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Abstract
In this paper, we display the lattice structure of some lower intervals whose
upper bounds are 12 element-subgroups in the lattice of subgroups of the
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1.Introduction

a, a a, a; . . .
Let G = {(a3 a4):a1, ay,az,a, € Z, and |a3 a4| * 0}. Then G is a group under the binary operation of

matrix multiplication modulo p and 0(G) = (p? — 1)(p? — p). Let L(G) denote the lattice formed by all subgroups
of G. In the case, when p=5, 0(G) = (52 — 1)(52 — 5) = 24 X 20 = 480 = 2° X 3 x 5. In this paper, we display
the structure of some intervalswhose upper bounds are 12 element-subgroups in the lattice of subgroups of the group

of 2x2 non-singular matrices over Zs.
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2. Preliminaries
In this section, we give somedefinitions and theorems for the development of the paper.

Definition 2.1 A partial order on a non-empty set P is a binary relation < on P that is reflexive, anti-symmetric and
transitive. The pair (P, <) is called a partially ordered set or poset. A Poset(P, <) is totally ordered if every x , y €

P are comparable, that is either x <y or y <x. A non-empty subset S of P is a chain in P if S is totally ordered by <.

Definition 2.2 Let (P, <) be a poset and let SC€ P. An upper bound of S is an element x € P for which s < x for all
s €S. The least upper bound of S is called the supremum or join of S. A lower bound of S is an element x € P for

which x < s for all s € S. The greatest lower bound of S is called the infimum or meet of S.

Definition 2.3 A Poset (P, <) is called a lattice if every pair x, yof elements of P have supremum and infimum,

which are denoted by x V y and x A y respectively.

Definition 2.4 For two elements a and b in P, a is said to cover b or b is said to be covered by a (in notation a > b

or < a) ifonly if b<a and for no x € P, b<x<a holds.
Definition 2.5 An clement a € P is called an atom, if a >0 and it is a dual atom, if a <1.

Definition 2.6 Let L be a lattice. A subset I of L is called a lattice interval if there exist elements a, b € L such that

I={t € L:a <t < b} =[a,b]. The elements a, b are called the end points of I.
Theorem 2.7 If G is a finite group and a€ G, then the order of ‘a’ is a divisor of the order of G.

Theorem 2.8 Let G be a finite group and let p be any prime number that divides the order of G. then G contains an

element of order p.
3. The order-wise arrangement of elements of G

In table 3.1, we produce the list of elements according to their orders.

Order Elements

1 e

2 Ay 0y, Az, e eee e, A3y
3 B1.B2, B3,y wev v e s B2o
4 V1,Y2, V3, wer een evees V152

61,62,03, v cvvvners 024

6 Mg Moy U3y oo e eee ey g
8 W1, W32, W3y weever e, Wag
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o Ay, Az, e, Ay
- N1,M2,, N3, wee woe oo+ M40
0 180, E3) o Eag
= P1,02,) P3,) e+ wee enny Pgo

4. Subgroups of Gof various orders

In this section we find all the subgroups of G of various orders. Based on Lagrange’s theorem, we have to lookonly

among the divisors of 480 for identifying the subgroups of G.
4.1 Subgroups of G which have order 2

Let A denote an arbitrary subgroup of G which has order 2. Then all the subgroups of order 2 are Ai={e,a;},
A2:{e,a’2}, ............ A31 :{e,a31}.

4.2 Subgroupsof G which have order 3

Since o(G) = 2° x 3 x 5, 3 |o(G) and 3%t o(G), by Sylow's theorem, G has a 3- Sylow subgroup which has order 3.

Hence, the number of 3 — Sylow subgroups of G is of the form 1+3m and we have 1+3m |o(G).

That is, 14+3m | 2% x 3 x 5. Then, 1+3m |2° x 5. Therefore, the probable values for m = 0, 1, 3, 5,13. As the number

of elements of order 3 is 20, we have atmost ten 3-Sylow subgroups corresponding to m = 3. The subgroups are

Bi={e,B1, B20}, B2={e,B2, B1o}, Bs={e,Bs, B1g}, Ba={e,B4, B17}, Bs={e,Bs, P16}, Be={e,Bs, B1s}, B={e,B7, B1a},
Bs={e,fs, B13}, Bo={e,Bo, B12}, Bro={e,B10, P11}

4.3 Subgroups of G which have order 4

Consider an arbitrary subgroup C of G which has order 4. Then C consists of elements of orders 1, 2 or 4. If C
consists of an element which has order 4, then C is generated by that element. We get the following subgroups of

order4.

