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Abstract 

This study presents several theorems of Hadamard’s manifolds, initially introducing 
concepts of differential manifolds, including metrics and geodesics, and then examining 
concepts that determine Hadamard’s manifolds. The study later concerns Halpern and 
Mann’s iterations of non-expansive mappings on Hadamard’s manifolds, citing a numerical 
example to present how these methods can be applied, particularly concerning the 
methods of Halpern and Mann’s iterations. Additionally, several applications of 
convergence results for the origin point algorithm and Picard’s iterations are mentioned. 
The first case concerning a minimization problem is practiced by applying the convergence 
results on a generated minimal problem by finding a saddle point. This is followed by 
solving a variational inequality. 

Keywords: Hadamard manifold, Halpern algorithm, non-expansive mapping, 

minimization problems, inequality.

Introduction 

This article investigates mathematical constructs on monotone vector fields and non-expansive mappings in 

specific geometric spaces such as Hadamard’s manifolds and Hilbert’s spaces, initially introducing and then 

analyzing fixed point approximations and monotonicity theorems within Hadamard’s manifolds [1-5]. The article 

later examines the concept of resolvent, defined by Inamiya and H. Okochi, in Hilbert’s manifold space, along 

with the concept’s well-defined conditions while analyzing the symmetrical behavior of solutions based on Yosida 

sort characteristics [6-9]. Also, a number of theorems concerning the existence and uniqueness of a solution under 

boundary conditions are presented, with the fixed-point theorem in Hadamard’s manifolds and the concept of firm 

non-expansive mapping being presented as defined by Goebel and Reich [10] in the Hilber Sphere. The 

characteristics of these constructs lead to a robust bond between monotone vector fields and firm non-expansive 

mappings through the concept of resolvent. Furthermore, the concept of complement in vector fields is used to 

help prove the relationship between monotonicity and the class of pseudo-contraction operators, demonstrated by 

Reich and Shafrir [11] in the hyperbolic space.  

Then, the study examines how various algorithms converge in non-expansive mappings, especially how the Picard 

iteration method converges in firm non-expansive mappings. On the same line, an approximation method is also 

presented, as a numerical example of Halpern and Mann’s iterations is cited to explain how these methods 

practically function. In sum, theoretical results of minimization problems, minimal problems, and variational 

inequalities are utilized to demonstrate wider theoretical applications.  

Hadamard’s Manifolds  

As a concept, local curvature in the Riemannian manifold plays a major role in geometry development. Presented 

by Rieman as a natural generalization of Gaussian curvature of surfaces, this concept measures the value a 

Riemannian manifold deviates from being Euclidean. In subsequent years, a simpler equation was offered by 

Christoffel using the Levi-Civita connection.  
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Definition: A complete, simply connected Riemannian manifold with non-positive local curvature is called a 

Hadamard manifold.  

The rest of this section always assumes that M is the next Hadamard manifold. The famous result below will be 

key for this section which can be found in [[12] p. 221 of Theorem 4.1.].  

Proposition: Suppose 𝑥 ∈ 𝑀. In this case  𝑒𝑥𝑝𝑥: 𝑇𝑥 → 𝑀 is a diffeomorphism, and for both points 𝑥, 𝑦 ∈ 𝑀 there 

is a single normal geodesic that connects x to y, which is also a minimal geodesic.  

This proposition implies a diffeomorphic to the Euclidian space Rm. Therefore, M represents a similar topology 

and a differential structure like Rm. Moreover, Hadamard’s manifolds and Euclidean spaces share similar 

geometric features.  

The following proposition explains one of the main characteristics of the Hadamard manifolds, adopted from 

[[12], p. 223, Prop. 5.4.]. Let’s remember that a geodesic triangle ∆(𝑥1, 𝑥2 , 𝑥3) of a Riemannian manifold 

represents a set composed of three points and three minimal geodesic that connects these points in a pairwise 

manner.  

