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Abstract 

In this paper, we have proposed an unsupervised method for the evaluation and 

selection of regions of interest (ROIs) in remote photoplethysmography (rPPG). Our 

approach involves several key steps: (1) face detection and tracking, (2) segmentation of 

the face into sub-regions designated as ROIs, (3) extraction of pulse signals from each 

region and computation of property scores based on sliding-window analysis and 

statistical assessment using signal-to-noise ratio (SNR) and accuracy metrics, and (4) 

integration of the selected pulse signals to estimate the final pulse signal. We compared 

our method against traditional techniques such as Green, CHROM, and POS, 

demonstrating substantial improvements in SNR and accuracy. Our method achieved a 

minimum SNR of 4.55, approximately 50% higher than the best-performing traditional 

method (POS, 1.95), with an average SNR of 7.11, outperforming POS and CHROM by 

40% and 43%, respectively.In terms of accuracy, our method achieved a minimum of 

95.5%, exceeding existing methods by 3.8% to 4.2%.The average accuracy of our 

method (96.85%) shows a clear improvement over traditional methods (Green, CHROM, 

POS), enhancing the reliability of heart rate estimation, especially in low SNR 

environments. The findings underscored our method's potential as a reliable and precise 

solution for heart rate estimation, especially in low SNR environments, which is critical for 

remote health monitoring technologies. The results not only highlighted the 

advancements in rPPG signal extraction compared to traditional methods, but also 

indicated substantial benefits for applications such as telemedicine, rPPG video 

compression, etc. where accurate monitoring of vital signs and physiological signal 

preservation are essential. 

Keywords: Remote Photoplethysmography, rPPG, Unsupervised, Region of Interest, 

ROI Selection Measure, Physiological signal preservation, ROI Selection. 

1. Introduction 

Heart rate (HR) serves as a crucial physiological signal for various applications, particularly in the realm of 

healthcare and medical practices. Electrocardiography (ECG) and Photoplethysmograph (PPG)/Blood Volume 

Pulse (BVP) represent the conventional methods for monitoring heart activities. Nonetheless, these approaches 

necessitate physical attachment to the body, constraining their practicality and scalability. The inconvenience 

associated with long-term monitoring and user discomfort imposes limitations on their application, particularly 

in contexts like driver status assessment and patient health monitoring. Addressing these challenges, non-contact 

HR measurement has emerged as a thriving area of research, aiming to remotely monitor heart activity and 

overcome the constraints of traditional modalities. The primary approach for non-contact HR measurement 

revolves around remote Photoplethysmography (rPPG) techniques using facial video-based methods. Remote 

photoplethysmography (rPPG) offers a non-invasive means of measuring blood flow and heart rate without 

necessitating direct skin contact. Through the utilization of cameras to detect alterations in skin color resultant 

from changes in blood volume, rPPG surpasses traditional PPG by offering enhanced user comfort and 
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convenience in the measurement process. Emanating from the rPPG framework, various methodologies are 

employed, with one common approach utilizing image data from video cameras for the analysis of skin color 

changes. These methods often integrate motion compensation techniques to mitigate the influence of motion 

artifacts on the signal. The analysis of the signal entails the use of diverse algorithms such as frequency analysis 

and adaptive filtering to ensure accurate estimation of heart rate. Furthermore, the integration of deep learning 

models and advanced imaging analysis techniques has facilitated more sophisticated physiological monitoring, 

including the measurement of blood oxygen saturation and the estimation of blood pressure. As rPPG continues 

to exhibit promise for non-contact HR measurement, it becomes crucial to explore unsupervised methods for 

evaluating and selecting regions of interest to enhance the robustness and efficacy of this innovative approach. 

Region of interest selection is an essential part for rPPG algorithms. Selecting the proper ROIs is critical to 

ensure the accuracy, reliability, and efficiency of the algorithm and ultimately impacts the quality of 

physiological measurements. Effective evaluation and selection of ROIs contribute significantly to improving 

the performance of rPPG by enhancing signal quality and reducing noise interference. This process is essential 

for obtaining reliable physiological data in various conditions and environments, making it a valuable area of 

research for advancing the use of rPPG in real-world applications such as healthcare monitoring and affective 

computing. 

