back propagation) 
neural network [8]. Such method cannot learn the temporal feature of gas concentration data 
well, and requires manual setting of time characteristics, which still cannot improve the 
prediction accuracy [9-10].  

With the rise of deep learning technology in the field of intelligent prediction, many 
scholars use the hybrid model of convolutional neural network (CNN) and long short-term 
memory (LSTM) for the short-term prediction of liquefied gas concentration [11-12]. This 
trend prediction model based on time series data can improve the prediction accuracy to some 
extent. However, this method takes the gas concentration and its multidimensional feature 
data as the model input directly, resulting in too high input dimension, which is not conducive 
to model training and accuracy improvement. In Reference [13], Pearson coefficient is used 
to select the features of gas concentration, and then the long short-term memory network is 
applied to predict the time series. In Reference [14], the principal component analysis (PCA) 
is used to screen effective features, and the long short-term memory network is employed to 
predict gas concentration. But Pearson coefficient and PCA method are more suitable for 
reducing dimension of stationary time series data, and the calculation time is long for large-
scale data. However, the prediction of liquefied gas concentration involves a large amount of 
data, high feature dimension and non-stationary time series [15], so the traditional dimension 
reduction method leads to poor prediction results. As a common method of signal extraction, 
spectral kurtosis can detect and represent the non-stationarity of signals [16], and is widely 
used in the fields of audio processing [17], image processing [18] and mechanical equipment 
fault diagnosis [19]. In view of the advantages of spectral kurtosis for non-stationary signal 
processing, we design an extreme change function (ECF) based on spectral kurtosis to solve 
the problem of feature dimension reduction of non-stationary time series. 

Based on the above research, by drawing on the design idea of hybrid intelligent algorithm 
of “divide-and-conquer, complementary advantages” [20-22], we propose a liquefied gas 
concentration short-term prediction method based on ECF, CNN and LSTM (ECL-LGSP). 
Firstly, the ECF is used to calculate the weighted set kurtosis value of the feature curve, so as 
to reduce the feature dimension; Secondly, we use CNN to mine the correlation between the 
features, and extract effective feature vectors; Then, the feature vectors are entered into the 
LSTM for training and learning the change rule of the data, so as to realize the prediction of 
liquefied gas concentration; Finally, it is proved by experiments that the method has obvious 
advantages in prediction accuracy and running speed. Our innovations include: 

 
1. An extreme change function is proposed to solve the problem of feature dimension 

reduction of high dimensional and non-stationary time series. 
2. CNN and LSTM are combined to realize feature extraction and short-term prediction of 

liquefied gas concentration. 
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The method we propose has been applied to real scenes and has good application effect. 

For example, when an oil extraction plant uses the anomaly monitoring and early warning 
system of CO2, this method is chosen as the basis for early warning. In the process of practical 
application, the accuracy and real-time performance of CO2 concentration prediction are 
better than the original method obviously, and it can prevent the occurrence of carbon leakage 
accidents effectively and contribute to the safe production of oil fields. 

The article is organized as below: In Chapter 2, we arrange application scenarios, provide 
the workflow of ECL-LGSP method, and condense key issues. In Chapter 3, the definition of 
Extreme Change Function and the determination method of extreme change factor are 
expounded. In Chapter 4, the network model structure, training process and evaluation method 
of ECL-LGSP method are described. In Chapter 5, the effectiveness of the proposed method 
is demonstrated by experiments. In Chapter 6, we summarize the research results and offer 
the prospect of future research work. 
 
2. BASIC WORK 
2.1. Scenario definition and basic concepts 
Defining scenario 𝐻𝐻: In a relatively closed environment composed of 𝑁𝑁 groups of liquefied 
gas storage tanks, the number of physical parameters of each type of storage tank 𝐶𝐶 is 𝑣𝑣, the 
number of detection instruments is 𝑑𝑑, and the number of regular inspection personnel is 𝑞𝑞. 
The monitoring center issues a liquefied gas concentration prediction task, and any storage 
tank 𝐶𝐶𝑖𝑖 ∈ 𝐶𝐶 contains 𝑛𝑛 features and can be solved by intelligent prediction method. The feature 
of 𝐶𝐶𝑖𝑖 can be expressed as 𝐶𝐶𝑖𝑖 = (𝑥𝑥,𝑛𝑛), 𝑛𝑛 represents the feature dimension, 𝑥𝑥 represents the 
feature attribute set, including 𝑑𝑑 dynamic attributes and 𝑞𝑞 additional attributes. 

Since the task is to predict the concentration of liquefied gas in a finite space, the feature 
attributes in the scenario 𝐻𝐻 have integrity and satisfy the following three premises: 

 
Precondition 1. Complete detection instruments are configured in the limited space for storing 𝐶𝐶. 
Precondition 2. The number of inspection personnel, inspection time and gender of personnel 
in the additional attribute q are known. 
Precondition 3. In the same prediction task, ∀𝐶𝐶𝑖𝑖 ∈ 𝐶𝐶 has the same features, and the feature 
attribute value is not empty. 
 