Proposition: Suppose ∆(𝑥1, 𝑥2 , 𝑥3) is a geodesic triangle in M. Suppose for every i=1, 2, 3 at modulo with 

𝛾𝑥: [0, 𝑙𝑖] → 𝑀 there is a geodesic connecting 𝑥𝑖 to 𝑥𝑖+1.  

𝑙𝑖 = 𝑙(𝛾𝑖), 𝛼𝑖 ≔< 𝛾𝑖(0)́ , −𝛾𝑖−1(𝑙𝑖−1) >́́
 

𝛼1 + 𝛼2 + 𝛼3 ≤ 𝜋 

𝐿𝑖
2 + 𝐿𝑖+1

2 − 2𝐿𝑖
 𝐿𝑖+1

 cos 𝛼𝑖+1 ≤ 𝐿𝑖−1
2  

The above inequality is used to provide the following:  

𝑑2(𝑥𝑖
 , 𝑥𝑖+1

 ) + 𝑑2(𝑥𝑖+1
 , 𝑥𝑖+2

 ) − 2 < 𝑒𝑥𝑝𝑥𝑖+1
 −1 𝑥𝑖

 𝑒𝑥𝑝𝑥𝑖+1
 −1 𝑥𝑖+2

 >≤ 𝑑2(𝑥𝑖−1
 , 𝑥𝑖

 ) 

 

Firm Non-expansive Mappings  

The firm non-expansive concept was already defined in a Banach space [13] [14] and the Hilbert sphere with a 

hyperbolic metric [10]. The following analyses indicate that in Hadamard manifolds, this class of mappings, the 

most famous in Hilbert spaces, share similar features.  

Definition: The 𝑇: 𝐶𝑀 → 𝑀  mapping is given. T is said to be firmly non-expansive if for every 𝑥, 𝑦 ∈ 𝑀, the 

function 𝜃: [1] +  [0, ∞], defined with:  

θ(𝑡) = 𝑑(𝛾1(t), 𝛾2(t)) 

is non-expansive that determines 𝛾1, 𝛾2 geodesics respectively connecting x to T(x) and y to T(y).  

Note: The definition concludes that each firm non-expansive mapping T is non-expansive.  

 

Proposition: Suppose 𝑇: 𝐶𝑀 → 𝑀. Then, the following results are equivalent.  

1) The T mapping is firmly non-expansive; 

2) For every t ∈ [1], 𝑥, 𝑦 ∈ 𝐶 

d(T(x), T(y)) <= d (expxtexpx
-1Tx, expy teepy

-1Ty) 

3) For 𝑥, 𝑦 ∈ 𝐶 

<expT(x)
-1T(y), expT(x)

-1x> + < expT(y)
-1T(x), expT(y)

-1y> ≤ • 

Proof:  
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Points 𝑥, 𝑦 ∈ 𝐶 are given. Suppose θ: [0,1] → [0,1] is a convex function. The derivative at -1 of the function θ can 

be expressed as follows:  

(𝜃)(1) =́ <expT(x)
-1T(y), expT(x)

-1x> + < expT(y)
-1T(x), expT(y)

-1y> 

Suppose u = expT (x)
-1x ∈ TT(x)M and v = expT (y)

-1y ∈ TT(y) M, then, the function θ is as follows:  

θ (t)=d(expT(x) (1-t)u, expT(y)(1-t)v) 

Suppose 𝛾 is a geodesic that connects T(x) to T (y), as for every 𝑟 ∈ [0,1]: 

𝛾(𝑟) = expT(x) r expT(x)
-1T(y) 

Now, for the given ϵ > 0, suppose the function 𝑓: (−𝜖, 𝜖) × [0,1] defined by: 

𝑓(𝑠, 𝑟) = 𝑒𝑥𝑝expT 𝑥𝑠𝑢𝑟(𝑒𝑥𝑝𝑒𝑥𝑝𝑇𝑥𝑠𝑢
−1 𝑒𝑥𝑝𝑇𝑦 𝑠𝑣). ∀∈ (−𝜖. 𝜖) × [0,1] 