Unsupervised methods for evaluation and selection of ROIs for Remote rPPG are valuable due to their potential 

applications, such as enhancing rPPG video compression and improving performance in various scenarios. By 

using unsupervised methods to identify and select ROIs in rPPG videos, it's possible to focus on the most 

relevant areas for heart rate monitoring and physiological signal extraction. This targeted approach can lead to 

more efficient video compression techniques, reducing data transmission and storage requirements without 

compromising the integrity of vital physiological information. Unsupervised methods allow for the automatic 

identification of ROIs without the need for manual annotation, which is particularly beneficial in scenarios 

where labeled training data may be limited or unavailable. This capability expands the applicability of rPPG in 

real-world settings, including situations with diverse skin types, lighting conditions, and facial movements, thus 

improving the robustness and reliability of rPPG-based systems. Unsupervised methods facilitate the automated 

selection of ROIs, which can streamline the deployment of rPPG technology in various settings, including 

healthcare, sports performance monitoring, and human-computer interaction. This can potentially lead to 

broader adoption and integration of rPPG-based applications in everyday devices and environments with 

minimal user intervention. 

Given the mentioned topics, our aim is to propose a novel unsupervised approach for evaluating, ranking, and 

selecting ROIs in remote photoplethysmography. We seek to contribute to the field by addressing the challenge 

of automatically identifying the most informative ROIs without the need for manual annotation or prior 

knowledge about the specific application. By achieving these objectives, our paper aims to pave the way for 

more efficient and automated processing of rPPG signals, with broad implications for various domains, 

including video region-based compression, video quality assessment, healthcare, human-computer interaction, 

and multimedia technologies. 

Remote photoplethysmography (rPPG) technology significantly impacts ROI evaluation strategies by 

emphasizing the importance of anatomical considerations in selecting regions of interest (ROIs) for accurate 

blood volume pulse (BVP) estimation. Studies have shown that the thickness of the skin varies across different 

facial areas, affecting the quality of diffuse reflection information obtained for rPPG [1]. By limiting the ROI to 

specific facial regions, the signal-to-noise ratio of rPPG signals can be improved, enhancing the accuracy of 

vital sign measurements [2]. 

Various studies have highlighted the significance of ROI selection methods based on factors like skin thickness 

[1], surface orientation [3], and the impact of ROI on signal extraction quality [4]. The angle map representation 

of the face has been proposed to study the effects of surface orientation on the extracted rPPG signal, showing 

that regions with small angles of reflection contain stronger signals, often found near the cheeks and forehead 

[3]. Additionally, the selection of optimal patch ROIs has been shown to effectively eliminate illumination noise 

and enhance the reliability of heart rate measurements in rPPG technology [4]. 
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Unsupervised skin tissue segmentation for remote photoplethysmography is a crucial aspect of physiological 

measurements. Existing methods often rely on supervised learning or face detection, which can be limiting. The 

closest contribution to our work, to the best of our knowledge, is VPS, which leverages physiological features to 

distinguish human skin from nonhuman surfaces based on pulse signals. This approach achieves significant 

improvements in skin-region detection precision and pulse rate correlation [5-7]. Additionally, advancements in 

image preprocessing techniques, such as skin segmentation using color models like YCbCr and HSV, have been 

shown to enhance rPPG accuracy without compromising real-time processing speed, addressing noise issues 

encountered in unstable tracking trajectories [8]. Furthermore, the introduction of unsupervised contrast learning 

approaches, such as ST-Phys, integrates modules for low-light enhancement and spatio-temporal feature 

utilization, offering superior performance over existing unsupervised rPPG methods and enhancing noise 

robustness [9]. 

The rest of the paper is organized as follows. Section 2 outlines the proposed method, including face detection 

and tracking, ROI pulse signal extraction, and ROI quality measurement. Section 3 details the experimental 

setup and implementation, including the database and parameter determination. In Section 4, we present the 

results and discussions, focusing on how the proposed method performs in terms of accurately estimating HR 

and which key and impactful ROIs are significant for precise and accurate HR estimation. Finally, Section 5 

concludes with insights and future research directions. 

2. Method  

The proposed method, as shown in figure 1, comprises four main steps:  

Face detection and tracking: The algorithm begins with detecting and tracking faces within the video stream, 

segmenting the tracked face area into 16×16 sub-regions. 

Pulse signal extraction: A preliminary rPPG signal is then extracted from each ROI.  

ROI quality measurement: The temporal analysis of the facial video ROIs progresses over time using a time-

framing approach, which employs overlapping sliding windows alongside ROI quality assessment. 

rPPG signal reconstruction: Lastly, the most proper ROIs are utilized to compute the final rPPG signal and 

estimate HR. 

 

 
 

Figure 1. Overview of the proposed method. 