The basic concepts and formulas are described as follows. Feature attribute: The operation 
data of any tank 𝐶𝐶𝑖𝑖 can be expressed as 𝐶𝐶 = {𝑋𝑋𝑡𝑡𝑡𝑡|0 < 𝑡𝑡 ≤ 𝑚𝑚, 1 ≤ 𝑖𝑖 ≤ 𝑎𝑎}, after data 
processing, the original feature set is 𝑋𝑋 = {𝑋𝑋𝑖𝑖|1 ≤ 𝑖𝑖 ≤ 𝑛𝑛，𝑛𝑛 < 𝑎𝑎}, and the feature attribute 
data within the time 0 < 𝑡𝑡 ≤ 𝑚𝑚 is 𝐷𝐷 = {𝑥𝑥𝑡𝑡𝑡𝑡|0 < 𝑡𝑡 ≤ 𝑚𝑚, 1 ≤ 𝑖𝑖≤ 𝑛𝑛}, wherein, 𝑥𝑥𝑡𝑡𝑡𝑡 is the 
observed value of the ith feature at time 𝑡𝑡, and 𝐷𝐷 is expressed in matrix form as follows: 
 

𝐷𝐷 = �

𝑥𝑥11 𝑥𝑥12 . . . 𝑥𝑥1𝑛𝑛
𝑥𝑥21 𝑥𝑥22 . . . 𝑥𝑥2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑥𝑚𝑚1 𝑥𝑥𝑚𝑚2 . . . 𝑥𝑥𝑚𝑚𝑚𝑚

�                                                   (1) 
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2.2. ECL-LGSP workflow 
In the ECL-LGSP method, the model 𝑝̂𝑝𝑐𝑐 is obtained by training based on a number of historical 
storage tank operation data, and the model 𝑝̂𝑝𝑐𝑐 is used to predict the liquefied gas concentration 
value of a specific period in the future. Specifically, the ECL-LGSP model includes three 
parts: data preprocessing, feature dimension reduction and trend prediction, and the workflow 
is shown in Figure 1. 
 

 
Figure 1. ECL-LGSP workflow 
 

According to the ECL-LGSP workflow, the following two problems need to be addressed: 
 

I. How to reduce the feature dimension for the high dimensional storage tank operation 
data. 

II. How to build a trend prediction model of liquefied gas concentration based on CNN-
LSTM network.  

 
3. FEATURE DIMENSION REDUCTION 
The essence of short-term prediction of liquefied gas concentration is regression prediction 
based on multi-dimensional time series data; Selecting a suitable feature dimension reduction 
method can reduce the computational complexity and overfitting risk of the model, and 
improve the prediction accuracy and running speed of ECL-LGSP model fundamentally. 
 
3.1. Feature trend analysis 
The effective method of feature dimension reduction is to analyze the correlation between the 
predicted target and the features. In order to mine the relationship between the concentration 
of liquefied gas and its features fully, we take the operation data of storage tanks in different 
regions as samples and calculate the general change trend of the feature attributes such as 
temperature, pressure, humidity and the concentration of liquefied gas. It is found that the 
features of similar storage tanks in different regions have similar change trends. Figure 2 
shows the changing trend of CO2 concentration and its features over time in a storage tank in 
a certain area. Experimental results show that the trend change of liquefied gas concentration 
and its features has temporal feature, non-stationarity and periodic correlation [23], which are 
manifested as follows: 
 

I. The concentration of liquefied gas and its features change continuously with the advance 
of time series. 
 

  



117 Int. Jnl. of Multiphysics Volume 18 · Number 1 · 2024 

 

 
 
II. The change curves of liquefied gas concentration and its features are of impact in time 

domain and non-stationary in frequency domain. 
III. The trend of liquefied gas concentration and its features presents periodic changes and 

has correlation. 
 

 
Figure 2. Trends of gas concentration and its features 

 
3.2. Definition and formal representation of ECF 
Aiming at the trend change characteristics of liquefied gas concentration and its features, we 
draw on the idea [24] of non-stationary signal extraction by spectral kurtosis and bring in an 
Extreme Change Function (ECF) to screen effective feature subsets from the perspective of 
features curves. The essence of ECF is to use the envelope kurtosis and envelope spectral 
kurtosis to reflect the impact and non-stationarity of the feature curves, calculate the 
correlation coefficient to reflect the correlation between the gas concentration and its features, 
and then establish the weighted set kurtosis 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 to judge the effectiveness of the features and 
achieve the feature dimension reduction. The ECF working principle is shown in Figure 3. 
 

 
Figure 3. ECF working principle 
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The formal representation of ECF consists of three parts: envelope kurtosis, envelope 
spectral kurtosis and correlation coefficient. The formulas and the derivation process involved 
are described as follows: 
 
(1) Envelope kurtosis: We define 𝐾𝐾𝑒𝑒 to represent the envelope kurtosis of feature attribute, 

𝐸𝐸𝑥𝑥 is the envelope signal of 𝑦𝑦(𝑖𝑖) after the Hilbert transform (𝑦𝑦(𝑖𝑖) represents the curve of 
feature 𝑋𝑋𝑖𝑖 over time), 𝜇𝜇𝑒𝑒is the average of 𝐸𝐸𝑥𝑥, 𝜎𝜎𝑒𝑒is the standard deviation of 𝐸𝐸𝑥𝑥. According 
to kurtosis formula, the representation form of envelope kurtosis of feature attributes is 
shown in formula (2): 
 

𝐾𝐾𝑒𝑒 = 𝐸𝐸(𝐸𝐸𝑥𝑥−𝜇𝜇𝑒𝑒)4

𝜎𝜎𝑒𝑒4
                                                       (2) 

