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Abstract

This study presents several theorems of Hadamard’s manifolds, initially introducing
concepts of differential manifolds, including metrics and geodesics, and then examining
concepts that determine Hadamard’s manifolds. The study later concerns Halpern and
Mann’s iterations of non-expansive mappings on Hadamard’s manifolds, citing a numerical
example to present how these methods can be applied, particularly concerning the
methods of Halpern and Mann’s iterations. Additionally, several applications of
convergence results for the origin point algorithm and Picard’s iterations are mentioned.
The first case concerning a minimization problem is practiced by applying the convergence
results on a generated minimal problem by finding a saddle point. This is followed by
solving a variational inequality.
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Introduction

This article investigates mathematical constructs on monotone vector fields and non-expansive mappings in
specific geometric spaces such as Hadamard’s manifolds and Hilbert’s spaces, initially introducing and then
analyzing fixed point approximations and monotonicity theorems within Hadamard’s manifolds [1-5]. The article
later examines the concept of resolvent, defined by Inamiya and H. Okochi, in Hilbert’s manifold space, along
with the concept’s well-defined conditions while analyzing the symmetrical behavior of solutions based on Yosida
sort characteristics [6-9]. Also, a number of theorems concerning the existence and uniqueness of a solution under
boundary conditions are presented, with the fixed-point theorem in Hadamard’s manifolds and the concept of firm
non-expansive mapping being presented as defined by Goebel and Reich [10] in the Hilber Sphere. The
characteristics of these constructs lead to a robust bond between monotone vector fields and firm non-expansive
mappings through the concept of resolvent. Furthermore, the concept of complement in vector fields is used to
help prove the relationship between monotonicity and the class of pseudo-contraction operators, demonstrated by
Reich and Shafrir [11] in the hyperbolic space.

Then, the study examines how various algorithms converge in non-expansive mappings, especially how the Picard
iteration method converges in firm non-expansive mappings. On the same line, an approximation method is also
presented, as a numerical example of Halpern and Mann’s iterations is cited to explain how these methods
practically function. In sum, theoretical results of minimization problems, minimal problems, and variational
inequalities are utilized to demonstrate wider theoretical applications.

Hadamard’s Manifolds

As a concept, local curvature in the Riemannian manifold plays a major role in geometry development. Presented
by Rieman as a natural generalization of Gaussian curvature of surfaces, this concept measures the value a
Riemannian manifold deviates from being Euclidean. In subsequent years, a simpler equation was offered by
Christoffel using the Levi-Civita connection.
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Definition: A complete, simply connected Riemannian manifold with non-positive local curvature is called a
Hadamard manifold.

The rest of this section always assumes that M is the next Hadamard manifold. The famous result below will be
key for this section which can be found in [[12] p. 221 of Theorem 4.1.].

Proposition: Suppose x € M. In this case exp,:T, — M is a diffeomorphism, and for both points x, y € M there
is a single normal geodesic that connects x to y, which is also a minimal geodesic.

This proposition implies a diffeomorphic to the Euclidian space R™. Therefore, M represents a similar topology
and a differential structure like R™. Moreover, Hadamard’s manifolds and Euclidean spaces share similar
geometric features.

The following proposition explains one of the main characteristics of the Hadamard manifolds, adopted from
[[12], p. 223, Prop. 5.4.]. Let’s remember that a geodesic triangle A(xq,x,,x3) of a Riemannian manifold
represents a set composed of three points and three minimal geodesic that connects these points in a pairwise
manner.

Proposition: Suppose A(xq,x,,x3) is a geodesic triangle in M. Suppose for every i=l, 2, 3 at modulo with
¥x:[0,1;] = M there is a geodesic connecting x; to X;, .

L= 1), @ =< 7,00),—y, 1 (G_p) >
a,ta,taz3 <1
Lf + Ly — 2LiLyyq cosaiyg < LF 4
The above inequality is used to provide the following:
d?(x;, Xp4q) + A? (K, Xiy2) — 2 < expx}l xiexpr} xi >< d?(x_q, %))
Firm Non-expansive Mappings

The firm non-expansive concept was already defined in a Banach space [13] [14] and the Hilbert sphere with a
hyperbolic metric [10]. The following analyses indicate that in Hadamard manifolds, this class of mappings, the
most famous in Hilbert spaces, share similar features.