2.1. Face Detection and Tracking 

To detect and track the region of a person's face throughout a video, we utilized the Viola-Jones algorithm [10] 

for face detection and the Kanade-Lucas-Tomasi (KLT) algorithm [11] for face tracking. The Viola-Jones 

algorithm is used to efficiently detect the presence of a face in each frame of the video, while the KLT algorithm 

is employed to minimize motion artifacts in the extraction of remote photoplethysmography (rPPG) signals. The 

KLT algorithm facilitates face tracking by computing the optical flow of facial landmarks across consecutive 

frames. The algorithm identifies key points or components within a frame and tracks their movement to stabilize 

the face image. Mathematically, the KLT algorithm estimates the motion matrix, describing the displacement of 

these key points, which enables the stabilization of the face image. This process involves two primary steps: 

first, detecting the presence of a face, and second, identifying and tracking its specific facial features. 
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Viola-Jones object detection algorithm is known for its efficiency in detecting faces in images. The algorithm 

relies on a cascaded architecture of simple classifiers referred to as Haar-like features. It is based on the concept 

of Haar-like features and uses a technique called AdaBoost for selecting a small set of critical visual features 

from a large set, which can then be used to effectively detect objects in an image. The algorithm involves 

several steps, including: 1) constructing an integral image to efficiently calculate Haar-like features. 2) Selecting 

a small set of Haar-like features that can effectively classify objects from the background using AdaBoost. 3) 

Using a cascade of classifiers to progressively filter out negative image regions. 

The integral image is defined as equation (1). 

𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(𝑥′, 𝑦′)

𝑥′≤𝑥,𝑦′≤𝑦

 (1) 

where ii(x,y) the integral image at pixel  location (x,y) and i(x’,y’) is the original image. Using the integral 

image to compute the sum of any rectangular area is extremely efficient. The integral image can be used to 

compute simple Haar-like rectangular features. These features help in capturing certain patterns in an image, 

such as edges or textures. Viol-Jones utilizes the AdaBoost algorithm to select a small set of important features 

and creates a strong classifier by using equation (2). 

𝐹(𝑥) = ∑ 𝛼𝑖 . 𝑠𝑖𝑔𝑛(ℎ𝑖(𝑥))

𝑁

𝑖=1

 (2) 

where αi are the weights assigned to weak classifiers, hi(x) are weak classifiers, and N is the total number of 

weak classifiers. The Viola-Jones algorithm employs a cascade of classifiers to efficiently reject non-face 

regions. The cascade structure helps in quickly discarding regions that are unlikely to contain faces, reducing 

computation time. Finally, to detect a object, the algorithm slides a window of different sizes over the image and 

applies the cascade classifier at each position. If the region passes all stages of the cascade, it is classified as a 

target object. 

The KLT tracking algorithm, also known as the Kanade-Lucas-Tomasi algorithm, is a popular tracking method 

introduced in [11]. It is widely used across various tracking tasks. Kanade-Lucas' optical flow technique 

discussed in [12] was further enhanced by Shi-Tomasi [11], who improved feature selection for better tracking 

performance. The equation (3) depicts the motion between two consecutive frames in a video. 

I(x,y,t+τ)=I(x-α,y-β,t) (3) 
 

where I represents the image intensity, t and τ are time and difference of time between two frames respectively, 

α and β are increments of dimensions in frame of time t. Images have some noises which they are imposed in 

frames and could be aggregated to equation (3). So, equation (3) can be computed to reduce the noise (n). 

𝑛 = ∬[𝐼(𝑥 − 𝛼, 𝑦 − 𝛽, 𝑡) − 𝐼(𝑥, 𝑦, 𝑡 + 𝜏)]2𝑤(𝑥, 𝑦)𝑑𝑥𝑑𝑦

 

𝑊

 (4) 
 

where w(x,y) represents a weighting function, and W is the search window. As reported in papers [11, 13], we 

set the weight to unity. Since the displacement is small relative to the search window, we can rewrite this 

equation using a Taylor series approximation based on equations (5-7). Also, we do not introduce time symbols 

into the formulas because displacements are crucial for this purpose. 

𝐼(𝑥 − 𝛼, 𝑦 − 𝛽) ≈ 𝐼(𝑥, 𝑦) − 𝛼
𝜕𝐼

𝜕𝑥
(𝑥, 𝑦) − 𝛽

𝜕𝐼

𝜕𝑦
(𝑥, 𝑦) (5) 

  

g≜ [
𝜕𝐼

𝜕𝑥
  

𝜕𝐼

𝜕𝑦
]𝑇 (6) 

  

𝐼(𝑥 − 𝛼, 𝑦 − 𝛽) ≈ 𝐼(𝑥, 𝑦) − 𝑔. 𝐷,          𝐷 ≜ (𝛼, 𝛽) (7) 
 

By substituting these approximated series, equation (4) would be rewritten as below. 
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𝑛 = ∬[𝐼(𝑥, 𝑦, 𝑡) − 𝑔. 𝐷 − 𝐼(𝑥, 𝑦, 𝑡 + 𝜏)]2𝑑𝑥𝑑𝑦

 

𝑊

 (8) 

  

𝐹 ≜ 𝐼(𝑥, 𝑦, 𝑡) − 𝐼(𝑥, 𝑦, 𝑡 + 𝜏) (9) 
  

𝑛 = ∬[𝐹 − 𝑔. 𝐷]2𝑑𝑥𝑑𝑦

 

𝑊

 (10) 

 

To find the displacement, D, the equation (10) needs to be differentiated with respect to D and then equated to 

zero. 