 
(2) Envelope spectral kurtosis: We define 𝐾𝐾𝑐𝑐 to represent the envelope spectral kurtosis of 

feature attribute, 𝐸𝐸𝑐𝑐 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝐸𝐸𝑥𝑥] (Fourier transform of discrete aperiodic sequences), 
𝜇𝜇𝑐𝑐is the average of 𝐸𝐸𝑐𝑐,𝜎𝜎𝑐𝑐is the standard deviation of 𝐸𝐸𝑐𝑐. According to spectral kurtosis 
formula, the representation form of envelope spectral kurtosis of feature attributes is 
shown in formula (3): 

 

𝐾𝐾𝑐𝑐 = 𝐸𝐸(𝐸𝐸𝑐𝑐−𝜇𝜇𝑐𝑐)4

𝜎𝜎𝑐𝑐4
                                                      (3) 

 
(3) Correlation coefficient: We define 𝑅𝑅𝑓𝑓 to represent the correlation coefficient between the 

liquefied gas concentration and its features, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑝𝑝) represents the covariance between 
feature 𝑋𝑋𝑖𝑖 and the liquefied gas concentration 𝑝𝑝. The representation form of correlation 
coefficient between liquefied gas concentration and its features is shown in formula (4): 

 
𝑅𝑅𝑓𝑓(𝑥𝑥, 𝑝𝑝) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑝𝑝)

�𝐷𝐷(𝑥𝑥)�𝐷𝐷(𝑝𝑝)
                                               (4) 

 
In summary, by using the weighted set kurtosis, the representation form of ECF is shown 

in formula (5). 
 

𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐾𝐾𝑒𝑒 ⋅ 𝐾𝐾𝑐𝑐 ⋅ 𝑅𝑅𝑓𝑓                                                 (5) 
 
3.3. Judging criteria of effective features 
ECF is the basis for screening effective features. We define 𝛾𝛾𝑖𝑖to represent the ECF difference 
value between the liquefied gas concentration and its features, and 𝛿𝛿 to represent the 
fluctuation threshold, screen effective features by determining the relationship between 𝛾𝛾𝑖𝑖 and 
𝛿𝛿. The specific formulas of 𝛾𝛾𝑖𝑖 and 𝛿𝛿 are shown below: 
 

𝛾𝛾𝑖𝑖 = |𝑓𝑓𝑋𝑋𝑖𝑖 − 𝑓𝑓𝑜𝑜|                                                    (6) 
 

𝛿𝛿 = 1
𝑛𝑛
∑ 𝛾𝛾𝑖𝑖𝑛𝑛
𝑖𝑖=1                                                      (7) 

 
wherein, 𝑓𝑓0 and 𝑓𝑓𝑋𝑋𝑖𝑖 represent the ECF value of liquefied gas concentration and its features. 
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Judging criteria of effective features: 
 
1) If 𝛾𝛾𝑖𝑖 > 𝛿𝛿, it indicates that the curve difference between feature𝑋𝑋𝑖𝑖and liquefied gas 

concentration is large and the correlation is weak, thereby judging that feature𝑋𝑋𝑖𝑖is not an 
effective feature. 

2) If 𝛾𝛾𝑖𝑖 ≤ 𝛿𝛿, it indicates that the curve similarity between feature𝑋𝑋𝑖𝑖and liquefied gas 
concentration is great and the correlation is strong, thereby judging that feature 𝑋𝑋𝑖𝑖 is an 
effective feature. 

 
According to the judging criteria of effective features, all features 𝑋𝑋 = {𝑋𝑋𝑖𝑖|1 ≤ 𝑖𝑖 ≤ 𝑛𝑛} in 

the time range of 0~t are traversed to determine the effectiveness of the features one by one, 
thereby realizing the feature dimension reduction, and obtaining the effective feature matrix 
𝑋𝑋∗ = {𝑋𝑋𝑘𝑘|1 ≤𝑘𝑘 < 𝑛𝑛}. 
 
4. ECL-LGSP MODEL 
The ECL-LGSP model uses ECF to reduce feature dimension from the perspective of feature 
curve and integrates CNN network to extract features from the perspective of feature matrix 
and LSTM network to capture and learn time series data, which can further improve the 
prediction accuracy of ECL-LGSP model. 
 
4.1. Design of CNN-LSTM network model 
The CNN-LSTM hybrid network is composed of CNN layer, LSTM layer, fully connected 
layer and output layer. The network model structure is shown in Figure 4, and the detailed 
calculation process is shown below. 

Firstly, the K-dimensional effective features after feature dimension reduction by ECF are 
entered into two CNN layers with Relu activation function and kernel size 2. In order to adapt 
to different prediction tasks, we select convolution kernels of 1×[k/2] and 1×[k/4] in series 
according to feature dimension k, which decreases the computation while ensuring the global 
feature, and reduces the training time while ensuring the model accuracy [25]. The 
convolution operation and pooling operation are respectively represented by formulas (8) and 
(9), and the output result of CNN network is an m r× matrix, as shown in formula (10), 

 
𝑃𝑃𝑗𝑗𝑖𝑖 = 𝑓𝑓(∑ 𝑃𝑃𝑖𝑖𝑙𝑙−1 ∗ 𝑤𝑤𝑖𝑖𝑖𝑖𝑙𝑙𝑁𝑁

𝑖𝑖=1 + 𝑏𝑏𝑗𝑗𝑖𝑖)                                              (8) 
 

