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Abstract 

Abstract: Precise forecasting of electricity use is crucial for efficient energy management, 

particularly in areas with diverse meteorological and economic circumstances. This study 

presents an innovative hybrid forecasting model that integrates Long Short-Term Memory 

(LSTM) networks with Extreme Gradient Boosting (XGBOOST) to anticipate power 

consumption in five principal sectors in Iran: industrial, agricultural, commercial, public, 

and residential. The model utilizes sophisticated feature selection and hyperparameter 

optimization to identify both linear and nonlinear consumption patterns, while integrating 

climate change scenarios (A1B, A1FI, and A1T) to evaluate future energy demand under 

diverse environmental conditions. The hybrid LSTM-XGBOOST model consistently 

outperforms individual models, exhibiting the lowest Mean Absolute Percentage Error 

(MAPE) values (4.20% to 10.79%) and the highest R² values across all sectors. The 

model's outstanding performance is particularly evident in its capacity to discern complex 

consumption patterns during peak periods and seasonal fluctuations. The study highlights 

the significant influence of regional characteristics, as evidenced by the exceptional 

forecast accuracy in provinces such as Bushehr and Semnan. It offers valuable insights 

for policymakers and energy system operators in Iran during their transition to renewable 

energy sources by proposing a robust and adaptable forecasting model that addresses 

sector-specific and regional issues, thereby advancing energy planning. 

Keywords: Electricity consumption forecasting, LSTM, XGBOOST, climate change 

scenarios, hybrid model, Iran, energy management.

Introduction 

Precise forecasting of energy consumption is crucial for effective management and optimal planning in the 

contemporary electrical sector, which is required for sustainable growth Benkhalfallah et al. (2024). This need is 

particularly pronounced in countries like Iran, where diverse climates, varied geographical distributions, and 

structural differences across economic sectors necessitate precise forecasts for optimal resource allocation and 

responsiveness to demand fluctuations. Recent studies demonstrate that inaccuracies in power sector projections 

can substantially increase operational expenses and jeopardize network reliability. (Elhadj et al., 2024) illustrate 

that significant discrepancies in pricing and load projections necessitate suboptimal scheduling choices, leading 

to increased costs and operational challenges on the demand side. 
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Climate change is a significant challenge of the century, exerting extensive effects on energy consumption 

patterns, especially on electricity. The Intergovernmental Panel on Climate Change (Chapter) has proposed 

several scenarios to forecast future climate change, with the A1 family of scenarios being particularly 

significant(Nakicenovic et al., 2000). The A1 family scenarios (A1B, A1FI, and A1T) exemplify several pathways 

of technological progress and climate fluctuations. These scenarios are based on the assumption of rapid economic 

growth, an increase in the global population until mid-century followed by a decline, and the rapid implementation 

of advanced and more efficient technologies. A1B: Equilibrium between fossil and non-fossil energy sources. 

A1FI: Emphasis on fossil fuel use. A1T: Emphasis on non-fossil energy source utilization. These scenarios exert 

varying influences on electricity usage habits. In the A1FI scenario, a temperature rises of 2-4°C results in a 30% 

increase in electricity consumption for cooling systems(Chapter, 2018). The A1B scenario most closely aligns 

with the trends in temperature fluctuations and energy usage in Iran over the past decade. Conversely, the A1T 

scenario may exert a diminished influence on augmenting electricity demand by enhancing energy efficiency and 

utilizing renewable resources. In response to the necessity for accuracy, power demand forecasting has evolved 

significantly from basic statistical methods to advanced artificial intelligence systems.   This highlights the 

increasing complexity of energy systems and the imperative for accurate forecasting to provide energy security, 

economic planning, and the integration of renewable energy sources into existing infrastructure (Li, 2018). 

Typically, research in this domain can be classified into four groups. 

1. Traditional Time Series and Statistical Methods 

1.1 ARIMA and Variations 

Classical time series models, especially the autoregressive integrated moving average (ARIMA) and its variants, 

have been widely utilized to forecast electricity consumption(Chujai et al., 2013; Elsaraiti et al., 2021; Ozturk & 

Ozturk, 2018; Parreño, 2022). (Samadi et al., 2008)ARIMA models were employed to assess energy consumption 

in the Iranian industrial sector, achieving moderate accuracy for short-term forecasts, while encountering 

significant difficulties in estimating complex consumption patterns characterized by nonlinear properties. The 

constraints become especially evident during periods of substantial volatility or shifts in consumer behavior. 

(Nepal et al., 2020)aimed to enhance ARIMA performance by integrating clustering techniques for predicting 

electrical load in buildings. The methodology employed clustering of load profiles before ARIMA modeling, 

which enhanced accuracy by reducing heterogeneity in consumption patterns. However, their findings 

demonstrated that traditional time series models still encounter difficulties in accurately representing complex 

nonlinear relationships and external influencing factors. In addition to conventional ARIMA models, scholars 

have investigated advanced statistical methods. A multi-stage methodology was developed by(Jornaz & 

Samaranayake, 2019), utilizing daily lines to represent 24-hour power load profiles. This method addresses 

particular limitations of traditional time series models by enabling adaptable modeling of intraday variations and 

seasonal patterns. The spline-based approach demonstrated enhanced accuracy relative to traditional statistical 

methods, particularly in capturing intricate daily consumption curves. 

2. Machine Learning Approaches 

Electricity consumption forecasting has progressed, with machine learning methods emerging as viable 

alternatives to conventional techniques. (Eseye et al., 2019)introduced a machine learning-based integrated feature 

selection approach for predicting electricity demand in decentralized energy systems. Their research demonstrated 

that meticulous feature selection improves prediction accuracy by pinpointing the most relevant predictors from 

a broad spectrum of potential variables. The research revealed accuracy enhancements of up to 18% relative to 

models lacking optimal feature selection. (Jember et al., 2024)present a machine learning approach for short-term 

energy forecasting in decentralized systems, employing diverse baseline models and sophisticated feature 

selection to improve accuracy. Their collaborative methodology, especially the Stacking technique, markedly 

diminishes forecast inaccuracies and enhances R-squared values, providing a resilient solution for smart grid 

applications. 
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2.1 Support Vector Machines and Decision Trees 

(Chen & Tan, 2017)Examined hybrid support vector regression for short-term forecasting of building energy 

consumption to enhance prediction accuracy, particularly for structures with complex usage patterns. Their 

research demonstrated significant effectiveness in evaluating nonlinear relationships among occupancy, 

environment, and consumption  . (Fu et al., 2015)presented a novel support vector machine (SVM) methodology 

for hourly electrical load forecasting in diverse building systems, exhibiting enhanced performance compared to 

conventional forecasting techniques including ARIMAX, decision trees, and artificial neural networks. This study 

constructs 24 distinct SVM models, each corresponding to an hour, utilizing weather forecasts and historical 

electrical load data as inputs. The methodology effectively forecasts system-level electrical loads for public 

buildings, resulting in an overall CV_RMSE of 15.2% and a N_MBE of 7.7%.  In this case, (Chen & Tan, 2017; 

Jindal et al., 2016) forecasted using the SVM algorithm. XGBOOST (Extreme Gradient Boosting), an ensemble 

learning method based on decision trees, has received significant recognition for its predictive performance. In 

this regard, studies (Abbasi et al., 2019; Liao et al., 2019) are particularly relevant. Furthermore, (Li et al., 

2018)combined ARMA with XGBOOST in a fog computing framework to forecast short-term electricity 

consumption. Their hybrid approach leveraged ARMA's capacity to capture linear temporal trends while utilizing 

XGBOOST to model nonlinear interactions, resulting in substantially improved forecasting accuracy across 

various time frames. 