𝑑𝑛

𝑑𝐷
= −2 ∬[𝐹 − 𝑔. 𝐷] 𝑔𝑑𝑥𝑑𝑦

 

𝑊

 (11) 

  

∬[𝐹 − 𝑔. 𝐷] 𝑔𝑑𝑥𝑑𝑦 = 0

 

𝑊

 (12) 

  

∬ 𝑔𝑔𝑇𝐷𝑑𝑥𝑑𝑦 = ∬ 𝐹𝑔𝑑𝑥𝑑𝑦

 

𝑊

 

𝑊

 (13) 

  

GD=H (14) 
  

G=[

𝜕2𝐼

𝜕𝑥2

𝜕2𝐼

𝜕𝑥𝜕𝑦

𝜕2𝐼

𝜕𝑥𝜕𝑦

𝜕2𝐼

𝜕𝑦2

] (15) 

 

Based on Shi and Tomasi's definition in [11], if λ1 and λ2 represent the eigenvalues of matrix G, the optimal 

features for tracking should fulfill the condition that the minimum of λ1 and λ2 is greater than the threshold λth. 

This threshold is derived from uniform intensity regions. This approach allows for the extraction of corners and 

highly textured areas in the image. 

We use the Viola-Jones algorithm followed by the KLT tracking algorithm to locate the central region of the 

face, including the nose, lips, and eyes, in consecutive frames of the video. We track this region and use a 

256*256 dimensioned facial area for decomposition and analysis by utilizing the geometric dimensions and 

component proportions. The facial region is approximately situated in the middle of this area. This 256 by 256 

area is divided into 16*16 sub-regions, and each of these sub-regions will be used as Regions of Interest (ROI) 

in our further processing. An example result of this process is shown in Figure 2. 

 
 

Figure 2. Face detection and ROI gridding. 
 

2.2. ROIs Pulse Signal Extraction  

To distinguish between significant clusters (such as skin areas) and insignificant ones, we generate preliminary 

rPPG signals for each 16×16 region. In this approach, the pixel values within each region are averaged spatially 

for every video frame. As a result, we obtain a collection of 256 RGB time series denoted as 𝑥𝑖
𝑐(𝑡), where c 

represents the color channel {R, G, B}, t signifies the frame index, and i ranges from 1 to K (where K equals 

256 - the total number of regions). 
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𝑥𝑖
𝑐(𝑡) =

∑ 𝐼𝑘,𝑖
𝑐 (𝑡)

𝑁𝑖(𝑡)
𝑘=1

𝑁𝑖(𝑡)
 (16) 

 

where 𝑁𝑖(𝑡) is the number of pixels in the ith region at time t, which is fixed and equal to 256 due to each 

region's size being 16×16, and 𝐼𝑘,𝑖
𝑐 (𝑡) represents the kth pixel value at time t in color channel c. 

The RGB temporal traces are then pre-processed by normalized, detrended using a smoothness priors approach 

[14], and then band-pass filtered with a Butterworth filter. Subsequently, the rPPG signal can be extracted using 

various existing methods. In this study, we opted for the chrominance-based method (CHROM) [15] due to its 

simplicity and high reliability. CHROM utilizes uncomplicated linear combinations of RGB channels and 

demonstrates excellent performance with minimal computational complexity. Let 𝑦𝑖
𝑐(𝑡) represent the pre-

processed RGB time series. Using the CHROM method, these RGB values are projected onto two orthogonal 

chrominance vectors 𝑋𝑖 and 𝑌𝑖 obtained from equation (17) and (18). 

𝑋𝑖(𝑡) = 3𝑦𝑖
𝑅(𝑡) − 2𝑦𝑖

𝐺(𝑡) (17) 
  

𝑌𝑖(𝑡) = 1.5𝑦𝑖
𝑅(𝑡) + 𝑦𝑖

𝐺(𝑡) − 1.5𝑦𝑖
𝐵(𝑡) (18) 

 

Since 𝑋𝑖 and 𝑌𝑖 are two orthogonal chrominance signals, changes induced by PPG are expected to differ 

between  𝑋𝑖 and 𝑌𝑖, while motion impacts both chrominance signals in the same way. Therefore, the pulse signal 

in the ith region can finally be determined by the equation (19). 