𝑃𝑃𝑗𝑗𝑙𝑙 = 𝑓𝑓(𝛼𝛼𝑗𝑗𝑙𝑙𝐹𝐹𝑑𝑑(𝑃𝑃𝑗𝑗𝑙𝑙 − 1) + 𝑏𝑏𝑗𝑗𝑙𝑙)                                               (9) 
 

in formula (8), 𝑃𝑃𝑗𝑗𝑖𝑖  represents the jth convolution map at the convolution layer l, namely the 
liquefied gas concentration features extracted by the convolution layer; 𝑃𝑃𝑗𝑗𝑙𝑙−1 represents the ith 
upper convolution map; 𝑤𝑤𝑖𝑖𝑖𝑖𝑙𝑙  represents the weight of the jth convolution kernel at the 
convolution layer l after the ith operation; 𝑏𝑏𝑗𝑗𝑖𝑖 represents the bias of the jth convolution kernel 
at the convolution layer. In formula (9), 𝑃𝑃𝑗𝑗𝑙𝑙  represents the jth feature map in the pooling layer 
l; 𝛼𝛼𝑗𝑗𝑙𝑙 represents the multiplicative bias of the feature map; 𝐹𝐹𝑑𝑑(𝑥𝑥) represents the down sampling 
function. 
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Figure 4. CNN-LSTM network model structure 
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𝑊𝑊𝑡𝑡 = �

𝑤𝑤11 𝑤𝑤12 ⋯ 𝑤𝑤1𝑟𝑟
𝑤𝑤21 𝑤𝑤22 ⋯ 𝑤𝑤2𝑟𝑟
⋮ ⋯ ⋱ ⋮

𝑤𝑤𝑚𝑚1 𝑤𝑤𝑚𝑚2 ⋯ 𝑤𝑤𝑚𝑚𝑚𝑚

� = [𝑤𝑤1 𝑤𝑤2 …𝑤𝑤𝑚𝑚]𝑇𝑇                             (10) 

 
Secondly, the 𝑚𝑚 × 𝑟𝑟 matrix of CNN output is divided into m row vectors 𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑚𝑚 

according to the time series order, and then input into the LSTM network. The memory unit 
of each LSTM is mainly composed of input gate, forget gate and output gate [26]. After 
calculating the input gate, forget gate and output gate, the hidden layer ℎ𝑡𝑡 of LSTM can be 
obtained as follows: 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⋅ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡)                                                   (11) 
 
wherein, 𝑜𝑜𝑡𝑡 is the output of the output gate, 𝐶𝐶𝑡𝑡 is the state of the 𝑡𝑡th memory unit, and𝑡𝑡𝑡𝑡𝑡𝑡ℎis 
the hyperbolic tangent function. 
 

Finally, ℎ𝑡𝑡 is taken as the input ℎ = [ℎ1 ℎ2 … ℎ𝑚𝑚] of the fully connected layer, the input 
matrixℎ is multiplied by the weight matrix trained by the hidden layer and the bias matrix is 
added to obtain the hidden layer 𝑝𝑝, and then the predicted value 𝑝̂𝑝𝑐𝑐,𝑡𝑡 of gas concentration is 
obtained by the same calculation for 𝑝𝑝, 
 

𝑝𝑝 = 𝜏𝜏(ℎ)                                                         (12) 
 

𝑝̂𝑝𝑐𝑐,𝑡𝑡 = 𝑤𝑤𝑓𝑓𝑓𝑓𝑝𝑝 + 𝑏𝑏𝑓𝑓𝑓𝑓                                                  (13) 
 
wherein, 𝑝𝑝 is the fully connected hidden layer matrix, 𝜏𝜏 is the input matrix multiplied by the 
weight matrix plus the bias matrix function, 𝑝̂𝑝𝑐𝑐,𝑡𝑡 is the predicted value of liquefied gas 
concentration at time 𝑡𝑡, 𝑝̂𝑝𝑐𝑐,𝑡𝑡 = (𝑝̂𝑝𝑐𝑐,1, 𝑝̂𝑝𝑐𝑐,2,⋯ , 𝑝̂𝑝𝑐𝑐,𝑚𝑚), 𝑤𝑤𝑓𝑓𝑓𝑓 and 𝑏𝑏𝑓𝑓𝑓𝑓 are respectively the weight 
matrix and bias value matrix of the fully connected layer obtained by training set. 
 