Note that for every 𝑠 ∈ (−𝜖. 𝜖), the parametric curve 𝑓𝑠 : [0,1] → 𝑀 given by 𝑓(𝑠, 𝑟)     = 𝑓𝑠(𝑟) is a geodesic, and 

therefore, 
𝜕𝑓

𝜕𝑟
(𝑠, 𝑟)|| || is constant. In particular, we have:  

||
𝜕𝑓

𝜕𝑟
(𝑠, 𝑟)||= 𝑑(𝑒𝑥𝑝𝑇𝑥𝑠𝑢 , 𝑒𝑥𝑝𝑇𝑦 𝑠𝑣) = 𝜃(1 − 𝑠) 

We define 𝑙: (−𝜖. 𝜖) → 𝑅) 

𝑙(𝑠) = ∫ ||
𝜕𝑓

𝜕𝑟
(𝑠, 𝑟) ||

1

0

𝑑𝑟, ∀∈ 𝑠(−𝜖. 𝜖) 

Therefore:  

𝐿2(𝑠) = ∫ ||
𝜕𝑓

𝜕𝑟
(𝑠, 𝑟) ||

1

0

 2𝑑𝑡 = 𝜃2(1 − 𝑠) 

According to the first variable of the equation expressed in [1] where we have 𝐸(𝑠) = 1/2(𝐿2(𝑠) 

Iterative Algorithm of Non-Expansive Mappings  

Picard’s Iterations for Firm Non-Expansive Mappings  

When Picard’s iterations occur in the Banach space and Hilbert sphere with hyperbolic metric [10] [15], as the 

tier of firm non-expansive mappings will be distinguished by a good symmetrical behavior of Picard’s iteration 

sequence {𝑇𝑛𝑥}.  

Theorem: Suppose T: C → C is a firm non-expansive mapping whose set of fixed points is Fix(T) ≠ ∅. In this 

case, for every x ∈ C, there is a sequence of iterations {Tn(x)} converging to a fixed point of T.  

Proof: A sequence in the form of x n = Tn(x) is defined; since C is a complete space, therefore, it suffices to denote 

that {xn} represents the Fejér monotonicity according to Fix (T) and all points of a class of {xn} belonging to Fix 

(T).  

Suppose n=<0 and y∈ Fix(T) is constant. Since T is non-expansive 

d(𝑥𝑛+1
 +,y) = d(T(𝑥𝑛

 ), T(y)) ≤ d(xn, y) 

then, {xn} is the Fejér monotonicity with Fix (T). Now, suppose x is a point of a class of {xn}. So, there is a sub-

sequence of {nk} of {n}, with 𝑥𝑛𝑘
→ 𝑥. 

So, we need to only prove that: 

lim
 

𝑛 → ∞ 𝑑(𝑥𝑛, 𝑇(𝑥𝑛)) = 0 

 

Because by taking the limit, we have: (𝑥, 𝑇(𝑥)) = 0, i.e., x∈ Fix(T) 
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Suppose y∈ Fix (T). Since {xn} is the Fejér monotonicity concerning Fix(T), there exists the following limit.    

lim
 

𝑛 → ∞ 𝑑(𝑥𝑛, 𝑦) = lim
 

𝑛 → ∞ 𝑑(𝑇(𝑥𝑛), 𝑦) = 𝑑 

 

Suppose the constant n>=0 is given and   𝛾𝑛: [0,1] → 𝑀 is the geodesic that connects xn to T (xn). Thus, 𝛾𝑛(1/2) =

𝑚𝑛, because T is firmly non-expansive.  

d(T(𝑥𝑛
 ), y) ≤ d(mn, y) ≤ d(xn, y) 

 

Hence, lim d(mn, y) = d are calculated:  

1

4
𝑑2(𝑥𝑛, 𝑇(𝑥𝑛)) ≤

1

2
𝑑2(𝑥𝑛, 𝑦) +

1

2
𝑑2(𝑥𝑛, 𝑦) − 𝑑2(𝑚𝑛 , 𝑦) 

Taking the limit, when 𝑛 → ∞, the result is satisfied.  

