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  Abstract. 

 We present a study of the dynamic phenomena at the   inhomogeneous surface crystalline. The 

breakdown of translation symmetry induced by the inhomogeneity, gives rise to localized 

modes at its neighbourhood. The formalism of the matching method, the Newton equation and 

Green function are used to calculate the Rayleigh branches and associate state densities. The 

numerical results are presented in a large band of scattering energies. This illustrates 

theoretically the variation of localized phonons and their spectra of states densities for the 

softening, homogeneous and the hardening elastic constants of the neighbourhood of the 

perturbed domain. The coherent coupling between these localized phonons induced by the 

defect and the travelling modes of the perfect waveguide lead to Fano resonances at the state 

density spectra and Rayleigh dispersion branches. 
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1. Introduction 

  

   The scattering and localization phenomena of several systems with defects shows intriguing 

useful properties and they are more recent interest, [1-2].They are currently the subjects of 

active research because of their interest for high technology nanometric devices.  

The inhomogeneities in the structure scatter the elastic waves of the unperturbed lattice, 

which can be considered as a waveguide. The resonances in the scattering spectra for a 

waveguide containing perturbed domains are a signature of the localization effects in the 

neighborhood of the perturbed domain.  

There are strong similarities between electronic and vibrational scattering of point of 

view mathematical formalism, we just replace the Schrödinger equation by the Newton 

dynamical equation. The scattering of the vibrational waves is more complicated. Also its 

complexity in contrast with coherent electron transport is attributed to the vector character of 

the vibrational fields. 

    There are several theoretical methods to deal with the effects of different type of defects. 

The matching method that we employ in this work has previously been extended with success 

to study the scattering of elastic waves at isolated nanostructures in quasi-one-dimensional 

disordered systems, The specific advantage of the matching method, compared to other 

methods such as the cluster numerical approach, and besides being transparent at all stages of 

the calculation, is that it gives an exact and rigorous analytical formulation of the vibrational 

field displacements in the limit to infinity. There are no numerical approximations [3-6]. 

   

In this work, we present the study relating to the vibrational properties based on the 

matching method [7-9] associated to Green functions, in a 2D system with schoty defect.  

Recently, a similar study was presented by B. Djafari-Rouhani and al [10], in the case of 

polymers (a chain) adsorbed on a surface.   

The paper is organised as follows. In section.1 we present the structural model and the 

dynamic vibration of the perfect wave guides. In section.2. we give the dynamical properties 

of the perturbed domain. In section.3, we describe the Green functions formalism, used for the 

calculation of the state density associated to localized phonons.  In sec.4 some numerical 

results are presented, for three cases system parameters, respectively the softening, 

homogeneous and hardening and general conclusions. 
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1. Structural model  and the dynamical properties of the perfect wave guide 

Our structural model is presented in Fig.1; it is crystalline surface with schoty defect 

(grey area). Far from the perturbed domain they are the perfect region. 

The interaction in the perfect region, between the nearest and next nearest neighbour is 

represented respectively by elastic constant k1 and k2. In contrast, in the perturbed zone, these 

constants are labelled k1d and k2d. For simplicity, we take the same distance a between all 

adjacent sites in the different Cartesian directions. 

In order to calculate the normalised frequencies in the system, we defined the 

following ratios:  

 

r=k2/k1, r1d=k’1/k1 and r2d=k’2/k1          (1) 

 

In the harmonic approximation [11], the equation of motion of an atom at site l is given by: 

 


2
m(l)U(l)=-l’lk(l,l’)r.r/d

2
 [u(l)- u(l’)]       (2) 

 

The indices  and  denote Cartesian co-ordinates, m  m(l) is the mass, and u(l) is 

the corresponding displacement vector vibration, of the l atom. The radius vector r between 

the atomic sites at l and l’, has Cartesian components r , and d = r. The force constant 

between the two sites is k(l,l’), so that k(l,l’)=k1 and k(l,l’)=k2 respectively for nearest and next 

nearest neighbours.  

The dynamics of atomic sites may be described by the travelling wave solutions of  Eq. (2). 

 

Suppose that l and l’ are in side the perfect wave-guide, as in Fig.1. The solutions to 

Eq. (2) for the wave-guide are obtained from: 

 

[
2
I – D(, r)]U=0          (3) 

 

 is a dimensionless frequency given by 
2
=

2
/0

2
, where 0 is a characteristic lattice 

frequency, 0
2
=k1/m, and D(, r) is the dynamic matrix characteristic of the perfect wave 

guide lattice. I is the corresponding unit matrix.  : is the phase factor.   
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In the configuration described by Fig.1, D is reduced a two by two matrix, for the atomic site 

per unit cell and two degrees of freedom per site. U is the corresponding vector for a column 

of the perfect wave-guide. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1:Schematic representation of 2D crystallographic waveguide with configuration hole. 

The perturbed domain is the grey area, with the content of the defects force constants 

 

 

The evanescent and propagating vibrational modes in perfect waveguide are described 

by the phase factor doublets: {,
-1

}. 