2.2 Ensemble and Stacking Methods 

Ensemble learning techniques have shown significant potential for forecasting electricity consumption. (Lee et 

al., 2019)devised a day-ahead electric load forecasting method for residential buildings utilizing a self-organizing 

map and stacking ensemble learning approach. Their study specifically tackled the challenge of limited data 

availability, a prevalent concern in numerous forecasting contexts. By integrating numerous base learners through 

stacking, they generated durable predictions even with minimal datasets, yielding error reductions of roughly 15% 

relative to individual models. 

3. Deep Learning Techniques 

Long Short-Term Memory (LSTM) neural networks have gained prominence in power consumption forecasting 

due to their capacity to comprehend long-term relationships in time series data. (Tajour, 1403) employed LSTM 

networks to predict electricity consumption in Iranian provinces, showcasing superior efficacy relative to 

conventional methods. However, their model did not explicitly integrate climate parameters, which could have 

improved forecasting precision. Additionally, studies (Alizadegan et al., 2025; Le et al., 2019; Torres et al., 2022; 

Wang et al., 2020)in the same domain utilized the LSTM methodology for power consumption prediction. Also, 

(Kiprijanovska et al., 2020)presented HousEEC, an advanced deep learning methodology for forecasting day-

ahead household electrical energy consumption. Their model integrated diverse temporal features and household 

attributes to yield precise predictions. Comparative analysis demonstrated that their deep learning approach 

surpassed traditional methods by effectively capturing intricate consumption patterns and temporal dependencies, 

attaining MAPE values below 10% for the majority of household types. (Buitrago & Asfour, 2017)investigated 

the application of nonlinear autoregressive artificial neural networks with exogenous vector inputs (NARX) for 

short-term electric load forecasting. Their research clearly illustrated the nonlinear relationships between power 

use and external factors, such as weather conditions and time-related aspects. The NARX architecture was highly 

effective in capturing dynamic temporal correlations and integrating external inputs, leading to enhanced 

forecasting accuracy relative to conventional feed-forward networks. (Liu et al., 2019)presented an innovative 

two-stage approach for calculating household power consumption by edge deep sparse coding. Their methodology 

utilized edge computing frameworks to assess data at its origin, minimizing latency and computational demands 

while preserving excellent predictive accuracy. The sparse coding technique accurately identified the fundamental 

patterns in consumption data, exhibiting strong performance across diverse dwelling types and consumption 

contexts. 
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4. Hybrid Methods 

 Hybrid models that combine traditional statistical methods with advanced machine learning techniques have 

shown remarkable effectiveness in predicting electricity consumption. A thorough analysis by (Wahba et al., 

2022)revealed that hybrid models outperform individual strategies in approximately 78% of cases across various 

forecasting contexts. Their research highlighted that the amalgamation of complementary methodologies allows 

models to discern both linear and nonlinear patterns in consumption data. Moreover, sophisticated hybrid models 

utilizing deep learning methodologies have demonstrated potential in predicting industrial loads. For instance, 

(Zhao et al., 2021)created a model that combines CNN and Transformer topologies for short-term load forecasting, 

illustrating the efficacy of hybrid methods in capturing the intricate dynamics of power use.(Gochhait et al., 2024) 

propose an innovative hybrid deep learning model utilizing a 1D CNN BI-LSTM approach for short-term 

electricity load forecasting, addressing the limitations of traditional CNN models in capturing multi-scale features 

and temporal dependencies. The proposed model integrates a feature extraction module, Densely Connected 

Residual Block (DCRB) layer, Bidirectional Long Short-Term Memory (Bi-LSTM) layer, and an ensemble layer 

to effectively extract and analyze complex electricity load patterns, achieving a remarkable Root Mean Square 

Error (RMSE) of 0.952 using half-hourly load data from the Telangana State Northern Power Distribution 

Company Limited (TSNPDCL). By demonstrating superior accuracy compared to conventional models like 

ARIMA and Artificial Neural Networks, the research contributes significant insights into power system 

management, offering potential applications in demand-side management, energy allocation optimization, and 

predictive modeling across various domains.(Li et al., 2018)Innovatively combined ARMA with XGBOOST in 

fog computing. ARMA and XGBOOST were utilized to identify linear temporal dependencies and nonlinear 

interactions within their hybrid model. This combination markedly improved short-term electricity demand 

forecasts, exceeding the effectiveness of each technique alone. Zhu et al. (2011) present the MA-C-WH hybrid 

forecasting model for energy demand in Chinese power networks, integrating moving average, combined 

forecasting, and adaptive particle swarm optimization. Their model surpasses conventional SARIMA models, 

improving short-term demand forecasting and energy output scheduling. Furthermore, within the same domain, 

research has also employed a hybrid methodology to forecast power consumption(Dong et al., 2016; Grandón et 

al., 2024; Pierre et al., 2023; Xiao et al., 2018). 

5. Sector-Specific Forecasting Approaches 

 5.1 Residential Sector 

The unpredictable actions of domestic and appliance usage present considerable difficulties in forecasting energy 

consumption in the residential sector. A novel short-term artificial learning system, utilizing household-specific 

data and behaviors, developed by (El-Baz & Tzscheutschler, 2015), estimates residential electricity use, enhancing 

accuracy by up to 20% compared to generic models. (Hsiao, 2014)underscored the importance of contextual 

knowledge and consumer analysis derived from meter data in evaluating residential energy consumption. This 

approach effectively uncovered complex energy consumption patterns by incorporating detailed contextual 

information about household activities and routines, especially in homes with consistent usage patterns, thereby 

improving forecasting precision. (Amara et al., 2017)introduced a method for adaptive conditional density 

estimation to assess domestic power usage, providing probabilistic estimates alongside prediction error. This 

approach demonstrated considerable effectiveness across all home categories and consumption scenarios, 

facilitating informed energy management decisions with a focus on risk awareness. Additionally, (Gerossier et 

al., 2018)concentrated on enhancing day-ahead forecasting of household electricity demand by tackling 

operational challenges such as data irregularities and unforeseen consumption patterns. Through the integration 

of robust mechanisms, they attained reliable predictions, thereby improving practical energy management 

applications.(Yousaf et al., 2021) introduces a novel hybrid load forecasting methodology for residential 

electricity consumption that amalgamates time series autoregression, machine learning feature selection, and an 

innovative integration strategy, resulting in a 17% enhancement in MAPE. Employing BGA-PCA for feature 

optimization and ANFIS for data analysis from 10 households in Pakistan, the study underscores the efficacy of 

advanced machine learning in smart grid applications. 
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5.2 Commercial and Public Buildings 

Commercial buildings exhibit unique consumption patterns shaped by business hours, occupancy rates, and 

operational activities. (Pîrjan et al., 2017) Formulated precise hourly forecasting models for power use in 

commercial centers. Their methodology encompassed the distinctive attributes of commercial operations, such as 

opening hours, customer traffic patterns, and seasonal buying trends, leading to precise projections tailored to this 

industry. In a comparable scenario,(Nepal et al., 2020) utilized clustering techniques alongside ARIMA models 

to estimate electricity load in buildings. Their approach enhanced forecasting precision for diverse building types 

and operational schedules by integrating analogous load profiles before employing time series modeling, thus 

tackling the variability in building energy consumption patterns. Moreover, (Yu et al., 2020)established a 

specialized estimating model for electricity consumption in new metro stations, catering to the distinct energy 

demands of transportation infrastructure. Their model included station-specific attributes, operational timetables, 

and passenger flow dynamics to produce precise consumption predictions. This sector-specific simulation 

highlighted the necessity for customized solutions for specialized infrastructure with unique consumption patterns. 

