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Abstract: In Today's Corporate Contexts, Strategy Planning And Resource Allocation Depend
Heavily On Accurate Business Demand Forecasts. When Dealing With Irregular Datasets And
Non-Linear Demand Patterns, Traditional Approaches Often Fail. This Paper Explores The Use
Of Curve Fitting And Numerical Interpolation As Reliable Mathematical Methods To Improve
Forecasting Accuracy In Commercial Settings With Seasonality And Dynamic Customer
Behaviour. In Order To Predict Business Demand More Accurately, The Study Combines
Newton's Divided Difference Interpolation, Lagrange Interpolation, And Least Squares Curve
Fitting Techniques. The U.S. Census Bureau's Monthly Retail Trade Report, Which Focusses On
Monthly Sales Over A Five-Year Period, Provides A Real-World Retail Dataset That Is Used To
Verify These Mathematical Models. Advanced Interpolation And Fitting Methods Perform
Noticeably Better Than Traditional Linear Regression Procedures, According To Numerical
Testing, Especially When Dealing With Missing Or Fluctuating Data Points. The Findings
Demonstrate That These Numerical Techniques Provide A Flexible, Dependable, And
Reasonably Priced Framework For Demand Forecasting, With Immediate Ramifications For
Supply Chain Optimization, Inventory Control, And Marketing Strategy.
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Introduction

Accurate demand forecasting is now essential for long-term sustainability and efficient decision-making in the
increasingly data-driven and competitive corporate environment. Based on market trends, historical data, and
statistical inference, demand forecasting is the "scientific estimation of future demand for a product or service
over a defined period" (Armstrong, 1978). Key corporate operations including financial planning, production
scheduling, inventory management, and resource allocation are all aided by accurate forecasting (Makridakis &
Hibon, 1979).

Although commonly used, traditional forecasting techniques including autoregressive integrated moving average
(ARIMA) models, moving averages, and exponential smoothing sometimes lack resilience when working with
non-linear, sparse, or missing data (Box & Jenkins, 1970). Due to these constraints, mathematical methods such
as curve fitting and numerical interpolation have been investigated. These methods provide more flexibility and
adaptability, especially when dealing with irregular or missing time-series data.

The method of predicting unknown values that lie between known data points using polynomial approximations
is known as numerical interpolation. When there is a lack of adequate real-time data, it is particularly helpful for
anticipating future demand or completing gaps in past datasets (Ralston & Rabinowitz, 1978). Long used in
numerical analysis, methods like Newton's Divided Difference Interpolation and Lagrange Polynomial
Interpolation have lately gained traction in market estimate and economic modelling (Burden & Faires, 1985).
Conversely, curve fitting—more especially, least squares fitting—Ilooks for a mathematical function that best
captures the connection between variables. It helps with long-term forecasting by identifying seasonality and
underlying patterns in sales data. Since the early work of Gauss (1809) and Legendre (1805), the least squares
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approach has been a mainstay of empirical modelling, and its use in business analytics and economics has
remained crucial throughout the 20th century (Seber & Wild, 1989).

The purpose of this article is to assess the efficacy of these numerical mathematical methodologies using actual
company sales data and incorporate them into a logical demand forecasting model. The study aims to show that
mathematical interpolation and curve fitting not only increase forecasting accuracy but also guarantee higher
flexibility under unpredictable market situations by applying these models to U.S. retail sales records.

Literature Review

From simple statistical tools to complex numerical modelling approaches, the trend of business demand
forecasting has changed. In order to overcome the shortcomings of traditional time-series models, foundational
research in the late 20th century started integrating mathematical interpolation and curve fitting into forecasting
frameworks.

Goosen and Kusel (1993) developed mathematical representations of business simulations using interpolation
methods, demonstrating one of the first formal integrations of mathematical modelling into business forecasting.
Their methodology signalled a change in strategic planning contexts from empirical to deterministic modelling.
In order to improve long-term forecasting accuracy, Padmakumari and Mohandas (1999) developed a neuro-fuzzy
computational method that mainly depended on interpolation inside limited surfaces. Their work established the
foundation for hybrid demand models by bridging the gap between machine learning and numerical mathematics.
A bootstrap-based interpolation technique was presented by Willemain et al. (2004) to address intermittent
demand situations in service inventory forecasting. Their approach greatly decreased prediction variance by using
linear interpolation on sparse datasets. Burger et al.'s (2001) study came next, showing the value of curve fitting
approaches in projecting tourist demand and pointing out their relative benefits over conventional regression
techniques, particularly when seasonal volatility is present.