While the T mapping is only non-expansive, it is understood that the Picard iteration {𝑇𝑛(𝑥)} is not usually 

convergent. By supposing the Euclidean space R and the mapping T (x) =-x where the sequence {𝑇𝑛(𝑥)} is not 

convergent unless x = ., the sequence defined by the Picard iteration 𝑥𝑛+1 = 𝐺𝑡(𝑥𝑛) is taken for every t ∈ [0,1). 

Moreover, if we hold the point x ∈ C constant, there will be an approximation curve {xt} defined by a single 

constant point of Tt integration converging into the constant point of T when t → 1. 

In fact, this had already been proved by Kirk in a general domain of CAT (0) spaces, forming a convergence 

extension of Browder’s algorithm, which is detailed in the following section.  

Halpern Algorithm of Non-Expansive Mappings  

Suppose C is a closed convex subset of M and T: C → C is a non-expansive mapping. To solve the problem of 

finding a fixed-point T outside of the linear spaces’ surface in [16], an implicit algorithm was developed for the 

approximate fixed points of non-expansive mappings. Although the convergence result of the following theorem 

is formulated for a specific Hadamard manifold state, an algorithm in the complete CAT (0) space can be studied 

in detail.  

Theorem: (1) Suppose C is a subset of M and is a closed bounded and convex subset; suppose T: C → C is a non-

expansive mapping of x ∈ C, and for every t ∈ [0,1), xt is a unique point, with  

𝑥𝑡 = 𝑒𝑥𝑝𝑥(1 − 𝑡)𝑒𝑥𝑝𝑥
−1𝑇(𝑥𝑡) 

Where this point exists according to the Banach contraction principle; so, 𝑙𝑖𝑚𝑡→𝑜𝑥𝑡 = 𝑥̅ and the closest single 

point to x is in Fix (T).  

In the Euclidean space Rn, the iterative method converts into 𝑥𝑡 = (1 − 𝑡)𝑥 + 𝑡𝑇(𝑥𝑡), simultaneously occurring 

implicitly with the Browder’s iteration.  

 

Mann Algorithm of Non-Expansive Mappings  

The Mann iteration and a number of the convergence results in Banach spaces to general metric spaces were 

developed by Goebel and Kirk [17] [18] and Reich and Shafrir [19], who provided an iterative method to find 

fixed points of non-expansive mappings in the spaces that included Hadamard manifolds as a special state. The 

algorithm defined with:   

𝑥𝑛+1
 𝜖(𝑥𝑛, 𝑇(𝑥𝑛)), 𝑑(𝑥𝑛, 𝑇(𝑥𝑛)) = (1 − 𝛼𝑛)𝑑(𝑥𝑛, 𝑥𝑛+1) 

Where (𝑥𝑛 , 𝑇(𝑥𝑛)) denotes a metric segment that connects 𝑥𝑛 to 𝑇(𝑥𝑛). Strictly speaking, as suggested by the 

assumption that {𝛼𝑛} is far from 0 and 1 and is bounded, Reich and Shafrir provided this iteration converging to 
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a fixed point of T defined in the Hilbert sphere with the hyperbolic metric. Having said this, the Mann iterations 

in the Hadamard manifolds M are presented by recursive equations.  

𝑥𝑛+1 = 𝑒𝑥𝑝𝑥𝑛
(1 − 𝛼𝑛)𝑒𝑥𝑝𝑒𝑥𝑝𝑥𝑛

−1 𝑇(𝑥𝑛), ∀𝑛 ≥ 0 

 

Later, it becomes clear that the sequence { produced by the above-mentioned Mann algorithm converges to a fixed 

point of T, albeit when {𝛼𝑛}  satisfies the following condition.  