Ci={e ay,ay, a3}, C; ={e,az a3 a3}, C3 ={e,as, az, a3}, €4 = {€, ag, A3, 273,05 = {€, a7, A3, A26},C6 =
{e, ag az3, a25},C7 = {€, a9, @23, @24}, (g = {€, @10, @23, @31}, Cy ={e, @11, a3, @30}, Cyo = {€, A1z, Az3, A0},
Ci1 = {e,a13,a23, A28},  Ciz = {€, 14, @21, Az3},  Ci3 = {€, A5, @20, A23},  Cra = {€,Q16,A19, @23},  Cy5 =
{e, 17,218, @23},  Ci6 ={€,Q14,V1, Y80},  C17 ={€, @17, V2, Y116} C1s = {€, @10, V3, V38}, C10 = {€, @20, V4, Y140},
Cao = {e,a23, 75,716}, C21 ={€, @15, V6, ¥71}, Coz = {€, Q16,¥7,V107},C23 = {€, @23, V8, ¥13}, Cos = {€, @21, V9, ¥50},
Cos ={e, a18, V10, V152, Co6 ={€, 18, ¥11,¥33},  Co7 ={€, @21, V12, V135},  Cag ={€, @16, V14, Ves}, (29 =

{e, a15, V15, Y121} C30 = {€, @20, Y17, Vas} C31 = {€, A19, V18, Y147}, C32 = {€, @17, V19, ¥76}, C33 = {€, A14, V20, Y112}
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Csa = {e,@5,Y21, Y22}, C3s = {€,5, V23, Y26}, Cs6 = {€,@9,¥24,V27}, C37 = {e, @6, V25, ¥30}, C38 = {€, @7, V28, V293,
C39 = {€, @12,¥31, Y36}, Cso = {€,a23, V34, V151}, Ci1 = {e, a2, V35, ¥111}1,Caz = {€, @10, V36, Var ), Cp3 =
{e, a4, V39, Y122}, Caa = {€, @23, V40, V145}, Cas = {€, @13, Va1, V32}, Cag = {€, Q11, Va2, Vas} Ca7 = {€, @23, Va3, Y142},
Cas = {€, @1, Y44, Y106}, Cao = {€,a3,V48, Y117}, Cs0 = {€, @23, Va0, V136 ) Cs1 = {e,az,¥s1,Vs7}, Csy =
{e, @23, V52, Vso}, Cs3 = {e, a23, V53, V883,054 = {€, U232, V54, Y00}, Css = {e, @26, V55, Voa}, Cs6 =
{e, @23, V56, Y101} Cs7 = {€, @24, V57, Vo9 ), Csg = {e, @24, V58, Y100}, Cso = {€, a3, ¥59,Vos}, Ceo =
{e, @25, V60, Y93},.Co1 = {€, @27, V61, Vo1, Co2 = {€, @23,V62, Y95}, Cez = {€, A26, V63, Y102}, Coa = {€, A2, V6a, Yo7}

Cos = {€,®23, V65, Yoz }, Cos = {€, @27, V66, Y06 }» Ce7 = {€, @30, Y67, Y108}, Ces = {e, 23, V68, Y119} Coo =

{e, az8, V69, Y115} Cr0 = {e, @4, Y70, Y146} C71 = {e, @28, Y69, Y115}, C72 = {e,az3, V73, Y114}, C73 =
{e, @29, V74, Y105} Cra = {e,as,¥75,v137} C75 = {€, @31, 777, Y103}, €76 = {€, @23, V78, Y109}, Cy7 =
{e, @30, 79, Y120}, C7s = {e, a2, V81, Y150}, C79 = {€, @29, V82, ¥113},Ca0 = {€, @23, V83, Y104}, Cg1 =
{e, @31, V84, Y110}, Cs2 = {e, a1, Vg6, Y141}, Cez = {€,as, V123, V124}, Css = {€, @6, V125 Y130}, Cgs =
{e, a7, V126, V127}, Cgs = {€, @9, V128, Y131}, Cs7 = {e, @, Y120, Y132}, Cgs = {€, @10, V133, Y144}, Cgo =