𝑆𝑖(𝑡) = 𝑋𝑖(𝑡) − 𝛼𝑌𝑖(𝑡) (19) 
 

where  

𝛼𝑖 =
𝜎(𝑋𝑖)

𝜎(𝑌𝑖)
 (20) 

 

2.3. ROI Quality Measurement  

Only the skin tissue of a living subject shows pulsatility, so proper pulse signals must extract from some ROIs, 

and it's considerable that the desired pulse is consistently present over time. Figure 3(a) presents the 

periodogram and spectrogram of a pulse signal estimated from the skin ROI, while Figure 3(b) shows the 

periodogram and spectrogram of a pulse signal estimated from the non-skin ROI. In the frequency domain, the 

pulsatile, cardiac-synchronous signal exhibits a significant peak centered around the fundamental frequency of 

the heart rate over time, along with a potential second harmonic, while providing limited information at other 

frequencies. 
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(a) 
 

(b) 
 

Figure 3. Periodogram and spectrogram examples of two tentative rPPG signals estimated from  
(a) skin area and (b) non-skin area 

 

Estimating HR from facial videos using rPPG faces challenges like transient movements and ambient light 

variations, etc. affecting accuracy [16, 17]. Complex facial regions like eyes, lips, or beard areas can introduce 

errors due to even minor movements [17]. The more proper ROIs are those that are less affected by challenges 

that lead to a decrease in heart rate estimation accuracy. This allows for the extraction of heart rate over time 

with appropriate precision and accuracy ensures that the rPPG signal remains of high quality. These ROIs 

should have characteristics such as: 1) ROIs that experience fewer optical or motion or etc. challenges, resulting 

in higher estimation accuracy, and 2) ROIs with good blood flow that can produce a stronger and higher quality 

signal. In other words, if we use a proper ROI for HR estimation at very short intervals, the estimated HR should 

show minimal variance. Additionally, during all these time intervals, the quality of the rPPG signal should be 

high. 

Based on this fact, we analyze the facial video ROIs over time using a time-framing approach with overlapping 

sliding windows (one-frame difference) from two perspectives: the quality of the signal and the precision of HR 

estimation. The window used for framing the pulse signal S will be a rectangular window as shown in figure 4 

and equation (21). Therefore, each ROI after framing the corresponding pulse signal extracted from it, 𝑆𝑖(𝑡), 

will have J=T-L+1 frames (windowed signal, 𝑆𝑤𝑖
𝑗
(𝑡)). 

 
Figure 4. Rectangular sliding window applied to ROI pulse signal. 

 

𝑊𝑓𝑟𝑎𝑚𝑖𝑛𝑔
𝑗

(𝑛) = {
1    𝑗 ≤ 𝑛 ≤ 𝐿 + 𝑗
0    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (21) 
 

where L is the length of the window, and j is the parameter that slides the window over time. If we consider the 

duration of the signal as T, then j can take values from 0 to T-L. 
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To measure the quality of rPPG signals, we utilize the signal-to-noise ratio (SNR), which is calculated as the 

ratio of the energy around` the fundamental frequency to the remaining energy. The SNR for the jth time-frame 

signal of extracted pulse signal of ith ROI is determined using equation (22). 

𝑆𝑁𝑅𝑖
𝑗

= 10 log10(
∫ 𝑊𝑠𝑖𝑔𝑖

𝑗
(𝑓)|𝐹{𝑆𝑤𝑖

𝑗
(𝑡)}|

2
𝑑𝑓

𝑓2

𝑓1

∫ (1 − 𝑊𝑠𝑖𝑔𝑖
𝑗
(𝑓))|𝐹{𝑆𝑤𝑖

𝑗
(𝑡)}|

2
𝑑𝑓

𝑓2

𝑓1

) (22) 

 

where 𝐹{𝑆𝑤𝑖
𝑗
(𝑡)} represents the Fourier transform of the rPPG signal for the jth time-frame signal of ith ROI, 𝑓1 

and 𝑓2 denote the lower and upper limits of the integral, corresponding to the physiological range of heart rates 

(40 to 210 bpm in our case), and 𝑊𝑠𝑖𝑔𝑖
𝑗
 is a gaussian template window shown in figure 5. 

 
 

Figure 5. In the frequency spectrum of the extracted pulse signal, the Gaussian window 
is defined as ± 3 bpm away from the fundamental frequency. 

 

As we discussed, in order to consider a ROI proper for the quality of rPPG signal presentation, it must always 

have a high SNR. Therefore, to evaluate the quality of the rPPG signal in the ROI, we calculate the mean and 

variance of the SNRs obtained from the time frames created after the time-windowing phase of that ROI (by 

using equation (23) and (24)). For a proper ROI, we expect a higher mean and a smaller variance in the 

statistical analysis of the SNRs for that ROI. 