4.2. Training of CNN-LSTM network model 
According to the working principle of ECF and the structure of CNN-LSTM network model, 
the training steps of ECL-LGSP model are given as follows: 
Step 1. We enter and process the storage tank operation data to obtain the original feature 
attribute data 𝐷𝐷 = {𝑥𝑥𝑡𝑡𝑡𝑡|0 < 𝑡𝑡 ≤ 𝑚𝑚, 1 ≤ 𝑖𝑖≤ 𝑛𝑛}. 
Step 2. We calculate the ECF values of liquefied gas concentration and its features in the time 
range of 0 t m< ≤ . 
Step 3. We calculate the ECF difference 𝛾𝛾𝑖𝑖 and fluctuation threshold 𝛿𝛿 according to formulas 
(6) and (7) and obtain the effective feature matrix 𝑋𝑋∗ according to the judging criteria of 
effective features. 
Step 4. We divide the corresponding attribute data of 𝑋𝑋∗ into training set 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′  and test set 
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′ . 
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Step 5. We input 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′  into the CNN network and realize feature extraction and dimension 
reduction through convolution layer and pooling layer, to obtain effective feature vector 𝑤𝑤. 
The operation process is shown in formulas (8) and (9). 
Step 6. We input the data processed by Step 5 into the LSTM network, enter the data set of 
the hidden layer as row vectors 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛, and then get the hidden layer output ℎ𝑡𝑡. 
Step 7. We take ℎ𝑡𝑡as the input of the fully connected layer and get the predicted value of the 
liquefied gas concentration by calculation, that is, 𝑝̂𝑝𝑐𝑐,𝑡𝑡 = (𝑝̂𝑝𝑐𝑐,1, 𝑝̂𝑝𝑐𝑐,2,⋯ , 𝑝̂𝑝𝑐𝑐,𝑚𝑚). The objective 
function is the root mean square error (RMSE). When the MSE is minimum, the training stops 
to get the final ECL-LGSP model 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑓𝑓(𝑤𝑤, 𝑏𝑏)𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 
 

The pseudo-code form of ECL-LGSP is shown in algorithm 1, wherein, “/**/” indicates 
the annotation. 
__________________________________________________________________________ 
Algorithm 1. ECL-LGSP 
Input: 𝐷𝐷 = {𝑥𝑥𝑡𝑡𝑡𝑡|0 < 𝑡𝑡 ≤ 𝑚𝑚, 1 ≤ 𝑖𝑖≤ 𝑛𝑛}: The original feature attribute data obtained by data 
preprocessing 
Output: 
Xpredict: Liquefied gas concentration value in the future continuous time. 
Begin  
/*①ECF feature selection */ 
01  for i=1 to n do 
02    set 𝐾𝐾𝑒𝑒 = 𝐸𝐸(𝐸𝐸𝑥𝑥−𝜇𝜇𝑒𝑒)4

𝜎𝜎𝑒𝑒4
; /*Calculate envelope kurtosis according to formula (2). */ 

03    set 𝐾𝐾𝑐𝑐 = 𝐸𝐸(𝐸𝐸𝑐𝑐−𝜇𝜇𝑐𝑐)4

𝜎𝜎𝑐𝑐4
; /*Calculate the envelope spectral kurtosis according to formula (3). */ 

04    set 𝑅𝑅𝑓𝑓(𝑥𝑥, 𝑝𝑝) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑝𝑝)
�𝐷𝐷(𝑥𝑥)�𝐷𝐷(𝑝𝑝)

; /*Calculate the correlation coefficient according to formula (4). */ 

05    set 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐾𝐾𝑒𝑒 ⋅ 𝐾𝐾𝑐𝑐 ⋅ 𝑅𝑅𝑓𝑓; /*Calculate the weighted set kurtosis according to formula (5). */ 
06    set 𝛿𝛿 = 1

𝑛𝑛
∑ |𝑓𝑓𝑋𝑋𝑖𝑖 − 𝑓𝑓𝑜𝑜|𝑛𝑛
𝑖𝑖=1 ; /* , Calculate the ECF difference value according to formula (6). */ 

07    set 𝛿𝛿 = 1
𝑛𝑛
∑ 𝛾𝛾𝑖𝑖𝑛𝑛
𝑖𝑖=1 ; /* Calculate the fluctuation threshold according to formula (7). */ 

08    if  𝛾𝛾𝑖𝑖 ≤ 𝛿𝛿 𝑋𝑋∗+=  𝑋𝑋𝑖𝑖; /*Obtain X* according to judging criteria of effective feature. */ 
09  end for 
/*②CNN-LSTM network model prediction*/ 
10  for 𝑖𝑖=0 to X* do 
11    set 𝑋𝑋𝑗𝑗 = 𝑃𝑃𝑗𝑗𝑖𝑖(𝑋𝑋𝑖𝑖); /*Carry out convolution calculation according to formula (8).*/ 
12    set 𝑊𝑊𝑡𝑡 = 𝑃𝑃𝑗𝑗𝑙𝑙(𝑋𝑋𝑗𝑗); /*Carry out pooling calculation to get the feature vector according to formula 
(9).*/ 
13  end for 
14  def Lstm(batch_size,time_step, 𝑊𝑊𝑡𝑡);  /*Model training.*/ 
15    for i=0 to 𝑤𝑤𝑡𝑡 do 
16       set 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀(); 
17    end for 
18  return 𝑓𝑓(𝑤𝑤, 𝑏𝑏)𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; 
19  def Predict(): 
20    Lstm(𝑊𝑊𝑡𝑡); 
21  set Xpredict = Predict();  /*Get the predicted value of liquefied gas concentration.*/ 
22  return Xpredict  
End 
__________________________________________________________________________ 
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4.3. Evaluation function of ECL-LGSP model  
The root mean square error (RMSE), mean absolute error (MAE) and mean absolute 
percentage error (MAPE) are applied to evaluate the model prediction effect. The smaller the 
evaluation indexes values, the higher the model prediction accuracy. The specific formulas 
are shown as follows, wherein, 𝑝𝑝𝑐𝑐,𝑡𝑡 and 𝑝̂𝑝𝑐𝑐,𝑡𝑡 represent the true and predicted values of the 
liquefied gas concentration respectively. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑝̂𝑝𝑐𝑐,𝑡𝑡 − 𝑝𝑝𝑐𝑐,𝑡𝑡)2𝑛𝑛
𝑡𝑡=1                                             (14) 