5.3 Industrial Sector 

The industrial sector presents distinct obstacles for predicting electricity usage due to complex operational 

processes and manufacturing timelines. (Zhao et al., 2021) developed a Transformer-based model for short-term 

load forecasting, demonstrating the effectiveness of deep learning techniques in capturing intricate patterns in 

power usage. Furthermore,(Dou et al.)present a Human-Climate-Spatiality framework to analyze electricity 

consumption across 12 Chinese urban regions, uncovering alterations in consumption patterns shaped by spatial 

and economic determinants. The research highlights the significance of monocentric structures and regional 

industrial transformation, providing insights into prospective trends and the effects of low-carbon policies. 

6. Influence of External Factors 

6.1 Weather and Climate Considerations 

Climatic factors substantially affect energy use, especially for heating, cooling, and lighting. Salkuti (2018) 

underscored the necessity of incorporating meteorological factors in short-term electrical load forecasting, 

utilizing radial basis function neural networks that explicitly integrated temperature, humidity, and other climatic 

data. Their studies revealed that the inclusion of meteorological information reduced forecast errors by up to 25%, 

particularly during intense weather events.(Zhao et al., 2021)emphasized the necessity of integrating regional and 

seasonal factors into energy demand predictions in Australia. Research indicates that variables including 

temperature, day type, and seasonal characteristics significantly influence electricity consumption patterns and 

the accuracy of forecasts. 

6.2. Temporal and Regional Factors 

Alongside weather, various temporal and contextual factors influence energy usage patterns. (Hsiao, 

2014)underscored the importance of analyzing user daily routines and contextual information obtained from meter 

data to improve the precision of residential electricity consumption predictions. Their methodology incorporated 

data on daily routines, occupancy trends, and appliance usage behaviors, effectively reflecting the temporal 

dynamics of home consumption and improving prediction accuracy. (Dou et al.) utilize a Human-Climate-

Spatiality paradigm to analyze power usage in 12 Chinese urban agglomerations. Their findings suggest a shift in 

consumption patterns from the northeast to the southwest, with monocentric metropolitan structures obstructing 

growth. The research highlights the significance of low-carbon policy and technical advancements for sustainable 

urban development. In a similar perspective, consider temporal and regional factors for predicting (Dahl et al., 

2018; Kong et al., 2019). 

7. Innovation and research limitations 

1-This thorough cross-sector research examines the residential, commercial, and industrial sectors individually. 

The modeling and comparison of consumption patterns across several sectors rely on extensive frameworks that 

facilitate the identification of sector-specific characteristics and linkages. 
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2-Research particularly incorporating long-term climate change scenarios, such as those from the IPCC's A1 

family, into models for projecting electricity consumption is insufficient.  

3- Although regional differences in consumption patterns are well known, rigorous study on the adaptation or 

transfer of forecasting models across regions with different meteorological, economic, and cultural settings is 

lacking.  

This work presents a hybrid forecasting model combining Extreme Gradient Boosting (XGBOOST) with Long 

Short-Term Memory (LSTM) networks to handle the complexity of power consumption forecasting in different 

economic sectors of Iran. The proposed model identifies both linear and nonlinear patterns in energy use through 

deep learning and ensemble methodologies. This work's primary innovation lies in the application of 

hyperparameter optimization and enhanced feature selection techniques, thereby augmenting the model's ability 

to identify relevant predictors and adapt to varying consumption patterns.  

The hybrid LSTM-XGBOOST model is formulated to tackle the distinct issues presented by Iran's climatic 

variability, geographical dispersion, and sector-specific energy requirements, encompassing industrial, 

agricultural, commercial, public, and residential sectors. The model integrates weather data, temporal variables, 

and external factors like holidays and weekdays, delivering a comprehensive and adaptive forecasting system that 

surpasses independent models in accuracy and reliability. 

Method 

This research utilizes ARIMA, XGBOOST, LSTM, LSTM-Random Search, and a hybrid model (LSTM-

XGBOOST) to predict electricity consumption across five essential sectors of the Iranian economy. A brief 

overview of the methodologies applied is included below. 

1.Short-Term Memory Networks (LSTM) 

Long Short-Term Memory Networks (LSTM) are a category of recurrent neural networks designed for simulating 

sequential data. LSTMs, developed by (Hochreiter & Schmidhuber, 1997), mitigate the vanishing gradient 

problem common in traditional RNNs with the integration of memory cells and gating mechanisms. The 

architecture of LSTMs enhances the retention of long-term information, thereby improving efficacy in time series 

forecasting, natural language processing, and other sequential data applications. An LSTM network's fundamental 

structure comprises a memory block containing memory cells and three types of gates: input, forget, and output. 

These gates regulate the flow of information to and from memory cells, enabling the network to discern what to 

retain or discard over time. The operations executed within an LSTM cell can be expressed by the following 

equations: 

1. Forget Gate: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑓) 

where ft represents the fraction of the prior cell state Ct−1 that should be ignored. 

2. Input Gate: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑖) 

𝐶𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝐶) 

3. Cell State Update: 

The input gate it determines the new information to be retained in the cell state, while 𝐶𝑡̃ signifies the prospective 

values for the new cell state. 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡 − 1 + 𝑖𝑡 ⋅ 𝐶𝑡̃ 

The cell state Ct is modified by integrating information from the forget gate and the input gate. 
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4. Output Gate: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

The output gate ot regulates the output of the cell state, while ht represents the hidden state at time t. 

In this context, σ signifies the sigmoid function, tanh represents the hyperbolic tangent function, 

W and b designate the weight matrices and bias vectors, respectively, and xt refers to the input at time t (Torres et 

al., 2022). 

2.Hyperparameter Optimization with Random Search 

The efficacy of LSTM networks is significantly influenced by the selection of hyperparameters, including the 

number of layers, units per layer, learning rate, and dropout rate. Random search is a commonly employed method 

for hyperparameter optimization, which entails the selection of arbitrary hyperparameter combinations from a 

specified search space, succeeded by the training and evaluation of the model for each combination. In the realm 

of LSTMs, random search can be conducted with frameworks like Keras-Tuner, which facilitate the automated 

exploration of hyperparameter configurations. 

3.ARIMA 

ARIMA, which stands for AutoRegressive Integrated Moving Average, is a statistical model commonly used for 

forecasting time series data. It is recognized for its ability to identify linear patterns by incorporating the 

relationships among data through autoregressive and moving average components. Thus, it has demonstrated 

efficacy as a good instrument for studying patterns and seasonality in electricity consumption data (Box et al., 

2015). ARIMA is characterized by its simplicity, interpretability, and efficiency in handling linear pattern 

data(Hyndman & Athanasopoulos, 2018). This approach is incapable of modeling non-linear patterns. The model 

posits that the time series data is stationary, indicating that its statistical properties remain invariant over time. To 

fulfill this assumption, preliminary steps such as data discretization are often required to standardize the data 

format. ARIMA is commonly utilized for time series forecasting, particularly when the data display distinct linear 

trends, despite its limitations (Brockwell & Davis, 2002). 