With the matching method applied to Eq.(3), the evanescent modes are obtained when 

<1, and the propagating modes are determined by the condition =1. 

Consequently, solutions are obtained when the determinant of [
2
I – D(, r)] vanishes. The 

determinant give a secular equation of degrees 4 of  . Its is expressed in polynomial forms 

by 0
4

0


i

i

iA , (the term Ai of the summation depend on (, r)). The hermitic nature of the 

matrix dynamics of the perfect region implicates that the both phase factors   and 
-1

 verify 

symmetrically the polynomials forms above.  
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The summation gives a maximum two solutions for . In Fig.2a and Fig.2b shows the 

evolution of the phase factor as a function of the incident phonon frequency for each vibrating 

mode characterizing the waveguide. One can find two types of phase the new propagating 

frequency ranges of all two waveguide modes. 

 

 

 

 

 

 

 

 

 

 

   

 

 

Fig.2a: The phase factor evolution as a function of the dimensionless frequency and the 

elastic constant for the waveguide eigenmodes; for incidence .φy= 0     

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2b : The phase factor evolution as a function of the dimensionless frequency and the 

elastic constant for the waveguide eigenmodes; for  incidence .φy= /6     
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2.  Dynamical properties at the inhomogeneity: 

  The Cartesian component u, of the displacements field for an atom localised in the 

matching domain, before perturbed domain (see Fig.1) can be written [11-15]: 

)i,(R)]i([)m,n(u i

6

1i

n  



           (4) 

Whereas for sites in second matching domain (after the perturbed domain), is described by: 

 

)'i,(R)]'i([)'m,'n(u 'i

6

1i

'n  




           (5) 

 

In equations (4) and (5), the quantities 
iR  and 

'iR  represent unit vectors. They span the space 

of the solutions corresponding to the set {, 
-1

}. The coefficients (,i) and (,i’) identify 

the relative weighting factors associated with the atomic displacements u and u’ . 

The set of irreducible sites in the defect region and the minimum representative set of sites in 

the matching regions of the system are chosen as indicated in Fig.1.  Denoting by R  the 

basis vector in the constructed space, using equations (4) and (5), and after the 

transformations connecting the two vectors R and U , we obtain a square linear 

homogeneous of equations: 

 

[
2
I – D (, r, r1d, r2d, )]U,R=0        (6) 

 

Where I is the matrix unity, i{1,2}. D is a characteristic matrix calculated following the 

matching procedure. The dimensions of this square matrix are characteristic, for 

completeness, of an irreducible set of atomic sites at the surface boundary, and of the size of 

the constructed Hilbert space for the matching domains, is the square matrix  of 12 by 12 

elements,. 

The matching procedure provides a framework for the calculation of the localized 

modes and of the spectral densities at the surface [16-29]. By diagonalizing the matrix [ D(( r, 

r1d, r2d, ,  ], we calculate the dispersion branches of the Rayleigh phonon modes. The 

essential characteristic of these modes is that they propagate in the direction high symmetry of 
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the system model and decrease on both sides of the inhomgeneity. One notes the resonance 

modes inside the bulk band and appearance of the new modes in the windows of the 

bandwidth. The curves of localized phonons  are presented in Figs (3-5) 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: The Rayleigh phonon dispersion branches on the hole domain boundary, as a function of the 

wave vector y, for homogeneous boundary elastic softening, r1d=0.6 and r2d=0.4 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4: The Rayleigh phonon dispersion branches on the hole domain boundary, as a function of the 

wave vector y, for homogeneous boundary elastic constants, r1d=1  and r2d=0.7 
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Fig.5: The Rayleigh phonon dispersion branches on the hole domain boundary, as a function of the 

wave vector y, for hardening boundary elastic constants, r1d = 1.1 and r2d= 0.95. 

 

3.  State densities at the Behaviour of the schoty defect.  

  For completeness the calculated density of states (DOS) of the irreducible sites of the system 

model are presented via the Green functions associated to the matching method [11], it is 

expressed as: 

              G(² + i) = [ D(2, 3, e
iz

,  , r0,r1,r2,r3,r4) ] 
-1

                                                          (6) 

      The DOS per atomic site l, denoted as Ξl( ), is obtained as a sum over the trace of the 

spectral density matrix. 