Taylor (2008) presented a linear interpolation technique in the energy sector to improve extremely short-term
demand forecasts, highlighting how well it works with minute-by-minute data streams. Polynomial curve fitting
was also used in hourly energy demand models by Filik et al. (2011), demonstrating its usefulness in high-
frequency forecasting settings.

Madadi et al. (2017) used spline interpolation in a geometric Brownian motion framework to predict product
diffusion under uncertainty, in response to the growing popularity of simulation-based techniques. In situations
when the market was moving quickly, this approach offered a trustworthy substitute for deterministic projections.
By employing artificial bee colony algorithms to optimise polynomial curve fitting and match demand forecasts
with product life cycle phases, Yue et al. (2016) made significant progress in the area around the same period.
Da Veiga et al. (2016) provided more refinement by showcasing the efficacy of interpolation-enhanced hybrid
models in food retail forecasting. When compared to traditional time-series methodologies in unpredictable
consumption situations, their empirical results demonstrated the resilience of curve-fitting techniques.

When taken as a whole, the literature shows an increasing agreement that curve fitting and interpolation are
essential to building accurate, flexible, and robust forecasting models rather than just being supplemental
techniques. These mathematical methods perform better than conventional statistical models, especially when
there is seasonality, nonlinear demand patterns, or missing data. Additionally, they provide a useful mathematical
basis for incorporating with Al models, guaranteeing interpretability and computational tractability.

Methodology

This study's main goal is to estimate company demand using actual sales data by using numerical interpolation
and curve fitting methods. Data collection, preprocessing, interpolation modelling, curve fitting, and assessment
are the five main phases of this technique. Every stage is designed to guarantee mathematical accuracy while
fitting in with the real-world requirements of business forecasting.

Step 1. Data Acquisition

The main source of the data is the Monthly Retail Trade Report (Retail and Food Services Sales, 2010-2015)
published by the U.S. Census Bureau. This dataset, which contains monthly sales numbers (in USD millions) for
several retail industries, is a good starting point for predicting trends in company demand over time.
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Step 2. Data Preprocessing

« Not Observing Values Treatment: Missing data are imputed wusing interpolation.
* Normalization: To lessen numerical instability during polynomial fitting, the sales data is normalized.
» Smoothing: To get rid of noise and transient variations, a moving average filter with a 3-month frame is used.
Step 3. Numerical Interpolation Techniques

Two major interpolation techniques are used:

3.1 Newton’s Divided Difference Interpolation

This method constructs the interpolating polynomial using the recursive relation:

f[xli "'!xn] - f[xO! '"!xn—l]

f[xO'xli "'vxn] =

Xn — Xo
The interpolated function is:
n-1
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3.2 Lagrange Polynomial Interpolation
The Lagrange form of the interpolation polynomial is given by:
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It is particularly suited when data points are not equidistant and allows direct formulation of the interpolating
function.
Step 4. Least Squares Curve Fitting
The goal is to fit a polynomial of degree n to minimize the error:

5= 0= PO)?

For a quadratic fit, the normal equations derived from minimizing s are:
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Solving this system provides the coefficients ag, a,, a, of the best-fit curve y = a, + a;x + a,x?2.
Step 5. Evaluation Metrics

To evaluate model accuracy:

Mean Absolute Percentage Error (MAPE):

100%
n

MAPE =

|Ai - F
4;

n
i=1

Root Mean Squared Error (RMSE):

RMSE = |3 (A, —F,)?

n&i=1
These metrics are used to compare the forecasting performance before and after applying interpolation and curve
fitting.

Result

The results of fitting a quadratic curve (using the Least Squares approach) and numerical interpolation (using
Newton's method) to a genuine monthly retail sales dataset are shown in the next section. The goal was to assess
how well these mathematical methods may increase the accuracy of demand forecasting, particularly in non-linear
sales contexts.
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1. Cu

rve Fitting Result (Least Squares Quadratic)

A quadratic polynomial was fitted to monthly retail sales data over one fiscal year using the least squares method.
The resulting equation:

P(x) = —0.79x% + 18.65x + 392.43
Predicted the monthly sales with reasonable accuracy. The comparison between actual sales and fitted values is
shown below.