 
𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑛𝑛
∑ �𝑝̂𝑝𝑐𝑐,𝑡𝑡 − 𝑝𝑝𝑐𝑐,𝑡𝑡�𝑛𝑛
𝑖𝑖=1                                                (15) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑝𝑝�𝑐𝑐,𝑡𝑡−𝑝𝑝𝑐𝑐,𝑡𝑡|

𝑝𝑝𝑐𝑐,𝑡𝑡

𝑛𝑛
𝑖𝑖=1                                                 (16) 

 
RMSE and MAE can reflect the error of the accurate value and the predicted value, and 

the smaller the value of both, the higher the model prediction accuracy. MAPE reflects the 
ratio of error to accurate value. 
 
5. EXPERIMENT ANALYSIS 
5.1. Experiment preparation 
I. Experimental environment. The CO2 anomaly monitoring and early warning system of 

the overall control platform of instrument operation monitoring and early warning in an 
oil extraction plant is simulated, and the simulation environment structure diagram is 
shown in Figure 5. The station is a star network topology, and the instrument of CO2 
storage tank is connected to PLC, and then to the terminal (host computer). The central 
control terminal is responsible for the intelligent control, and the terminal system monitors 
the real-time status of the operation of the CO2 storage tank. 

II. Data preparation. We select the CO2 storage tank operation data of a key station of an oil 
extraction plant as the experimental data, and the time resolution is 5min. The data set 
includes 8640 storage tank operation data from April 1, 2022 to April 30, 2022. 10 storage 
tank operation parameters in Table 1 are selected as input features, and divided into 
training set, verification set and test set according to the ratio of 8:1:1. The features such 
as number of employees and gender of personnel are one-hot encoded, and other features 
are normalized. 

 
Table 1. Storage tank operation parameters 
Notation Meaning Attribute category 
N Tank life Static attribute (v) 
P Pressure inside tank Dynamic attribute (d) 

Dynamic attribute (d) 
Dynamic attribute (d) 
Dynamic attribute (d) Dynamic attribute (d) Dynamic attribute (d) Dynamic attribute (d) 

T Temperature inside tank 
Pc 

Pressure inside station 
Tc Temperature inside station 
h Humidness inside station 
Ws Wind speed inside station 
Wd Wind direction inside station 
n Number of employees Additional attribute (q) 
g Gender of personnel Additional attribute (q) 
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Figure 5. Experimental environment structure diagram 
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III. Contrast model. The experiments include different feature selection method experiments, 
performance evaluation experiments and tolerance experiments of ECL-LGSP model. We 
select CNN, LSTM and CNN-LSTM network models, and the hybrid model combining 
Pearson correlation coefficient, PCA, TSNE with CNN-LSTM respectively for 
comparison. 
 

5.2. Feature dimension reduction experiment 
By using the Pearson correlation coefficient, PCA, TSNE and ECF method, the feature 
dimension reduction experiment is carried out after preprocessing of the 10-dimensional 
storage tank operation data, aiming to analyze the effectiveness and superiority of ECF 
method. The cumulative contribution rate threshold is set as 95% in the experiment, and the 
scatter diagrams of 3D feature data after feature dimension reduction are shown in Figure 6(a)-
(d). 
 

 
(a) ECF feature dimension reduction results 
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(b)TSNE feature dimension reduction results 

 

 
(c) PCA feature dimension reduction results 
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(d) Pearson feature dimension reduction results 

Figure 6. Dimension reduction results of different methods 

 
It is obvious from Figure 6(a)-(d) that the ECF method achieves good feature dimension 

reduction results. However, after dimension reduction by TSNE, PCA and Pearson methods, 
the scatter diagram has an obvious aggregation degree, and some noise points are generated 
in the dimension reduction results of PCA and Pearson methods, which is not conducive to 
maintaining the trend of non-stationary time series. 

At the same time, we combine the above feature dimension reduction methods with CNN-
LSTM network respectively, to obtain the hybrid models of Pearson-CL, PCA-CL and TSNE-
CL, and compare them with CNN, LSTM, CNN-LSTM and ECL-LGSP model. The 
prediction accuracy and time of each model are shown in Table 2. 

 
Table 2. Predictive performance metrics comparison of different models 

Models MAE MAPE (%) RMSE Prediction time (s) 
CNN 24.98 5.25 26.07 249.54 

LSTM 23.93 4.79 23.00 594.32 
CNN-LSTM 18.90 3.68 20.04 277.62 
Pearson-CL 22.64 4.61 25.14 238.59 
TSNE-CL 16.25 3.15 18.11 771.35 
PCA-CL 15.80 3.09 16.98 296.12 

ECL-LGSP 14.82 2.87 16.73 189.36 
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By analyzing the experimental results, the following conclusions are given. 
 
1) The prediction accuracy of the hybrid models combined with CNN-LSTM is better than 

that without CNN-LSTM, which proves the advantage of the CNN-LSTM network 
model. 

2) In the hybrid models combined with CNN-LSTM, Pearson-CL has poor performance in 
the experiment. It cannot handle non-stationary time series well in feature selection, so 
the prediction accuracy is low. 