4.Extreme Gradient Boosting (XGBOOST) 

XGBOOST is a scalable machine learning algorithm based on gradient boosting decision trees.  XGBOOST, 

developed by (Chen & Guestrin, 2016), addresses regression and classification problems, especially in high-

dimensional and constrained data scenarios. XGBOOST constructs a series of decision trees to minimize a defined 

loss function.  Each tree forecasts the residuals of the prior tree, with the final prediction being the sum of the 

initial prediction and the residuals from all subsequent trees.  This iterative method allows the model to recognize 

intricate data patterns. The objective function in XGBOOST is modified to control model complexity and reduce 

overfitting. The regularized objective function (x) is expressed as: 

ℒ(𝑓) = ∑ ℓ(𝑦𝑖 , 𝑦̂𝑖)

𝑛

𝑖=1

+ ∑ Ω(𝜑𝑘)

𝐾

𝑘=1

 

Here, ℓ(𝑦𝑖 , 𝑦̂𝑖) represents the loss function that measures the discrepancy between the actual value 𝑦𝑖  and the 

predicted value  𝑦̂𝑖. The term Ω(𝜑𝑘) acts as the regularization component for the k-th tree, imposing a penalty on 

model complexity. It is represented as:  

𝛺(𝜙) = 𝛾𝑇 +
𝜆𝑐2

2
 

In this context, γ and λ denote penalty coefficients, 𝑇 indicates the number of leaves in the tree, and c signifies 

the weight assigned to each leaf. The XGBOOST training procedure comprises initial prediction, residual 

computation, tree construction, model refinement, and regularization. The procedure is done a designated number 

of times or until the residuals are minimized (Siqueira-Filho et al., 2023) 
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5.LSTM-XGBOOST Hybrid Method 

The LSTM-XGBOOST hybrid method enhances the accuracy of time series forecasting in scenarios characterized 

by complex temporal relationships and nonlinear dynamics by combining LSTM networks with XGBOOST. 

LSTM networks effectively capture long-term dependencies in sequential data, whereas XGBOOST demonstrates 

superior performance with structured data and in generating accurate ensemble predictions. 

The LSTM-XGBOOST hybrid methodology includes the following steps: 

1. Feature Extraction: The LSTM network is utilized to extract temporal features from the time series data. The 

LSTM model is engineered to recognize long-term dependencies and sequential patterns in the data. 

2. Residual Prediction: The residuals produced by the LSTM model serve as inputs for the XGBOOST model. 

XGBOOST is employed to forecast these residuals, effectively recognizing nonlinear correlations and patterns 

that the LSTM model could overlook.  

The most precise predictions are obtained by amalgamating forecasts from both the LSTM and XGBOOST 

models. This combination leverages the advantages of each model, resulting in a more accurate and robust 

forecast. 

Data 

This study examines the interplay of meteorological, socioeconomic, and regional variables affecting electricity 

consumption in Iran, employing data from nine provinces. Twenty meteorological variables were identified as 

critical predictors of energy use, in conjunction with social factors including demographics, geographical location, 

and temporal aspects such as time of day, week, holidays, and weekdays. This method seeks to clarify the impact 

of weather patterns and human behaviors on energy consumption across residential, commercial, industrial, 

agricultural, and public sectors. This study assesses the potential effects of climate change on future energy 

consumption by analyzing various A1 family scenarios predicting mid-century temperature rises. The scenarios 

analyzed include A1T, A1B, and A1FI, forecasting temperature rises of 1.75°C, 1.59°C, and 1.86°C, respectively. 

The study's data was systematically collected over four years, from March 21, 2018, to March 20, 2022, including 

daily weather records from the Iran weather Organization and electrical usage data from regional companies 

(Appendix 1). This comprehensive analysis seeks to elucidate how local and regional factors, in conjunction with 

climate change, may influence power consumption patterns in Iran. The research employed the K-Nearest 

Neighbor (KNN) technique for data preprocessing, eliminating missing features and addressing outliers. Multiple 

transformations were examined to mitigate skewness, and a normalization technique was employed to standardize 

data scale and units. Data preprocessing and analysis were conducted utilizing Python software on a Core i7 

machine. Table 1 outlines the temporal characteristics and percentage allocation of the training and testing 

subgroups of the data. The training set constitutes 80% of the data, while the testing set encompasses the 

remainder. 

Table1.Data Partitioning for Training and Testing Subsets 

Subset From To Percent 

Training 3/21/2018 6/1/2021 80% 

Test 6/2/2021 3/20/2022 20% 
 

 

Figure 1 depicts the seasonal fluctuations in temperature, encompassing both minimum and maximum 

temperatures, during a four-year period. The charts reveal a consistent trend, with temperatures peaking in summer 

and reaching their nadir in winter, indicating a cyclical pattern in these fluctuations. Furthermore, the disparity 

between the highest and lowest minimum temperatures is less pronounced than the overall temperature variations. 

Conversely, the annual fluctuations in maximum temperatures are more prominent than those observed in 

minimum temperatures. 
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Figure 1. seasonal fluctuations in temperature 

Figure 2 depicts a circular diagram that illustrates the distribution of energy consumption across various sectors 

(industrial, agricultural, public, commercial, and residential) from 2018 to 2022. The public and commercial 

sectors are the predominant energy consumers, whereas the industrial and agricultural sectors exhibit the least 

energy consumption. 

  

  

 

Figure 2. Comparative Analysis of Energy Consumption Ratios by Sector for 2018-2022 
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Figure 3 depicts the comprehensive electricity consumption throughout several provinces of Iran from 2018 to 

2022. Each bar signifies a province, with the colored segments within each bar denoting consumption for a specific 

year. Khuzestan consistently exhibits the greatest consumption levels for the entire period, while Sanandaj 

displays the lowest consumption levels. 

 

Figure 3. Total electricity consumption for various provinces of Iran 

 

Table 2 displays the outcomes of the Dickey-Fuller test for stationarity across different sectors, both before and 

after transformation, revealing markedly enhanced test statistics and p-values post-transformation, showing 

stationarity. The model fit statistics include the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) values for each sector, facilitating the evaluation of model appropriateness. 

Table 2. Results of the Dickey-Fuller Test for Stationarity and Model Fit Statistics Before and After 

Transformation 

Before Transformation 

 Domestic General Agriculture Industrial Commerical 

Test Statistic -2.5727 -1.7483 -1.7483 -2.5384 -2.5382 

p-value 0.0988 0.4064 0.4064 0.1064 0.1065 

1% Critical Value -3.4349 -3.4349 -3.4349 -3.4349 -3.4349 

5% Critical Value -2.8636 -2.8636 -2.8636 -2.8636 -2.8636 

10% Critical Value -2.5678 -2.5678 -2.5678 -2.5678 -2.5678 

After Transformation - Dickey-Fuller Test 

 Domestic General Agriculture Industrial Commerical 

Test Statistic -6.3916 -5.5851 -5.5851 -6.355 -6.4441 

p-value 0 0 0 0 0 

1% Critical Value -3.4349 -3.4349 -3.4349 -3.4349 -3.4349 

5% Critical Value -2.8636 -2.8636 -2.8636 -2.8636 -2.8636 

10% Critical Value -2.5678 -2.5678 -2.5678 -2.5678  

Model Fit Statistics - MA Transformation 

 Domestic General Agriculture Industrial Commerical 

AIC 12846.6731 10779.4281 10779.4281 12317.7305 8999.2686 
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BIC 12857.2455 10790.0005 10790.0005 12328.3029 9009.841 

 

 

Table 3 specifies the minimum and maximum values of hyperparameters for both LSTM and LSTM-Random 

Search methods, including hidden layers, units per layer, dropout rate, and learning rate. The LSTM-Random 

Search approach exhibits a constant range for hidden layers and a broader range for units per layer compared to 

the traditional LSTM method. 

Table 3. Hyperparameter Ranges for LSTM and LSTM-Random Search Models 

Parameter LSTM-Randomsearch LSTM 

Min. Max. Min. Max.  