     

 

               


 








iG llll

l 





 2

0

),(

),( Imlim
2

                        (7)

    

The spectra presented on Figs. (6- 8) correspond to the localized DOS for perturbed sites, for 

different parameters of the system. 
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Fig6 : The density of states (DOS), for an atomic site (a)  as function of the wave vector y, the 

dimensionless frequencies  Ω. For elastic softening, r1d=0.6 and r2d=0.4(doted-line), for 

homogeneous boundary (solid-line) r1d=1, r2d=07 and  hardening boundary    r1d = 1.1 and r2d= 

0.95.(dashed doted –line). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig7: The density of states (DOS), for an atomic site (b)  as function of the wave vector y, 

the dimensionless frequencies  Ω. For elastic softening, r1d=0.6 and r2d=0.4(doted-line), for 

homogeneous boundary (solid-line) r1d=1, r2d=07 and  hardening boundary    r1d = 1.1 and r2d= 

0.95.(dashed doted –line). 
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Fig.8: The density of states (DOS), for an atomic site (c)  as function of the wave 

vector y, the dimensionless frequencies  Ω. For elastic softening, r1d=0.6 and 

r2d=0.4(doted-line), for homogeneous boundary (solid-line) r1d=1, r2d=07 and 

hardening boundary    r1d = 1.1 and r2d= 0.95.(dashed doted –line). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9: The density of states (DOS), for an atomic site (c)  as function of the wave vector y, the 

dimensionless frequencies  Ω. For elastic softening, r1d=0.6 and r2d=0.4(doted-line), for 

homogeneous boundary (solid-line) r1d=1, r2d=07 and  hardening boundary    r1d = 1.1 and r2d= 

0.95.(dashed doted –line). 
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4. Numerical results and discussion  

 

     The numerical results of the Rayleigh branches of localized phonons and their state 

densities at the perturbed domain are studied as function of dimensionless frequencies and the 

elastic constant of behavior of the defect on Fig.1. This analysis is carried out for three 

possibilities: 

 (i) r1d=r1=1.0, r2d = r2=0.70, (homogeneous case) 

 (ii) r1d=1.1 > r1, r2d =0.95 > r, (hardening ) 

 (iii) r1d=0.60<r1, r2d =0.40 < r. (softening) 

The dispersion relations of the localized phonons for numerical calculations are illustrated in a 

set of Figures [3, 4, 5]. They correspond respectively to cited previous cases respectively. In 

these figures, the modes outside the phonon band limits represent the dispersion curves of the 

phonon modes localized at the defect. They illustrate the breakdown of the translational 

symmetry induced by the presence of the lacuna. Several new Raleigh-like branches are 

induced at behavior of the inhomogeneity. In Fig.3a, corresponding to r1d=0.60<r1, r2d =0.40 < 

r, the  softening case, several acoustic Rayleigh branches  appear alone below  bulk subband 

of the system and two  branches in window of  Brillouin  Zone (Z.B). In Fig.3b corresponding 

to the homogeneous case: r1=1.0, r2d = r2=0.70   several acoustic modes disappear, leaving one 

mode at the perturbed domain. 

One in Fig.3c, the hardening case is presented, the Rayleigh  branches shifts to higher 

frequencies   and two  optical modes appear above (Z.B)  and  three  modes induced in 

window of the  bulk band. However the comportment of Rayleigh branches   is sensible for 

the variation of the parameters of the system in the bulk and neighborhood of the hole.   

The Fig.4 gives the state densities of atomic site (a), right of the hole, several resonance peaks 

appear on this curve related to Fano resonance. Its sensible to the variation of the ratio r1d and 

the r2d and shifts to higher frequencies for increasing values of previous ratios.  In Figs.5, 6 

and 7, we present the densities of states of atomic sites respectively (b), (c) and   (d), in the 

frequency interval from 0 to 2.6.  Same the previous case several peaks appear on their 

spectra, depending also of the parameters of the structure at the bulk and behavior of the 

inhomogeneity. Every curve is a signature of the nature and geometric defect and can be 

utilized as a probe in the   non-destructive control. 

       

5. Generals conclusions 
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 In conclusion a hyperfine resonance structure is obtained that permits the analysis of the 

evolution of the dynamics at the schoty defect. The formalism presented is an analytical 

approach that is independent of the details of the nanostructure. This model shows the 

existence of localized Rayleigh-like modes induced by inhomogeneity. The presence of the 

defect lifts the degeneracy of the bulk phonon modes. The defect region generates the new 

branches of localized vibrational modes at its neighborhood. Further their number and their 

frequencies, depend strongly on the variation of elastic constants of the inhomogeneity. At 

this time, experimental or simulated data are not available for comparison. This model applies 

to acoustical studies at a macroscopic scale. Hence the possibility to test these theoretical 

results with an experiment model using scale masses, binding springs, and wave generators.  

Some observations concerning phonons in nanostructures are made as a guide to potentially 

application in future researches on system of bass dimensionally. In predicting future 

developments in the fields of phonon effects in nanostructures and phonon engineering, it is 

instructive to consider emerging international efforts for both nanostructures and bulk 

structures. Indeed, novel phonon effects in bulk materials are likely to have counterparts in 

nanostructures. Progress in femtosecond lasers and ultrafast spectroscopy and the continued 

development of novel techniques for fabricating nanostructures such as quantum dots 

(Empedocles, 1996) have been the basis for experimental observations of coherent 

oscillations of acoustic phonons in superlattices (Sun et al., 1999), damped spherical acoustic 

breathing modes in quantum dots (Krauss and Wise, 1997, see the supporting analysis of 

Stroscio and Dutta, 1999), optical phonons near the surface of bulk. 
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