3) By comparing ECL-LGSP with PCA-CL that has good overall performance, MAE, 
MAPE, RMSE and prediction time of ECL-LGSP are lower than those of PCA-CL, 
which proves the effectiveness and superiority of ECL-LGSP. 

 
5.3. Model tolerance experiment 
To analyze the influence of the “quality” and “quantity” of data on the prediction accuracy 
and real-time performance of the model, the prediction accuracy and prediction time of PCA-
CL, CNN-LSTM and TSNE-CL models with better comprehensive performance and ECL-
LGSP model are tested under different data volumes and different data loss rates, in order to 
analyze the effects of different data volumes and data loss rates on model tolerance. 
 
5.3.1. Tolerance experiment under different data volumes 
The original time series data set is expanded, and data sets of different time lengths are 
selected successively to study the influence of data volume on the prediction accuracy and 
prediction time of the model. The division of data volume is shown in Table 3. 
 
Table 3. Division of data volume in different time lengths 

Date range Data volume (piece) Date range Data volume (piece) 
April 1, 2022-April 30, 

2022 8640 April 1, 2022-August 31, 
2022 44064 

April 1, 2022-May 31, 
2022 17568 April 1, 2022-Spetember 30, 

2022 52704 

April 1, 2022-June 30, 
2022 26208 April 1, 2022-October 31, 

2022 61632 

April 1, 2022-July 31, 
2022 35136 April 1, 2022-November 30, 

2022 70272 

 
By analyzing the experimental results, the following conclusions are given. 
 

1) As shown in Figure 7(a)-(b), with the increase of data volume, the prediction errors of 
the four models show a trend of first decreasing and then stabilizing, and the prediction 
time shows an upward trend. Among them, the prediction accuracy of ECL-LGSP, PCA-
CL and TSNE-CL models is obviously better than that of CNN-LSTM model, but the 
running time of TSNE-CL model is too long. When the data volume reaches 70,272 
pieces, the prediction time exceeds 5min, which cannot guarantee the real-time 
performance of the model prediction. 

2) Compared with the PCA-CL model that has better comprehensive performance, the ECL-
LGSP has the lowest prediction error, the least prediction time and the most stable 
change, indicating that the ECL-LGSP model has a certain tolerance to the data size. 

 
  



129 Int. Jnl. of Multiphysics Volume 18 · Number 1 · 2024 

 

 
 

1 2 3 4 5 6 7

2.5

3.0

3.5

4.0
M

A
PE

Data Size(104)

 TSNE-CL
 CNN-LSTM
 PCA-CL
 ECL-LGSP

 
(a) 

 

1 2 3 4 5 6 7

500

1000

1500

2000

2500

3000

Pr
ed

ic
tio

n 
Ti

m
e(

s)

Data Size(104)

 TSNE-CL
 CNN-LSTM
 PCA-CL
 ECL-LGSP

 
(b) 

Figure 7. Tolerance experiment results under different data volumes 
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5.3.2. Tolerance experiments under different data loss rates 
We select random data with a proportion of 5%, 10%, 15%, 20% and 25% as missing 
validation data to study the impact of data loss rate on the prediction accuracy of the model. 
Figure 8(a)-(b) shows the impact of the change of loss rate on the prediction accuracy of the 
four models. 
 

By analyzing the experimental results, the following conclusions are given. 
 

1) With the increase of the proportion of missing data, the prediction error of the four models 
shows an upward trend, and the prediction accuracy shows a downward trend, indicating 
that within a certain range, the higher the data loss rate, the lower the prediction accuracy 
of the model. 

2) With the increase of the proportion of missing data, the prediction accuracy of PCA-CL, 
TSNE-CL and CNN-LSTM models declines rapidly, while the prediction accuracy of 
ECL-LGSP decreases steadily and is always the highest. This is attributed to that PCA, 
TSNE and CNN are linear combinations based on original data points and are more 
sensitive to data loss, while ECF is a curve fitting based on original data points, which 
can indirectly interpolate the data through approximate curve fitting where data loss 
occurs, so it has a certain tolerance to data loss. 
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Figure 8. Tolerance experiment results under different data loss rates 
 

By analyzing the experimental results, the following conclusions are given. 
 

1) With the increase of the proportion of missing data, the prediction error of the four models 
shows an upward trend, and the prediction accuracy shows a downward trend, indicating 
that within a certain range, the higher the data loss rate, the lower the prediction accuracy 
of the model. 

2) With the increase of the proportion of missing data, the prediction accuracy of PCA-CL, 
TSNE-CL and CNN-LSTM models declines rapidly, while the prediction accuracy of 
ECL-LGSP decreases steadily and is always the highest. This is attributed to that PCA, 
TSNE and CNN are linear combinations based on original data points and are more 
sensitive to data loss, while ECF is a curve fitting based on original data points, which can 
indirectly interpolate the data through approximate curve fitting where data loss occurs, 
so it has a certain tolerance to data loss. 
 