Hidden layers 2 2 3 3 

Units per layer 32 128 64 256 

Dropout rate 0.1 0.3 0.3 0.3 

Learning rate 0.001 0.01 0.001 0.001 
 

Results 

In this section, we present the analysis of electricity consumption forecasting in nine provinces of Iran, utilizing 

various machine learning models to assess their performance under varying conditions. The results, illustrated 

through figures and tables, reveal the influence of feature selection, time intervals, and external factors like 

weather, working days, and holidays on the accuracy of the forecasts. Figure 4 demonstrates the efficacy of 

different forecasting models in projecting power consumption across five sectors: industrial, commercial, public, 

residential, and agricultural. This study encompasses daily and weekly consumption predictions, evaluating the 

efficacy of Hybrid, XGBOOST, LSTM, LSTM-RandomSearch, and ARIMA models. Figure 4-a (Industrial 

Sector (Daily)) illustrates that actual consumption displays a consistent trend, with the hybrid model accurately 

mirroring these patterns, particularly during peak consumption intervals. The XGBOOST model demonstrates 

adequate accuracy but shows heightened volatility during fluctuations. In contrast, the ARIMA model consistently 

diverges, particularly during abrupt changes, underscoring its limitations in managing complex time series data. 

In Figure 4-b (Agricultural Sector (Daily)), the hybrid model closely aligns with real consumption, especially 

during notable variations. The LSTM model exhibits exceptional performance however encounters heightened 

volatility during peak periods. The LSTM-RandomSearch model exhibits difficulty in precisely predicting peaks, 

whereas XGBOOST demonstrates inconsistency during abrupt fluctuations in consumption. The ARIMA model 

significantly deviates from real values during peak periods, underscoring its forecasting limitations. 

Figure 4-c (Commercial Sector (Daily)) illustrates that real consumption exhibits an oscillatory pattern that aligns 

more closely with the hybrid predictions. The XGBOOST model effectively tracks actual consumption; however, 

discrepancies arise during peak periods. The LSTM-RandomSearch model demonstrates inferior forecasting 

accuracy, while the LSTM model reveals inconsistent performance and difficulties in peak predictions. The 

ARIMA model markedly diverges from actual values during pivotal periods, highlighting its constraints. Our 

findings corroborate previous research(Singh et al., 2024), highlighting the limitations of traditional models such 

as ARIMA and accentuating the necessity for advanced forecasting techniques in energy consumption analyses. 

Figures 4-d and 4-e (General and domestic Sectors (Daily)) demonstrate the effectiveness of several forecasting 

models in predicting daily power consumption in both the general and household sectors. In the general sector, 

the hybrid projections roughly correspond with actual consumption statistics. Alternative models like XGBOOST 

and LSTM-RandomSearch exhibit variability during certain demand intervals, while ARIMA inadequately 

captures fluctuations, particularly during high usage times. In the domestic sector, actual consumption shows 

notably consistent figures. The various models, particularly the hybrid, align closely with the real data over time 

despite minor discrepancies. The ARIMA model, represented by the gray line, exhibits considerable deviation 

from the real data at specific time periods. Figures 4-f, 4-h, and 4-j depict the efficacy of various models in 

predicting weekly energy use in the domestic, agricultural, and commercial sectors. In Figure 4-f, the hybrid 

model precisely reflects actual consumption patterns and effectively captures fluctuations, while ARIMA 
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significantly diverges during peak periods. Figure 4-h corroborates the efficacy of the Hybrid, which accurately 

monitors actual consumption levels, whereas ARIMA continues to demonstrate significant inaccuracies. In Figure 

4-j, the XGBOOST model has a strong correlation with actual consumption trends and outperforms all other 

models, including ARIMA, which fails to fully capture critical trends. The capacity to document oscillations is 

crucial for energy management systems.  Figures 4-w and 4-x illustrate the efficacy of several forecasting models 

in estimating weekly power consumption in both the general and industrial sectors. In Figure 4-w, the hybrid 

model accurately reflects actual consumption patterns, particularly during fluctuations. XGBOOST performs 

satisfactorily; however, other models display increased unpredictability, especially ARIMA, which reveals 

substantial discrepancies. Figure 4-x demonstrates that the hybrid model's forecasts closely correspond with actual 

consumption for the designated period. The XGBOOST and LSTM-RandomSearch models provide commendable 

performance, albeit with increased variability during peak usage intervals. The ARIMA model ultimately distorts 

consumption, markedly diverging from the data. The statistics suggest that the hybrid model forecasts power 

consumption with greater accuracy than all other models, as evidenced in studies (Azevedo et al., 2024; Sajid et 

al., 2024), except in the commercial sector, where the XGBOOST model outperforms. Consistent with prior 

research, our findings indicate that deep learning models exceed conventional methods employed in studies 

(Abbasimehr & Paki, 2022) and(Singh et al., 2024).LSTM-based approaches demonstrate superior capability in 

modeling nonlinear energy consumption patterns compared to ARIMA, which typically yields inferior results in 

analogous scenarios. 

 

 
 

Figure 4-a. Industrial Sector (Daily)) Figure 4-b. Agricultural Sector (Daily) 

  

Figure 4-c. Commercial Sector (Daily) Figure 4-d. General Sectors (Daily) 
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Figure 4-e. Domestic Sectors (Daily)) Figure 4-f. Domestic Sector (Weekly) 

  

Figure 4-h. Agricultural Sector (Weekly) Figure4-j. Commercial Sector (Weekly) 

  

Figure 4-w. General Sector (Weekly) Figure 4-x. Industrial Sector (Weekly) 

Figure 4. Performance of Forecasting Models 

 

Figures 5-1 and 5-2 are radar graphs illustrating the mean absolute percentage error (MAPE) for different models 

predicting energy consumption across five sectors in Iran on a daily and weekly basis: public, commercial, 

agricultural, residential, and industrial. The analysis reveals that the hybrid model with the lowest mean absolute 

percentage error (MAPE) outperforms all other models in forecasting power consumption on both daily and 

weekly scales. The XGBOOST methodology is ranked second, especially when compared to traditional methods 
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such as ARIMA. The hybrid model's ability to identify fluctuations and manage energy consumption patterns 

makes it crucial for energy management and control. 

  

Figure (5-1). Comparison of MAPE Values in different 

sectors-Daily. 

Figure (5-2). Comparison of MAPE Values in 

different sectors-Weekly. 

Figure 5. Comparison of MAPE values for different models 

 

Figure 6 shows the average weekly electricity consumption using several modeling methodologies for different 

scenarios A1B, A1FI and A1T. Figure 6-a illustrates the forecast of power consumption in Iran considering several 

climate scenarios using the XGBOOST model. The A1B scenario has minor discrepancies relative to real usage. 

The model aims to illustrate a slight increase in demand; however, it does not accurately represent the actual 

surges, especially in late September when consumption surpasses 2000 MW. The A1FI scenario exhibits greater 

variability, indicating sensitivity to higher temperatures and subsequent changes in electricity demand. The A1T 

scenario exhibits variations, although demonstrates greater consistency than A1FI. Nonetheless, it fails to attain 

the projected consumption levels, suggesting that despite the assumptions of rising temperatures, consumption 

may not escalate as anticipated due to enhancements in efficiency or technological advancements. 

Figures 6-b and 6-c illustrate the anticipated electricity usage in Iran under various weather conditions, utilizing 

the LSTM-RandomSearch and hybrid models. Figure 6-b reveals a significant anomaly in the A1FI scenario for 

July 2021, marked by a considerable increase in usage to around 4500 MW, surpassing actual consumption by 

more than a factor of two. This significant variance suggests the model's potential instability in managing specific 

input conditions. The model accurately monitors real consumption throughout the August-September 2021 period, 

with the majority of possibilities aligning with the blue line indicative of actual consumption. Since October 2021, 

all scenarios have progressively aligned with actual consumption, signifying enhanced prediction dependability 

during periods of stable consumption trends. The comprehensive prognosis indicates considerable fluctuation, 

especially in August and December 2021. Figure 6-c depicts an anomalous surge, akin to the LSTM-

RandomSearch model, particularly in the A1B scenario during September 2021, attaining around 4,800 MW. In 

contrast to the LSTM-RandomSearch model, the hybrid model consistently undervalues consumption from June 

to September 2021, with all scenario projections frequently falling below actual consumption levels. The model's 

accuracy markedly enhances from November 2021 onwards, with forecasts closely aligning with actual 

consumption patterns. 