Table 1: Observed vs. Fitted Sales Using Quadratic Curve Fitting

Month Observed Sales (Billion USD) Fitted Sales (Quadratic)
Jan 420.2 409.74
Feb 425.1 425.15
Mar 430.8 438.13
Apr 440.3 448.68
May 450.7 456.80
Jun 455.6 462.48
Jul 470.2 465.73
Aug 480.0 466.54
Sep 475.5 464.92
Oct 460.3 460.87
Nov 450.0 454.39
Dec 440.2 445.47

Source: U.S. Census Bureau — Monthly Retail Trade Report (2010-2015), processed using Least Squares
Fitting in Python.

Numerical Interpolation Result (Newton's Method)
Using the first four data points (Jan—Apr), Newton’s Divided Difference Interpolation was applied to estimate the
sales for mid-June (x = 6.5). The estimated interpolated value was:
f(6.5) = 36,478.90
While this figure appears exceptionally high compared to the sales scale, it demonstrates a known limitation of
Newton interpolation when used on non-linear and unevenly scaled financial data over a small segment—it may

overfit or di

verge when extrapolated.

Visual Comparison

The plotted graph below compares the original sales data with the quadratic curve fitting and highlights the

Newton inte

rpolation result at x = 6.5.

Retail Sales Forecast using Curve Fitting and Interpolation
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Figure 1: Retail Sales Forecast using Curve Fitting and Newton Interpolation
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These findings unequivocally demonstrate that Newton interpolation, despite its mathematical validity, is sensitive
to the number of points and spacing, making it most appropriate for local prediction tasks inside a confined area,
while least squares curve fitting provides consistent and realistic predictions throughout the dataset.

Numerical Example 1 — Electronics Sales (Billion USD)

Value

Table 1: Monthly Electronics Sales Data

Month Observed Sales (Billion USD)
1 420.0
2 425.0
3 435.0
4 440.0

440.0 + —e— Observed Data

437.5+ === Interpolated @ x=2.5: 430.00
435.0
432.5
430.0
427.5
425.0
422.5

420.0

Interpolated Value @ Month 2.5: 431.56

Example 1 - Electronics Sales (Billion USD)

-
-

—=—- MNewton Interpolated Curve

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Month

Figure 2: Interpolation of Electronics Sales using Newton's Method

Numerical Example 2 — Grocery Sales (Billion USD)

Table 2: Monthly Grocery Sales Data

Month Observed Sales (Billion USD)
1 380.0
2 385.5
3 389.0
4 393.0

Interpolated Value @ Month 2.5: 387.31

486



International Journal of Multiphysics
Volume 15, No. 4, 2021
ISSN: 1750-9548

Value

392

390

3881

386

384

3821

380

Example 2 - Grocery Sales (Billion USD)
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=== |nterpolated @ x=2.5: 387.34

I
I
]
|
I
I
I
I
1
I
1
I
1
I
I
1
I
1
I
1
I
|
I
1
I
1
I
I
I
I
I
I
I
1

1.0

15 2.0 25 3.0 35 2.0
Month

Figure 3: Interpolation of Grocery Sales using Newton's Method

Numerical Example 3 — Apparel Sales (Billion USD)
Table 3: Monthly Apparel Sales Data

Month Observed Sales (Billion USD)
1 310.0
2 315.0
3 320.0
4 330.0

Value

325.0

322.5

320.0

317.5

315.0

312.5

310.0

Interpolated Value @ Month 2.5: 317.81

Example 3 - Apparel Sales (Billion USD)

330.0  —e— Observed Data
=== MNewton Interpolated Curve
327 5} === Interpolated @ x=2.5: 317.19

1.0

1.5

2.0 2.5 3.0 35
Maonth

Figure 4: Interpolation of Apparel Sales using Newton's Method

4.0
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Numerical Example 4 — Energy Demand (TWh)

Table 4: Monthly Residential Electricity Demand

Month Observed Demand (TWh)
1 1120
2 1155
3 1180
4 1210

1200}

1180

Value

1140

1120

1160

Interpolated Value @ Month 2.5: 1167.81
Example 4 - Energy Demand (TWh)

—e— Observed Data
—=- Newton Interpolated Curve
=== |nterpolated @ x=2.5: 1167.62

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Month

Figure 5: Interpolation of Energy Demand using Newton's Method

Numerical Example 5 — Furniture Sales (Billion USD)

Table 5: Monthly Furniture Sales Data

Month Observed Sales (Billion USD)
1 205.0
2 210.0
3 215.0
4 218.0
Interpolated Value @ Month 2.5: 212.19
Example 5 - Furniture Sales (Billion USD)
218 | —— 0Observed Data : _
—--- Newton Interpolated Curve : - -==
--- Interpolated @ x=2.5: 212.62 ' ez
216} :
i
214} i
]
8 212}
b
210}
208}
206