𝑆𝑁𝑅𝐴𝑣𝑔𝑖 =  
1

𝐽
∑ 𝑆𝑁𝑅𝑖

𝑗

𝑖

𝑗=1

 (23) 

𝑆𝑁𝑅𝑉𝑎𝑟𝑖 =
1

𝐽
∑(𝑆𝑁𝑅𝑖

𝑗
− 𝑆𝑁𝑅𝐴𝑣𝑔𝑖)2

𝐽

𝑗=1

 (24) 

 

To analyze the ROI from the perspective of HR estimation precision, we employ the Chrom method. As we 

mentioned earlier, we expect a proper ROI for rPPG-based HR estimation to be unaffected by challenging 

factors such as motion or local lighting changes. Therefore, HR estimates from that ROI should remain 

relatively consistent over closely spaced time intervals. To achieve this, we calculate the variance of the HRs 

obtained from the time frames created after the time-windowing phase of that ROI (by using equation (25) and 

(26)). For a proper ROI, we expect low variance in the statistical analysis of the HRs estimation for that ROI. 

𝐻𝑅𝐴𝑣𝑔𝑖 =  
1

𝐽
∑ 𝐻𝑅𝑖

𝑗

𝑖

𝑗=1

 (25) 

  

𝐻𝑅𝑉𝑎𝑟𝑖 =
1

𝐽
∑(𝐻𝑅𝑖

𝑗
− 𝐻𝑅𝐴𝑣𝑔𝑖)

2

𝐽

𝑗=1

 (26) 

 

where  𝐻𝑅𝑖
𝑗
 is the HR obtained from the jth time frame signal of ith ROI. 
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Then, the property score (PS) of the ith ROI is calculated. Given that our goal is to identify ROIs with low 

variance in the estimation of HRs and SNRs, and high average SNRs, we set the evaluation criteria according to 

equation (27). 

𝑃𝑆𝑖= 
𝑆𝑁𝑅𝐴𝑣𝑔𝑖

𝛾×𝑆𝑁𝑅𝑉𝑎𝑟𝑖 + (1−𝛾)×𝐻𝑅𝑉𝑎𝑟𝑖
 (27) 

 

where, γ is a regularization parameter assumed to be between 0 and 1, and 𝑆𝑁𝑅𝐴𝑣𝑔 , 𝑆𝑁𝑅𝑉𝑎𝑟  and 𝐻𝑅𝑉𝑎𝑟 , 

have been normalized to a scale between 0 and 1 using unity-based normalization according to equation (28). 

𝑒́𝑖 =  
𝑒𝑖 − 𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

 (28) 
 

where, 𝑒́𝑖 is the normalized value of ei for variable E in the ith row. 

The final rPPG signal S(t) is then obtained by averaging the selected tentative pulse signals 𝑆𝑖(𝑡). This is 

expressed as equation (29). 

𝑆(𝑡) =
1

𝑔
∑ 𝑆𝑖(𝑡)

𝑖∊𝐺
 (29) 

 

where g is the number of elements in the set G. The elements of set G are the ROIs with a property score (𝑃𝑆 ) 

greater than a specific threshold. This threshold is determined by the average property score of all tentative skin 

ROIs. 

3. Experimental Setup and Implementation Details  

In this section, we outline the experimental setup for assessing the proposed method. First, we will describe the 

dataset utilized. Next, we will detail the parameters employed in the method. Finally, we will present the 

evaluation metrics used to analyze the results of the proposed approach. 

3.1. Database 

We created a self-collected benchmark database to evaluate the performance of our proposed algorithm. The 

study involved 16 healthy participants (11 male, 5 female, ages 23 to 55) and received approval from the DSP 

laboratory committee at Shahrood University of Technology. Informed consent was obtained from each 

participant prior to the experiments. We used a consumer-grade webcam (HD Pro Webcam C920, Logitech) for 

image capture, along with MATLAB's "Image Acquisition Toolbox." To establish a ground truth reference, we 

simultaneously recorded contact-based PPG signals using a fingertip pulse oximeter (CMS50E, Contec 

Medical). The experiments took place in a practical setting, specifically a general office environment without 

dedicated lighting or a controlled background, as typically found in lab conditions. Illumination levels were 

recorded during the day with mixed lighting, including sunlight and fluorescent lamps. Participants remained 

stationary during the recordings, with some minor involuntary movements allowed, positioned approximately 

1.5 meters from the camera. The video was captured at 1280 × 720 pixels and 30 frames per second (fps) for a 

little over a minute, stored in WMV format. Figure 6 shows some snapshots from the benchmark dataset. 