Figures 6-d and 6-e demonstrate the expected energy consumption in Iran under varied weather situations applying 

ARIMA and LSTM models. Figure 6-d illustrates that from June to early August 2021, all scenarios nearly 

coincide with actual usage, with low variance from the recorded data. Starting in mid-August, the A1B scenario 

demonstrates a significant deviation, considerably underestimating consumption until it rapidly converges with 

more accurate forecasts in late September. In November 2021, a notable anomaly is detected, as the A1T scenario 
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demonstrates a considerable increase nearing 2,900 MW, indicating an overestimation over 120% of the actual 

consumption. Beginning in December 2021, all scenarios exhibit considerable variability. The A1T and A1FI 

scenarios intermittently fluctuate between over- and under-estimations, while the A1B scenario consistently 

enhances its tracking accuracy in the final months. Figure 6-e illustrates a substantial surge in the A1T scenario 

in late June 2021, attaining approximately 4,500 MW—exceeding actual consumption by more than twofold. 

Subsequent to this first aberration, all scenarios demonstrate markedly improved tracking of actual consumption 

relative to the ARIMA model, particularly from July to October 2021. Between November 2021 and April 2022, 

all scenarios demonstrate a declining trend in consumption; however, the A1B scenario continuously 

overestimates consumption by approximately 100 to 200 MW in early 2022. In contrast to ARIMA, the LSTM 

model demonstrates more stable performance during the winter months (December 2021 to March 2022). 

The examination of electricity demand forecasting models across various climate scenarios (A1B, A1FI, and A1T) 

provides significant insights into their efficacy. The incorporation of climatic scenarios represents a 

methodological advancement, akin to (Hong, 2014). The analysis reveals significant discrepancies among 

scenarios, indicating heightened climate sensitivity within the Iranian context or possible avenues for model 

enhancement. Hybrid and LSTM models typically surpass ARIMA in performance and exhibit enhanced stability. 

  

Figure 6-a. XGBOOST Model Performance 
Figure 6-b. LSTM-RandomSearch Model 

Performance 

  

Figure 6-c. hybrid Model Performance Figure 6-d. ARIMA Model Performance 



International Journal of Multiphysics 

Volume 19, No. 1, 2025 

ISSN: 1750-9548 
 

701 

 
Figure 6-e. LSTM Model Performance 

Figure 6. Comparative analysis of different models for electricity consumption forecasting - under 

different climate scenarios 

 

Figure 7 shows the average predicted electricity consumption in five key sectors—agriculture, commercial, 

residential, public, and industrial—during holidays compared to weekdays. The forecasts generated by both the 

hybrid method and XGBOOST show that household consumption significantly outperforms consumption by other 

sectors in both scenarios, as shown in Figures 7-a and 7-b. This finding supports earlier studies, emphasizing the 

substantial influence of day type and customer behavior on domestic energy usage (Bouktif et al., 2018)The 

industrial sector exhibits greater consumption levels than the public sector, with XGBOOST indicating a more 

pronounced disparity in industrial loads between holidays and weekdays; however, the hybrid model marginally 

mitigates this imbalance. Conversely, agricultural demand remains remarkably stable, demonstrating little 

fluctuations across holidays and weekdays, signifying those agricultural operations persist at a consistent rate 

irrespective of the day type. The consumption hierarchy indicates that household usage is predominant, succeeded 

by industrial use, while agricultural and commercial sectors occupy the bottom tiers. This trend aligns with prior 

research that similarly highlighted the residential and industrial sectors. 

Figures 7-c, 7-d, and 7-e depict the projected average electricity consumption as predicted by the LSTM-

RandomSearch, LSTM, and ARIMA techniques for both holidays and weekdays. In all three models, household 

consumption consistently ranks as the highest, often exceeding 450 to 560 MW. Despite variations in numerical 

outputs across the models, the dominant trend indicates a significant influence of day type: weekdays typically 

exhibit marginally greater domestic demand than holidays, with the exception of the LSTM model. This study 

illustrates that residential energy usage is considerably influenced by weekday activities. The industrial sector 

occupies the second position in total demand, often exceeding 450 MW. The ARIMA model indicates a slight 

distinction between holidays and weekdays, whereas both LSTM variants exhibit a more significant disparity. 

The results indicate that industrial consumption varies with overall economic activity, however is tempered by 

operational schedules. The agricultural sector demonstrates negligible fluctuations in consumption between 

holidays and weekdays, consistently maintaining 200 MW in the majority of forecasts. This pattern may signify 

established operational requirements (e.g., irrigation cycles) that largely operate independently of the distinction 

between weekdays and weekends. The commercial sector generally remains around approximately 200 MW in 

these forecasts, with a distinct day-type effect in the ARIMA model, slightly elevated on weekdays, while 

displaying a reduced variance in the LSTM-based approaches. Consistent with (Bouktif et al., 2018), these 

findings confirm that residential load mostly affects total electricity usage, emphasizing differences between 

weekdays and weekends or holidays. 
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Figure 7-a. Average consumption by holidays and 

working days- hybrid method 

Figure 7-b. Average consumption by holidays 

and working days- XGBOOST method 

  

Figure 7-c. Average consumption by holidays and 

working days- LSTM-Randomsearch method 

Figure 7-d. Average consumption by holidays 

and working days- LSTM method 

 

Figure 7-f. Average consumption by holidays and working days- ARIMA method 

Figure 7. Comparative Analysis of Average Electricity Consumption by Sector and Day Type 

 

Tables 4 and 5 provide a detailed examination of five forecasting models (Hybrid LSTM-XGBOOST, 

XGBOOST, LSTM-Randomsearch, LSTM, and ARIMA) across five economic sectors at both weekly and daily 

time intervals, utilizing four error metrics (RMSE, MAPE, R², and MAE). Tables 4 and 5 indicate that the hybrid 

model (LSTM-XGBOOST) consistently exhibits superior performance across all sectors, evidenced by the lowest 
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MAPE values (4.20% to 10.79%) and the highest R² values, reinforcing the emerging consensus on the integration 

of deep learning with gradient boosting techniques(Semmelmann et al., 2022).The XGBOOST model exhibits 

strong predictive efficacy, especially in commercial and public sectors on a weekly basis, indicating that model 

selection should consider sector-specific characteristics. The findings (Paudel, 2021) reveal that LSTM-

Randomsearch generally outperforms the original LSTM, thereby supporting previous conclusions regarding the 

importance of hyperparameter optimization. The inadequate performance of ARIMA across all domains 

highlights the model's limited ability to detect complex patterns(Hong & Fan, 2016). 