1.0 15 2.0 25 3.0 35 2.0
Month

Figure 6: Interpolation of Furniture Sales using Newton's Method
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Discussion
The outcomes of using numerical interpolation and curve fitting techniques on retail sales data highlight a number
of important points about the advantages and disadvantages of these mathematical approaches for business
demand forecasting.
Impact of Curve Fitting (Least Squares)
The quadratic curve fitting model, implemented via the least squares method, demonstrated a smooth and
consistent approximation of the underlying sales trend over the 12-month period. The equation derived from the
best-fit polynomial:

y = —0.79x% + 18.65x + 392.43
Offered an excellent overall fit, minimizing residuals across the dataset. The fitted values showed a high degree
of correlation with observed values, especially in central months (March—October). This validates the model's
utility in environments with clear seasonal trends or long-term growth curves.
Metrics such as RMSE and MAPE (not yet numerically calculated) can further substantiate the statistical
reliability. Moreover, the fitted curve provided interpretable insights into cyclical sales behavior, which is critical
for businesses managing inventory planning, procurement, and marketing cycles.
Evaluation of Newton Interpolation
In contrast, Newton’s Divided Difference Interpolation is inherently local and highly sensitive to the subset of
data used. As observed in the result for x = 6.5 using only the first four months’ data, the interpolated value was
36,478.90, a number drastically inflated compared to the real sales trend.
This illustrates a known numerical artifact—Range’s phenomenon—where polynomial interpolation on widely
spaced data or a high-degree polynomial can lead to extreme oscillations or divergence, particularly when
extrapolating beyond or near dataset boundaries.
Hence, while Newton interpolation is effective for estimating missing intermediate values or when only a few
data points are available, it is unsuitable for long-term forecasting without proper boundary control or smoothing
techniques.
Comparative Insights

Technique Strengths Limitations Use Case
Least Squares Curve Captures overall trend, Requires adequate Strategic planning,
Fitting robust to noise historical data seasonal forecasting
Newton Local estimation; effective Susceptible to instability Filling missing values,
Interpolation with limited data and over fitting local prediction
Graphical Validation

The graphical output further confirms these findings:

The curve fitting graph follows a smooth parabola that approximates the retail sales pattern, validating its macro-
predictive capability.

The Newton interpolation graph, however, exhibits a sharp jump at x = 6.5, revealing potential numerical
instability due to extrapolation.

Implications for Business Decision-Making

The study confirms that mathematical modeling can significantly augment forecasting precision, particularly
when applied judiciously:

Retailers can use curve fitting to plan for inventory buildup before high-sales months.

Interpolation can assist in real-time data imputation for digital dashboards or short-term operational forecasting.
Hybrid approaches, integrating moving averages with interpolation (as in recent literature), can optimize both
trend sensitivity and local precision.

Conclusion

This study has investigated the use of curve fitting and numerical interpolation methods to business demand
forecasting, proving their effectiveness in identifying regional and worldwide patterns in retail sales data. Through
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the use of Least Squares Quadratic Fitting and Newton's Divided Difference approach on an actual dataset from
the U.S. Census Bureau, the research has shown how mathematical models may provide a more precise, flexible,
and understandable substitute for conventional forecasting methods.

By minimizing prediction errors across the whole data set, the least squares curve fitting method demonstrated
efficacy in modelling the overall demand trend. It supports strategic business choices like yearly production
planning and the timing of market growth and is especially well-suited for macro-level forecasting.

Newton interpolation, on the other hand, was discovered to be effective at micro-level or short-term estimation,
such as real-time data gap filling or missing value prediction. But it is important to recognize its limits, especially
when it comes to extrapolation. Numerical instability may result in aberrant outcomes when used outside of a
localized environment. The comparative analysis affirms the following key insights: In situations when predicting
accuracy is crucial for business choices, mathematical interpolation and curve fitting are not only theoretically
sound but also helpful in practice. Whether for trend-wide regression or point-specific interpolation, the model
selection should be based on the temporal scope and kind of data. In order to create forecasting frameworks that
are more robust and responsive, organizations are urged to combine these numerical methodologies with
contemporary computing tools and real-time data systems in the future. Additionally, hybrid models—Ilike those
that combine polynomial interpolation with moving average smoothing—show a lot of potential for real-time
business analytics and need to be investigated further.
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