 
 

   

 
 

   

 
 

   

    
 

Figure 6. Snapshots of the benchmark dataset 
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3.2. Parameters Determination  

Considering that the initial stages of the proposed method involve face detection and tracking, followed by grid 

partitioning of the face area, it is necessary to determine the face region size and ROI size. In the next stage of 

the proposed method, which includes extracting the signal variations in brightness for each ROI and then 

windowing that signal, it will be important to determine the type of window, the window length, and the degree 

of overlap between windows. Finally, in order to assess the suitability of each ROI according to Equation (29), 

we need to determine the regularization parameter in the mentioned equation, which balances the accuracy of 

heart rate estimation and the signal-to-noise ratio. These parameters will be determined experimentally as 

described below: 

Face region size: 256×256 

ROI size: 16×16 

Number of ROIs: 256 

Framing window (Wframing): Rectangular window 

Framing window length (L): min{0.8×number of total video frames, fps×50} 

Framing windows overlap: L-1 

SNR calculation window (Wsig): Gaussian window is defined as ± 3 bpm away from the fundamental frequency 

Regularization parameter in proper score formula (γ): 0.5 

4. Results and Discussion 

In this section, we will evaluate the proposed algorithm to address two important questions: 1) How does the 

proposed method perform in terms of accurately estimating HR? 2) Based on the proposed method, which key 

and impactful ROIs are significant for precise and accurate HR estimation? Therefore, we will analyze and 

evaluate the proposed method in two parts: “Evaluation of HR Estimation” and “ROIs Property”, comparing it 

with several conventional methods. 

4.1. Evaluation of HR Estimation  

To evaluate the proposed method, we compared it against three widely used algorithms in the literature (Green 

[18], CHROM [15], POS [19]), which show significant performance differences. For this comparison, we 

utilized the iPhys-toolbox [20] to implement and evaluate the mentioned methods. This toolbox provides 

MATLAB implementations for various non-contact physiological measurement algorithms, allowing 

researchers to replicate results on their datasets with standard public versions of the baseline methods, ensuring 

all parameters are well-defined. It includes implementations of many commonly used baseline methods for 

imaging photoplethysmography (iPPG) and image ballistocardiography (iBCG). 

Given that the plethysmographic signal is unevenly distributed among the RGB channels, the green component 

is particularly important, overshadowing the other two channels; In the Green method, the G component is 

directly utilized as the rPPG signal S(t). As mentioned in section 2.2, CHROM applies simple linear 

combinations of RGB channels, and these combinations (based on equations (18) to (21)) are used as the rPPG 

signal S(t). Like the CHROM, the Plane Orthogonal to Skin (POS) method uses a linear combination of two 

orthogonal vectors, 𝑋 and 𝑌 obtained from equation (30) and (31). 

𝑋(𝑡) = 𝑦𝐺(𝑡) − 𝑦 
𝐵(𝑡) (30) 

  

𝑌 (𝑡) = −2𝑦 
𝑅(𝑡) + 𝑦 

𝐺(𝑡) + 1.5𝑦 
𝐵(𝑡) (31) 

 

where 𝑦 
𝑐(𝑡) is the pre-processed RGB time series and the final result is given by: 𝑆(𝑡) = 𝑋(𝑡) + 𝛼𝑌(𝑡) where 

𝛼 =  𝜎(𝑋)/𝜎(𝑌). The vectors 𝑋 and 𝑌 create a plane orthogonal to the skin, effectively reducing specular 

information caused by variations in motion and illumination on the skin surface. Finally, it is worth mentioning 

again that in our proposed method, the rPPG signal, S(t), is obtained as explained in section 2.3 and according to 

equation (29). 

Figure 7 shows the statistical results obtained from the accuracy of HR estimation for different subjects using 

the proposed method in comparison with other examined methods. 
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Figure 7. Comparison of HR estimation accuracy. Box plot analysis across database subjects. 

 

The results reveal that our proposed method demonstrates a significant enhancement in minimum accuracy, 

highlighting its robust performance across various subjects, especially those who pose challenges for RPPG 

estimation. Additionally, the maximum accuracy attained by our method is on par with the best results from the 

other techniques, underscoring its effectiveness under optimal conditions. Furthermore, our method not only 

exceeds the average accuracies of the existing methods but does so by a considerable margin, indicating reliable 

performance across a wide range of subjects. These findings suggest that our proposed method provides a more 

dependable and precise approach to RPPG estimation compared to traditional techniques. The marked 

improvements in both minimum and average accuracy imply that our method excels in scenarios where others 

may falter, thereby broadening its applicability in real-world contexts. 

Figure 8 presents the statistical results of the SNR for obtained rPPG signals across various subjects, comparing 

the proposed method with other evaluated techniques. 