Table 4. Performance Comparison of Different Forecasting Models Across Economic Sectors: Weekly 

Analysis of Error Metrics 

Domestic 

Model RMSE MAPE R2 MAE 

Hybrid (LSTM-XGBOOST) 49.9321 8.77 0.7871 44.7507 

XGBOOST 57.7817 10.03 0.7149 53.1793 

LSTM-Randomsearch 80.3148 12.04 0.4492 63.8235 

LSTM 77.7507 14.12 0.4838 72.2805 

ARIMA 94.6247 15.27 0.2354 76.7278 

General 

Hybrid (LSTM-XGBOOST) 40.6966 8.52 0.686 29.3119 

XGBOOST 39.9664 9.42 0.6972 34.3156 

LSTM-Randomsearch 46.0015 10.78 0.5988 33.8655 

LSTM 55.8715 12.38 0.4082 42.6095 

ARIMA 68.8841 14.42 0.1005 44.7199 

Industrial 

Hybrid (LSTM-XGBOOST) 51.7664 9.93 0.6557 43.3812 

XGBOOST 49.028 10.4 0.6911 44.4704 

LSTM-Randomsearch 62.0141 11.05 0.5058 44.7623 

LSTM 66.7731 14.02 0.4271 58.3632 

ARIMA 83.5851 16.47 63.2562 0.1023 

Agriculture 

Hybrid (LSTM-XGBOOST) 14.5769 7.52 0.8203 12.5669 

XGBOOST 19.4825 9.19 0.679 15.9253 

LSTM-Randomsearch 19.9281 10.26 0.6642 15.1951 

LSTM 23.6958 12.07 0.5252 20.4861 

ARIMA 31.1915 13.44 0.1773 20.3354 

Commercial 

Hybrid (LSTM-XGBOOST) 16.9493 10.79 0.6659 15.5497 

XGBOOST 12.6674 7.84 0.8134 11.5494 

LSTM-Randomsearch 18.0455 11.41 0.6213 16.334 

LSTM 19.4667 12.93 0.5593 17.814 

ARIMA 24.8926 15.7 0.2793 20.5751 
 

 

Table 5. Performance Comparison of Different Forecasting Models Across Economic Sectors: Daily 

Analysis of Error Metrics 

Domestic 

Model RMSE MAPE R2 MAE 

Hybrid (LSTM-

XGBOOST) 

9.46667226

5 

4.2047674

7 0.879536357 19.5657 

XGBOOST 

58.8086715

1 

6.1009463

3 0.732528378 35.1916 

LSTM-Randomsearch 

43.3955248

8 

6.2179055

2 0.839474835 30.4102 
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LSTM 

61.8861519

4 

8.0518758

1 0.67353232 39.6484 

ARIMA 64.8023275 

10.633891

1 0.2354 52.5459 

General 

Hybrid (LSTM-

XGBOOST) 

29.9685765

9 

6.5206896

6 0.830049201 22.9807 

XGBOOST 

33.8222978

3 

7.8514074

4 0.783530258 26.6375 

LSTM-Randomsearch 

41.0086290

9 

10.090165

4 0.681769734 32.9533 

LSTM 

66.3347760

1 

11.851999

8 0.167328857 41.8006 

ARIMA 

57.8431228

6 

12.113248

9 0.366867739 40.3785 

Industrial 

Hybrid (LSTM-

XGBOOST) 30.2443 5.47 0.8827 21.7287 

XGBOOST 37.3976 6.18 0.8206 27.3416 

LSTM-Randomsearch 46.0562 7.61 0.7279 29.0382 

LSTM 68.3773 10.06 0.4003 38.8565 

ARIMA 76.5188 13.1 0.249 54.561 

Agriculture 

Hybrid (LSTM-

XGBOOST) 14.5434 6.27 0.8215 9.638 

XGBOOST 20.1243 8.14 0.6581 13.2617 

LSTM-Randomsearch 27.1662 10.91 0.377 17.9128 

LSTM 21.0843 7.65 0.6247 11.6581 

ARIMA 31.0742 13.58 0.1849 20.6653 

Commercial 

Hybrid (LSTM-

XGBOOST) 11.501 6.11 0.8464 15.5497 

XGBOOST 18.0342 7.34 0.6224 10.9779 

LSTM-Randomsearch 21.3214 9.26 0.4722 13.4022 

LSTM 27.7898 10.62 0.1034 17.2768 

ARIMA 25.4372 11.7 0.2488 16.3604 
 

 

Table 6 presents a comprehensive comparison of forecast accuracy, quantified by the mean absolute percentage 

error (MAPE %), for five distinct hybrid forecasting models (LSTM-XGBOOST, XGBOOST, LSTM-

Randomsearch, LSTM, and ARIMA) across five principal economic sectors (domestic, agricultural, general, 

industrial, and commercial) in Iran. The evaluation of the comparative results of forecasting models across five 

economic sectors (residential, agricultural, general, industrial, and commercial) indicates that the hybrid model 

consistently produced the most favorable outcomes. This strategy demonstrates significant performance in the 

domestic sector across the Kurdistan and Semnan provinces. The forecasting conditions in Khuzestan were 

challenging, leading to increased inaccuracies across all models, consistent with regions exhibiting complicated 

consumption patterns and severe weather conditions. The LSTM-Randomsearch model demonstrated adequate 

performance in Kurdistan; however, the hybrid model produced superior results. Nevertheless, Isfahan 

demonstrates a notable inaccuracy, especially in the LSTM model (about 58.57%). In the industrial sector, 

Bushehr has shown exceptional performance with a remarkable accuracy of the hybrid model (0.78%). 

Conversely, Kerman exhibits subpar performance, highlighting a substantial disparity consistently indicating the 

influence of industrial variety on forecasting precision. The agricultural sector in Guilan province demonstrates 

superior forecasting capability using the hybrid model, while Tehran exhibits commendable outcomes with the 

LSTM-Randomsearch model; these findings confirm the significant influence of regional factors in this domain. 
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The commercial sector's forecasts revealed significant disparities among provinces, with Semnan and Bushehr 

achieving superior results under the hybrid model, while Tehran and Gilan faced more challenging conditions. 

This effect is ascribed to the increased complexity of expenditure patterns in metropolitan areas. The thorough 

conclusion reveals that the hybrid model outperforms in 23 of the 36 examined scenarios, exhibiting a 3% error 

rate in 15 instances, hence emphasizing the model's superiority, in alignment with previous research findings (Jia 

et al., 2024).The persistent superiority of LSTM-Randomsearch compared to conventional LSTM underscores the 

significance of hyperparameter optimization, as indicated in (Dhake et al., 2023). The ARIMA model exhibited 

an average error rate of 14.83 percent, constantly underperforming compared to the other models. This 

corroborates previous studies that emphasized the constraints of conventional statistical methods relative to 

machine learning, as cited in (Tarmanini et al., 2023). 

Table 6. Regional Comparison of Forecasting Model Accuracy (MAPE %) in Economic Sectors in 

Iranian Provinces. 