∑ 𝛼𝑛(1 − 𝛼𝑛) = ∞

∞

𝑛=0

 

Numerical Example  

Suppose E m,1 is the vector space R m+1. Let’s consider the following symmetrical bilinear form:  

< 𝑥, 𝑦 >= ∑ 𝑥𝑖𝑦𝑖 − 𝑥𝑚+1𝑦𝑚+1, ∀𝑥 = (𝑥𝑖), 𝑦 = (𝑦𝑖) ∈ 𝑅𝑚+1

𝑚

𝑖=1

 

This bilinear form is the Lorentzian metric. M is the hyperbolic space Hm defined by: 

{𝑥 = (𝑥𝑖, … , 𝑥𝑚+1) ∈ 𝑅𝑚+1: < 𝑥, 𝑥 ≥ −1, 𝑥𝑚+1 > 0} 

Note that 1 ≤ 𝑥𝑚+1 is for every x∈Hm, and is equal if and only if for every m, i= − 1000 and 𝑥𝑖 = 0 of the Hm 

metric are inferred from the Lorentzian metric <0,0>. Hm is a Hadamard manifold with local curvature -1 [20] and 

[18]. In addition, the geodesic normalized by γ: 𝑅 → 𝐻𝑚 starting from x∈Hm is given by  

γ(𝑡) = (cosh 𝑡)𝑥 + (sinh 𝑡)𝑣  , ∀𝑡𝜖𝑅 

Where 𝑣 ∈ 𝑇𝑥𝐻𝑚 is a single vector, and the distance d is defined on Hm. The exponential mapping can thus be 

expressed as follows:   

𝑒𝑥𝑝𝑥(𝑟𝑣) = (cosh 𝑟)𝑥 + (sinh 𝑟)𝑣 

For every 𝑟 ∈ 𝑅+ and x∈Hm, and every single vector 𝑣 ∈ 𝑇𝑥𝐻𝑚, we write the following for every x, 𝑦 ∈Hm: 

𝑒𝑥𝑝𝑦
−1 = (−< 𝑥, 𝑦 >)

𝑦+< 𝑥, 𝑦 > 𝑥

√< 𝑥, 𝑦 >2− 1
, , ∀𝑥, 𝑦𝜖𝐻𝑚  

Therefore, the Halpern algorithm takes on the form below:  

𝑥𝑛+1 = cosh((1 − 𝛼𝑛)𝑟(𝑢, 𝑥𝑛)) 𝑢 + sinh((1 − 𝛼𝑛)𝑟(𝑢, 𝑥𝑛)) 𝑉(𝑢, 𝑥𝑛)  , ∀𝑛 ≥ 0  

The Mann algorithm will truly take on the form below:  

𝑥𝑛+1 = cosh((1 − 𝛼𝑛)𝑟(𝑢, 𝑥𝑛)) 𝑢 + sinh((1 − 𝛼𝑛)𝑟(𝑥𝑛 , 𝑥𝑛)) 𝑉(𝑥𝑛, 𝑥𝑛)  , ∀𝑛 ≥ 0  

Saddle Points on the Minimal Problem  

Rockefeller’s work [21] on the convergence of the origin point algorithm is when an associative maximal 

monotone operator acts for the saddle points in the Hilbert space product 𝐻1 × 𝐻2. The section focuses on the 

convergence of the origin point algorithm of saddle functions on Hadamard manifolds.  

Suppose M1 and M2 are Hadamard manifolds. The function 𝐿: 𝑀1 × 𝑀2 → 𝑅 is called saddle, if, for every 

𝐿(𝑥, 0), 𝑥 ∈ 𝑀1, it is convex on M2 and concave on 𝐿(0, 𝑦), denoting that for every y ∈M2, −𝐿(0, y) is convex on 

M1. The point  𝑧̅ = (𝑥̅, 𝑦̅) ∈ 𝑀1 × 𝑀2 is called the saddle point L, when: 

𝐿(𝑥, 𝑦̅) ≤ 𝐿(𝑥̅, 𝑦̅) ≤ 𝐿(𝑥̅, 𝑦)     , ∀𝑧 = (𝑥, 𝑦) ∈ 𝑀1 × 𝑀2 

The associative property of the saddle functions L defines the value set 𝐴𝐿: 𝑀1 × 𝑀2 → 2𝑇𝑀1 × 2𝑇𝑀2 with  
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𝐴𝐿(𝑥, 𝑦) = 𝛿(−𝐿(0, 𝑦))(𝑥) × 𝛿(𝐿(𝑥, 0))(𝑦), ∀(𝑥, 𝑦) ∈ 𝑀1 × 𝑀2 