 
Figure 8. Comparison of SNR for obtained rPPG signals. Box plot analysis across database subjects. 

 

The SNR metrics are crucial as they indicate the quality of the extracted signal relative to the background noise. 

Higher SNR values suggest better signal quality, which is critical for accurate heart rate estimation. The Green 

method shows a concerning range of SNR values, with a minimum below zero, indicating that in some cases, 

the noise may dominate the signal. The average SNR close to zero suggests that this method is less effective for 

reliable heart rate estimation. The CHROM method exhibits a significantly improved performance compared to 

the Green method. With all SNR values above one, it indicates a generally favorable signal quality. The average 

SNR suggests a moderate level of reliability for heart rate estimation. Similar to the CHROM method, the POS 

method demonstrates robust performance with higher minimum and maximum SNR values. The average SNR 

indicates that this method is also effective for extracting rPPG signals with moderate reliability. Our proposed 

method outperformed all existing techniques with a remarkable average SNR of 7.11, a minimum SNR of 4.55, 

and a maximum SNR of 8.61. These results indicate that our approach not only extracts rPPG signals more 
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effectively but also maintains a higher level of signal integrity across subjects, thereby demonstrating its 

robustness and reliability. 

The comparative analysis clearly shows that our proposed method significantly enhances the extraction of rPPG 

signals, achieving superior SNR metrics compared to traditional methods like Green, CHROM, and POS. The 

improvements in both minimum and maximum SNR values illustrate the efficacy of our approach in mitigating 

noise and enhancing signal quality. This advancement is crucial for applications requiring accurate heart rate 

monitoring and related physiological assessments using rPPG technology. 

4.2. ROIs Property  

Figure 9 shows the ROIs with appropriate property scores for the each subjects in the database after applying the 

proposed method, which are involved in extracting the final pulse signal S(t) according to Equation 29. 

It is noteworthy that the areas around the forehead and cheeks have been involved in suitable participation for 

the majority of individuals, while regions such as the eyes, eyebrows, lips, nose, and areas covered by hair have 

shown the least participation in being selected as suitable areas. This observation aligns with the results obtained 

from our previous work [21] and the research conducted by D.Y. Kim et al. [22]. In our previous study, we 

concluded that one of the best regions for extracting heart rate based on rPPG is an area in the middle of the 

forehead, which contains the mid-nasal ridge located in the supratrochlear vein passage. This region marks the 

beginning of venous drainage from the forehead, originating from a dense venous network that extends widely 

from the forehead to the scalp. Small veins converge, gradually forming larger venous trunks. These trunks, 

located in the middle of the forehead, include the supratrochlear vein and the supraorbital vein, while on the 

sides of the forehead, there is the frontal vein. It is also worth noting that this area of skin has relatively thin skin 

compared to other facial areas. Furthermore, it was shown in [22] that the thinness of the skin and the proximity 

of blood vessels to the skin surface have a direct relationship with the suitability of an area for extracting rPPG 

signals. Based on this, the mid-forehead and cheek areas have been introduced as suitable regions. 

 
 

   

 
 

   

 
 

   

    
 

Figure 9. Recommended ROIs for each Subject based on 
the proposed method. 

 

5. Conclusion 

In the present study, we have introduced, implemented, and evaluated an unsupervised method for assessing, 

ranking, and selecting ROIs for rPPG. Our approach effectively identifies suitable areas of living skin tissue 

based on distinct pulsatility features. By integrating multiple tentative rPPG signals from the selected ROIs, we 

have demonstrated that accurate rPPG signals can be estimated remotely without extensive ROI selection. 
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The results suggest that our method provides a more viable solution for precise heart rate estimation, especially 

in low signal-to-noise ratio (SNR) environments. This advancement holds significant promise for remote health 

monitoring technologies. Additionally, our analysis of SNR metrics shows that our proposed method 

significantly enhances rPPG signal extraction compared to traditional techniques. 

Overall, our findings highlight the potential of this method to improve health monitoring systems, leading to 

more accurate and reliable heart rate estimation techniques. This could be particularly beneficial in applications 

such as video compression for telemedicine, where maintaining vital signals is crucial. It is important to note 

that due to the framing of signals from each region and the increased computational load, our proposed method 

is somewhat heavier in terms of computation and execution time compared to traditional methods. Therefore, 

optimizing the time efficiency of our approach, along with determining the optimal number and size of ROIs 

and fine-tuning the parameters for assessing ROI suitability, will be key focuses of our future work. 

6. Availability of data and material  

The data that support the findings of this study are available from the corresponding author upon reasonable 

request. (MehdiMoghimi@chmail.ir) 
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