{e, @11, V134, Y138} Coo = {€, @13, V139, Y148}, Cor = {€, X12, V143, V140}-
Here the last 76 subgroups are cyclic and the remaining 15 subgroups are non-cyclic.
4.4 Subgroups of G which have order 6

Let E denote an arbitrary subgroup of G which has order 6. Since o(E) =2 x 3, by Sylow’s theorem E has only one
subgroup of order 3. Further, if E consists of an element which has order 6, then E is generated by an element of

order 6. Then the subgroups of order 6 are

Ey = {e, ay, 9, @31, B1, Ba0},

E; = {e, ay, aso, @24, B1, P20}
E3 = {e, az, az, azo, Bz, P19}
Ey = {e, a3, a11, 26, B2, P10}
Es = {e, az, a3, azs, B3, P1s}
Es = {e, a3, ag, azo, B3, P1s}
E; ={e, ay, a13,az7, Pa, P17}
Eg = {e, a4, as, azg, P, P17}

Eq = {e, a7, 10, @21, Bs, P16}
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Eio = {e, Qya, 26, A31, Bs, P16}

E1 = {e, a6, @11, Q20, Pe, P15}

Eip = {e, ays, 27, a30, Be, Pis}

Ei3 = {e, aq, a13, @19, B7, P14}
E1y = {e, a6, Q24 A9, B7, P14}
Eis = {e, ag, 13, 18, Bs, P13}
Ei6 = {€, @17, @35, A28, Bs, P13}
Ei7 = {e, as, 14, @17, Bo, P12}
Eig = {e, aig @31, @22, Bo, P12}
Eyg = {e, as, a5, a3, P10, P11}
Eyo = {e, a19, 20, @22, Br0, P11}
Ey = {e, ay3, B1, B0, Hay Us}
Eyy = {e, a3, B2, Bro, Uz, e}
Eys = {e, ay3, B3, B1s, Ha) U7}
Eyq = {e, az3, Ba P17, b, i}
Eys = {e, azs, Bs, Brer Mo, H2o}
Ey = {e, a3, B, P15, 10, Mo}
Ey; = {e, az3, B7, Bras 11, g}
Eyg = {e, a3, Bg, P13, H12, a7}
Ey9 = {e, @23, B9, P12, 13, 16}

E3o = {e, az3, P10, P11, H14) K15}
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Here each of the last ten subgroups has two elements of order 6 and find that all the 20 elements of order 6 have
been taken care of and we note that every subgroup of order 6 contains exactly two elements of order 3. Then there

is no other possibility for any other subgroups.
4.5 Subgroups of G which have order 12

Consider an arbitrary subgroup I of G of order 12 and o(I)=12=22x3. By Sylow’s theorem, I has a 3-Sylow subgroup
which has order 3. The number of 3-Sylow subgroup of order 3 is 1+3m and we have 1+3m | 22x3. Then 1+3m | 2%

The probable values for m are 0,1. Hence, the number of subgroups of I of order 3 is either 1 or 4.

Also,I has a 2-Sylow subgroups which has order 4. The number of 2- Sylow subgroups of order 4 is 1+2m and

1+2m | 3. The probable values for mare 0,1. Hence the number of subgroups of I of order 4 is either 1 or 3.

Four cases arise:

L. Four subgroups of order 3 and three subgroups of order 4.
il. One subgroup of order 3 and three subgroups of order 4.
ii. Only one subgroup of order 3 and one subgroup of order 4.
iv. Four subgroups of order 3 and one subgroup of order 4.

Case(i): Will not exist, since containing 4 subgroups of order 3 and three subgroups of order 4 exceeds 12 elements.

Case(ii): At a time, combining a subgroup of order 3 combining with three subgroups of order 4, we get the

subgroups of order 12 as given below:
I; = {e, ay, ay, a9, A19, A3, 24, 31, B1, P20, s s }}
I, = {e, a3, a3, az, a1y, A23, Azq, A30, B2, P19, M3, Ue }
I3 = {e, a3, a3, ag, 13, A23, Azs, Az9, B3, P18, Ha) U7}
I, = {e, ay, ay, @6, Ay3, Az3, Az7, Aag, Par P17, P, g}
Is = {e, az, g, A4, A21, Aa3, A6, A31, Bs, B1es Moy Hao}
s = {e, as, 11, A15, A0, A3, A27, A30, Ber B1s, 10, K19}
I; = {e,ag, A2, A16, X19, A23, A4, A9, B7, P1ar K11, s}
Ig = {e, ag, a3, A17, A1, A23, Azs, Aag, By P13, 12, P17}