5.4. Model performance experiment 
The average prediction time and prediction accuracy of ECL-LGSP with TSNE-CL, CNN-
LSTM and PCA-CL are compared under different time scales and different prediction tasks. 
The purpose is to verify that ECL-LGSP has obvious advantages in prediction accuracy, 
running speed and stability. Table 4 shows the basic parameter settings of CNN-LSTM model. 
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Table 4. Model parameter setting 
Parameters Parameter values Parameter meaning 

α  0.001 Learning rate 
hidden_layer 2 Hidden layer 

hidden_layer_unit 10 Number of hidden layer neurons 
batch_size 32 Batch size 

Epoch 50 Number of iterations 
Optimizer Adam Optimizer 

activate_function 0.25 Activation function 
dropout rate 0.1 Discard rate 

objective function MSE Loss function 
 

5.4.1. Model performance experiment on different time scales 
In order to verify the prediction performance of the ECL-LGSP model on different time scales, 
this method and the above three prediction models are applied to conduct short-term prediction 
experiments on CO2 concentration in the future time scales of 1 hour, 8 hours and 1 day. The 
prediction curves of CO2 concentration of the storage tank   in the next 1 hour, 8 hours and 1 
day are shown in Figure 9(a)-(c). The prediction error of each model is shown in Figure 9(d). 
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Figure 9. Prediction results on different time scales 
 

By analyzing the experimental results, the following conclusions are given. 
 
1) As shown in Figure 9(a)-(c), the curve fitted by ECL-LGSP method is highly consistent 

with the actual change, which proves that this method can predict CO2 concentration in 
the future, and the error is relatively stable. 

2) As shown in Figure 9(d), on different time scales, compared to other prediction models, 
ECL-LGSP has the lowest prediction error, and the prediction accuracy is the highest 
under the condition in the next 1 hour, showing that ECL-LGSP has certain advantages 
for short-term prediction of liquefied gas concentration. 

 
5.4.2. Model stability experiment 
Under different prediction tasks and numbers of experiments, the PCA-CL model with better 
performance is selected as the comparison model to test the accuracy of the two models 
separately, in order to further analyze the stability of the model. In the experiment, the 
prediction task and the number of experiments are taken as variables, and the control variable 
method is used to test the change of the model accuracy separately. 

We carry out 5 groups of experiments with different prediction tasks and select different 
gas storage tanks   as prediction tasks respectively. 10 experiments are carried out in each 
group, and the experimental results are averaged. Figure 10(a) shows the influence of different 
prediction tasks on the stability of the two models. 

We conduct 50 groups of experiments with different numbers of experiments and take each 
additional experiment as one group (the first group is one experiment). The experimental 
results of each group are averaged. Figure 10(b)-(c) shows the influence of the number of 
experiments on the stability of the two models. 
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Figure 10. Model stability experimental results 
 

As a supplementary note, Table 5 shows the values of each index of the two models in the 
model stability experiment. 

 
Table 5. The index values of the two models in the experiment 
Experiment condition Index PCA-CL ECL-LGSP 

Different prediction 
tasks 

Accuracy interval [0.9159,0.9268] [0.9457,0.9500] 
Maximum difference (%) 1.12 0.44 
Minimum difference (%) 0.04 0.01 

Standard deviation 0.0044 0.0017 

Different experiment 
times 

Accuracy interval [0.9203,0.9317] [0.9458,0.9499] 
Maximum difference (%) 1.17 0.42 
Minimum difference (%) 0 0 

Standard deviation 0.0032 0.0010 
 

By analyzing the experimental results, the following conclusions are given. 
 

1) As shown in Figure 10(a), when the prediction task changes, the accuracy of both models 
fluctuates within a certain range, and the standard deviation of ECL-LGSP model is smaller 
than that of PCA-CL model. It shows that the stability of ECL-LGSP model is better than 
that of PCA-CL model under different prediction tasks. 

2) As shown in Figure 10(b)-(c), with the increase in the number of experiments, the accuracy 
fluctuation of ECL-LGSP model is much smaller than that of PCA-CL model. The standard 
deviations of ECL-LGSP and PCA-CL are 0.0032 and 0.001, respectively. Therefore, the 
stability of ECL-LGSP model is better than that of PCA-CL model under different numbers 
of experiments. 

 
  



137 Int. Jnl. of Multiphysics Volume 18 · Number 1 · 2024 

 

 
 
6. CONCLUSIONS 
We propose a short-term prediction method of liquefied gas concentration to solve the 
problem of safety hazards prediction of liquefied gas storage tank operation in oil and gas 
gathering and transportation industry. The method includes two stages: First, an Extreme 
Change Function is introduced to reduce the feature dimension and select effective features; 
Second, we use CNN network to achieve feature extraction, and capture the change law of 
data by LSTM to achieve short-term prediction of liquefied gas concentration. The 
experimental results are summarized as follows: 
 

I. The ECL-LGSP method is suitable for solving the short-term prediction problem of 
liquefied gas concentration. Experimental results show that ECL-LGSP method has 
obvious advantages in prediction accuracy, prediction speed, tolerance and stability 
compared with similar methods. 

II. ECF reduces the feature dimension by calculating the weighted set kurtosis value of 
the feature curve. Compared with other feature dimension reduction method, it has 
obvious advantages in prediction accuracy and running speed, and has a certain 
tolerance to high data volume and data loss cases. 

III. The ECL-LGSP method integrates CNN-LSTM hybrid network, and combines the 
advantages of CNN feature extraction with LSTM time series processing, so as to 
realize the short-term prediction of liquefied gas concentration and improve the 
prediction accuracy.  

IV. The short-term prediction method of liquefied gas concentration has large application 
scenarios in various fields. When our method is applied to real scenes, some more 
specific problems need to be solved. For example, how to add the influence of the 
nodes’ own attribute value, how to obtain the best weight coefficients in the CNN-
LSTM network. 
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