As cited by the [12] p. 239 of Problem 10], the product space MM is the Hadamard manifold and the tangent 

space of M is in 𝑇𝑧𝑀 = 𝑇𝑥𝑀1 × 𝑇𝑦𝑀2. 𝑧(𝑥, 𝑦), the corresponding metric is expressed as follows:  

< ω, 𝜔́ >=< u, 𝑢́ > +< v, 𝑣́ > , ∀𝜔 = (𝑢, 𝑣), 𝜔́ = (𝑢́, 𝑣́) ∈ 𝑇𝑧𝑀 

Note that a geodesic in the product set M is the product of two geodesics in M1 and M2, respectively. So, for every 

two points 𝑧(𝑥, 𝑦)  and  𝑧́ = (𝑥́, 𝑦́) in M: 

𝑒𝑥𝑝𝑍
−1𝑧́ = (𝑒𝑥𝑝𝑍

−1𝑥́, 𝑒𝑥𝑝𝑍
−1𝑦́) 

Therefore, defining the vector field monotonicity, the value set 𝐴 : 𝑀1 × 𝑀2 → 2𝑇𝑀1 × 2𝑇𝑀2 is monotone, and 

only if:  

𝜔́ = (𝑢́, 𝑣́) ∈ A(𝑧́), 𝜔 = (𝑢, 𝑣) ∈ A(𝑧), 𝑧(𝑥, 𝑦)و𝑧́ = (𝑥́, 𝑦́) 

< u, 𝑒𝑥𝑝𝑥
−1𝑥́ > +< v, 𝑒𝑥𝑝𝑦

−1𝑦́ >≤< 𝑢́, 𝑒𝑥𝑝𝑥
−1𝑥́ > +< 𝑣́, 𝑒𝑥𝑝𝑦

−1𝑦́ > 

 

Variational Inequality  

Suppose C is a convex subset of M and  𝑉: 𝐶 → 𝑇𝑀   is a unit vector field where for every C 𝑉(𝑥) ∈ 𝑇𝑧𝑀, as based 

on [22], the problem of finding 𝑥 ∈ 𝐶 with the condition 

< 𝑉(𝑥), 𝑒𝑥𝑝𝑥
−1𝑦 >= 0.  ∀(𝑦) ∈ 𝐶 

Is referred to as a variational inequality in C. Clearly, the point 𝑥 ∈ 𝐶 is a solution of the above-mentioned 

variational inequality, if and only if x is in a way that  

• ∈ V(x) + NC(x) 

, denoting x is the singularity of the vector field of the value set A = V + NC. Using the Mann algorithm for A, we 

have the lower origin point algorithm with the main point to find the variational inequality solution <

𝑉(𝑥), 𝑒𝑥𝑝𝑥
−1𝑦 ≥ 0.  ∀(𝑦) ∈ 𝐶 

0 ∈ 𝑉(𝑥𝑛+1) + 𝑁𝐶(𝑥𝑛+1) − 𝜆𝑛𝑒𝑥𝑝𝑥
𝑛∀ و1− ≥ 0 

 

Proposition: Suppose C is the convex compact subset of M, so, there exists a general geodesic sub-manifold N 

as the subset of C, with 𝑁̅ = 𝐶 (closure) and the following condition is met for every 𝑞 ∈ 𝐶/𝑁 and p∈ N; for 

every (0.1  ) 𝑒𝑥𝑝𝑝
  𝑡(𝑒𝑥𝑝𝑝

−1𝑞) ∈ 𝑁 and for every 𝑒𝑥𝑝𝑝
  𝑡(𝑒𝑥𝑝𝑝

−1𝑞) ∉ 𝐶, 𝑡 ∈ (1, ∞). 

Note: According to [12], int C:N is the interior points of C and bdC: =C \N is the boundary points of C. In addition, 

if C is the convex compact set, then, bdC≠0.  
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