Iy = {e, a5, 14, A17, A1g, A1, Az, A23, Po, P12, H13s M6}
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Lo = {e, as, ay5, A16, 19, A20, A2z, A23, Bro, P11, P14 a5}
Iy = {e, az3, B1, P20, V8, Y13, Y62, V73, Y95, V114 Has U5 }
I, = {e, a23, B2, P19, Vs, V16 Vo5, V83, Yoz, V104r K3, He }
I3 = {e, az3, B3, P18, Vs, V16, V56, Vs Y101, Y119 Moy U7}
Iy = {e, 23, B4, P17, V8, Y13, Y59, Y78, Vo8, Y109, M, Hs}

I1is = {e, @23, Bs, P16 Va3, Vo5, V73, Yoz, Y114, V142, Ho, 20}

Lig = {e, @23, Bs, P15, VY34, V59, V83, Vo8, Y104 Y151, Ha0, Ba9}

Ii7 = {e, az3, B7, P14, Va9, Y62, Yes, Vo5, Y119, Y136) B11, g}

Lig = {e, a3, Bs, P13, Va0, V56, V78, Y101, Y109: V1as, M2, Ha7}

Lig = {e, az3, Bo, P12, V40, Va3, V53, Vs, Y142, V1as, P13 M6}

Lo = {e, @23, B0, P11, Y34, Va9, V53, Vas: Y136 V151, Haas s}

Case(iii): Let B be a one subgroup of order 3 and C bea one subgroup which has order 4 in I. But B and C are

normal subgroups in I. Therefore [=BCshould be abelian. But we find thatBCs, only in abelian and for no other C.

Hence,in this case we find the following subgroups of order12.
Iy = {e, a23, B1, P20, V52, Y89, Has s, M4, M5, 119, N30}
L, = {e, a23, B2, P19, V52, Y9, U3, e M1, Mg, 24, 25 }
L3 = {e, @33, B3, P1s, V52, V8o, las K7, M2, M7, 17, 32}
Ly = {e, 23, Bs, P17, V52, Vo9, U1, He, M3, N6r 22, 27}
L5 = {e, a23, Bs, P16, V52, Y89, Ho, 120,13, 20, 29, 36}
L = {e, 23, Bs, P15, V52, V89, H10, H19, 10, N23, N26, N30}
L7 = {e, @23, B7, P14, V52, V89, M1, Has, T1s) N1ss 31, N34}
Lg = {e, a23, Bs, P13, V52, V89, H12, H17, 12, N21, N28: 37}

Lo = {e, @33, Bo, P12, V52, Y89, H13» H16: M11s M4 M350 38}
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I30 = {€, @23, B10, B11, V525 Y89s H14s H15: M9s M6 N33, Nao}

Case(iv): Let B be a collection of four number of subgroups of order 3. Consider C be a subgroup which has order
4.Clearly, C is a normal subgroup of I, because C is the only one subgroup in I of order 4. Hence, iri'€ I for every
r€ C,i €l. Atatime, consider a subgroup of order 4 combining it with four subgroups of order 3,we find that this

condition is not true. Hence, this case does not arise at all.
5. Structure of intervals [{e}, Li], i=1,2,3,...20, [{e}, L], j=21,22, ...30 in L(G).

Each of the first 10 subgroups I;, i= 1.2, ...10 in case(ii) above contains 3 subgroups of order 4 and 3 subgroups of
order 6 and the remaining ten subgroups I;, i=11,12,...20 each contains three subgroups of order 4 and one subgroup
of order 6.

Each subgroup I;, j=21, 22, ...30 in case (iii) contains the four -element subgroup Cs, and exactly one subgroup of
order 6. Therefore, the lattice structure of lower intervals below I;‘s above are of three types namely, for I;,1o,...1io;

Li1,112,.. . Ioo; L2, Ina,...I30 which we typically display for 11,111,121

{e}

Figure 2
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{e}
Figure 3
6. Conclusion

In this paper, we displayed the structure of lower intervals whose upper bounds are thel2 element-subgroups only
containing the elements of order 2, 4,6 or 12 in the lattice of subgroups of the group of 2x2 non-singular matrices

over Zs. Similar, the display is also possible for subgroups of other orders.
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