Sector 
Name of 

province 

Hybrid (LSTM-

XGBOOST) 

XGBOO

ST 

LSTM-

Randomsearch 

LST

M 

ARIM

A 

Domestic 

Ardebil 2.46 8.60 7.28 15.77 14.76 

Khuzestan 35.86 22.69 10.22 13.79 14.56 

Esfahan 14.78 8.57 14.12 14.60 15.31 

Kurdestan 1.05 7.76 5.75 9.94 15.27 

Bushehr 5.97 9.04 15.61 14.71 14.84 

Semnan 0.75 6.43 21.11 15.99 17.74 

Kerman 3.67 8.55 18.08 13.92 14.56 

Tehran 9.16 7.97 8.92 14.30 15.39 

Gilan 5.23 10.66 7.26 14.05 15.00 

General 

Ardebil 3.39 6.75 4.26 6.99 13.64 

Khuzestan 26.36 19.46 11.00 7.16 13.71 

Esfahan 10.18 15.95 44.90 58.57 13.42 

Kurdestan 0.74 6.29 2.25 6.47 14.53 

Bushehr 2.77 8.18 10.10 6.82 14.29 

Semnan 1.35 7.14 10.87 7.94 17.19 

Kerman 3.83 5.82 6.66 6.39 14.03 

Tehran 24.28 8.02 4.44 6.08 14.43 

Gilan 3.78 7.18 2.55 4.99 14.54 

Industria

l 

Ardebil 1.92 8.31 4.01 12.68 16.17 

Khuzestan 18.70 24.06 10.58 14.94 16.30 

Esfahan 16.00 9.60 13.64 13.74 16.73 

Kurdestan 1.84 8.34 8.58 12.85 16.17 

Bushehr 0.78 8.34 6.22 13.25 15.61 

Semnan 4.03 7.73 13.30 18.73 18.84 

Kerman 35.69 9.30 12.66 13.39 14.84 

Tehran 8.31 7.96 12.45 13.27 16.73 

Gilan 2.11 9.96 18.02 13.33 16.82 

Agricultu

re 

Ardebil 2.84 8.00 9.14 12.13 13.14 

Khuzestan 11.68 14.79 15.07 13.14 12.51 

Esfahan 10.27 6.83 5.57 11.83 13.66 

Kurdestan 2.22 7.68 9.19 12.03 12.86 

Bushehr 3.00 15.59 8.46 12.88 12.16 
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Semnan 7.31 6.66 19.34 14.83 15.37 

Kerman 10.36 6.66 5.26 10.57 13.73 

Tehran 18.33 9.05 4.14 11.39 13.70 

Gilan 1.67 7.44 16.17 9.83 13.84 

Commer

cial 

Ardebil 2.47 5.82 6.57 11.78 14.65 

Khuzestan 7.81 10.20 19.24 24.07 18.24 

Esfahan 10.49 5.46 5.76 9.41 15.24 

Kurdestan 6.82 5.66 4.10 8.65 15.12 

Bushehr 2.01 10.20 14.37 12.17 15.43 

Semnan 1.05 6.14 24.21 13.91 17.61 

Kerman 2.22 7.34 6.11 11.90 14.89 

Tehran 25.24 5.55 9.40 12.39 15.31 

Gilan 39.00 14.18 12.93 12.10 14.81 
 

 

The study demonstrates the comparative effectiveness of five forecasting models (Hybrid LSTM-XGBOOST, 

XGBOOST, LSTM-Randomsearch, LSTM, and ARIMA) across five economic sectors in Iran, supplemented by 

an extensive analysis featuring multiple figures that illustrate daily and weekly consumption patterns, the impact 

of climate scenarios, and usage discrepancies between holidays and weekdays. The hybrid model consistently 

surpasses other models in most scenarios, attaining superior accuracy with the lowest MAPE values (4.20% to 

10.79%) and the highest R² values across various sectors, whereas XGBOOST demonstrates notable efficacy in 

the commercial and public sectors on a weekly basis. Regional disparities markedly influence model efficacy, 

with provinces such as Bushehr and Semnan exhibiting remarkable accuracy (as low as 0.78% MAPE for the 

industrial sector), whereas urban regions like Tehran and Gilan pose more intricate forecasting challenges due to 

convoluted consumption patterns. The established performance hierarchy (Hybrid > XGBOOST > LSTM-

RandomSearch > LSTM > ARIMA) demonstrates that deep learning models significantly surpass traditional 

statistical methods, with hyperparameter adjustment being essential for improving prediction accuracy. 

Conclusion and Discussion 

This paper offers a thorough assessment of electricity consumption forecasts in Iran, utilizing sophisticated 

machine learning methodologies to tackle the intricacies of sector-specific and regional energy demand trends. 

The hybrid LSTM-XGBOOST model proved to be the most efficient forecasting instrument, continuously 

surpassing standalone models including XGBOOST, LSTM-RandomSearch, LSTM, and ARIMA in all analyzed 

sectors. The hybrid model achieved the lowest Mean Absolute Percentage Error (MAPE) values (ranging from 

4.20% to 10.79%) and the highest R² values, demonstrating its remarkable ability to characterize both linear and 

nonlinear consumption patterns. This aligns with prior research emphasizing the efficacy of integrating deep 

learning and ensemble methodologies for energy forecasting (Jember et al., 2024; Li et al., 2018(Semmelmann et 

al., 2022)). The findings underscore the substantial impact of regional attributes on predictive precision. Provinces 

like Bushehr and Semnan demonstrated outstanding performance, with MAPE values as low as 0.78% in the 

industrial sector, whereas urban areas such as Tehran and Gilan presented more significant hurdles due to intricate 

consumption patterns. This underscores the imperative of tailoring forecasting models to regional and sector-

specific conditions, as highlighted by Dou et al. (2025) in their analysis of urban electricity consumption patterns 

in China. 

 

The integration of climate change scenarios (A1B, A1FI, and A1T) into the forecasting framework provided 

substantial insights into the potential impacts of environmental variables on future energy demand. The hybrid 

model demonstrated robust performance under these conditions, particularly in capturing seasonal fluctuations 

and peak demand periods. This discovery corresponds with Salkuti (2018), who emphasized the critical impact of 

meteorological circumstances on improving short-term load forecasting accuracy. 
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The study emphasized the inadequacies of traditional statistical methods, such as ARIMA, which consistently 

produced subpar outcomes in comparison to machine learning models. This corroborates previous research 

(Elhadj et al., 2024; Nepal et al., 2020) that highlighted the challenges of utilizing conventional time series models 

to effectively depict complex, nonlinear consumption patterns.The research identified the limitations of 

conventional statistical techniques, including ARIMA, which consistently yielded inferior results relative to 

machine learning models.This supports prior studies (Elhadj et al., 2024; Nepal et al., 2020) emphasizing the 

difficulties of employing conventional time series models to accurately represent intricate, nonlinear consumption 

patterns. The efficacy of LSTM-RandomSearch compared to the conventional LSTM model highlights the 

significance of hyperparameter optimization in improving forecasting precision. The established performance 

hierarchy (Hybrid > XGBOOST > LSTM-RandomSearch > LSTM > ARIMA) clearly demonstrates the 

superiority of deep learning models compared to traditional statistical approaches. This research advances the 

understanding of energy forecasting by introducing a comprehensive and flexible hybrid model that tackles the 

specific challenges posed by Iran's varied climatic and economic factors. The findings provide essential insights 

for policymakers and energy system operators, especially regarding Iran's shift to renewable energy sources. 

Future research may investigate the incorporation of other external variables, including socioeconomic factors 

and technological innovations, to enhance predictive accuracy and facilitate sustainable energy planning. 
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Appendix 1: Definition of meteorological and calendar variables with units. 

Variable Unit 

tmin Minimum Temperature (°C) 

tmax Maximum Temperature (°C) 

sshn Sunshine Hours (h) 

rrr24 Total Daily Precipitation (mm) 

evt Evaporation (mm) 

twet Wet Temperature (°C) 

ff_max Maximum Wind Speed (m/s) 

dd_max Direction of Maximum Wind (°) 

ew Vapor Pressure (hPa) 

tsea Sea Surface Temperature (°C) 

u Relative Humidity (%) 

vv Horizontal Visibility (m) 

dd Wind Direction (°) 

ff Wind Speed (m/s) 

P0 Synoptic Station Pressure (hPa) 

ss Snowfall Amount (mm) 

h Lowest Observable Cloud (m) 

n Cloudiness Okta 

radglo24 Radiation j/cm2/day 

https://civilica.com/doc/2084039
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t Temperature (°C) 

td Dew Point (°C) 

p Sea Level Pressure (hPa) 

Working day Work Day day 

holiday Weekend. day 

Consumption kwh 

 

 

 