Definition: The T: CM — M mapping is given. T is said to be firmly non-expansive if for every x,y € M, the
function 6: [1] + [0, ], defined with:

0() = d(r1(0), v2(D)
is non-expansive that determines y4, ¥, geodesics respectively connecting x to T(x) and y to T(y).

Note: The definition concludes that each firm non-expansive mapping T is non-expansive.

Proposition: Suppose T: CM — M. Then, the following results are equivalent.
1) The T mapping is firmly non-expansive;
2) Foreveryte[l],x,y€C

d(T(x), T(y)) <= d (expxtexps ' Tx, expy teepy ' Ty)
3) Forx,y€eC(C

<expreg” T(Y), expreg' x> + < expry) ' T(X), exprey'y> < *

Proof:
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Points x,y € C are given. Suppose 0: [0,1] - [0,1] is a convex function. The derivative at -1 of the function 0 can
be expressed as follows:

(6)(1) =<exproy ' T(y), exprey x> + < exprey ' T(X), exprey'y>
Suppose u = expr )X € TtM and v = expr 'y € Try) M, then, the function 0 is as follows:
6 (ty=d(expr(x) (1-t)u, expry)(1-t)v)
Suppose y is a geodesic that connects T(x) to T (y), as for every r € [0,1]:
¥ (1) = exprey T expre T(Y)
Now, for the given € > 0, suppose the function f: (—¢, €) X [0,1] defined by:
f(s,r) = expeXpTxsur(exp;;pszuexpTy sv).VE (—€.€) X [0,1]

Note that for every s € (—e. €), the parametric curve f;: [0,1] > M given by f(s,7) = f;(r) is a geodesic, and

therefore, a_;: (s,7)|] || is constant. In particular, we have:
of
||; s,M|I= d(expTxS”, expT, sv) =0(1-5)

We define I: (—e.€) > R)

19
I(s) = f ||a—f(s, ) | dr, Ve s(=e.€)
0

Therefore:
1
d
L2(s) =f ||—f(5,r) || 2dt = 6%(1 —s)
o OT

According to the first variable of the equation expressed in [1] where we have E(s) = 1/2(L?(s)
Iterative Algorithm of Non-Expansive Mappings
Picard’s Iterations for Firm Non-Expansive Mappings

When Picard’s iterations occur in the Banach space and Hilbert sphere with hyperbolic metric [10] [15], as the
tier of firm non-expansive mappings will be distinguished by a good symmetrical behavior of Picard’s iteration
sequence {T™x}.

Theorem: Suppose T: C — C is a firm non-expansive mapping whose set of fixed points is Fix(T) # @. In this
case, for every x € C, there is a sequence of iterations {T"(x)} converging to a fixed point of T.

Proof: A sequence in the form of x , = T"(x) is defined; since C is a complete space, therefore, it suffices to denote
that {x,} represents the Fejér monotonicity according to Fix (T) and all points of a class of {x»} belonging to Fix

(T).

Suppose n=<0 and y€ Fix(T) is constant. Since T is non-expansive

d(xp41y) = d(T(xn), T(y)) < d(xn, y)

then, {Xa} is the Fejér monotonicity with Fix (T). Now, suppose x is a point of a class of {x,}. So, there is a sub-
sequence of {nk} of {n}, with x,, — x.

So, we need to only prove that:

limn - o0 d(x,, T(x,)) =0

Because by taking the limit, we have: (x, T(x)) =0, i.e., x€ Fix(T)
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Suppose y€ Fix (T). Since {x,} is the Fejér monotonicity concerning Fix(T), there exists the following limit.

limn - wd(x,y) =limn - o d(T(x,),y) =d

Suppose the constant n>=0 is given and y,,: [0,1] = M is the geodesic that connects x5 to T (xn). Thus, y,,(1/2) =
my, because T is firmly non-expansive.

d(T(xp), y) < d(my, y) < d(xn, y)

Hence, lim d(m,, y) = d are calculated:

1 1 1
" d?(x,, T(x)) < > d?(x,,y) + 2 d?(x,,y) —d?(m,,y)
Taking the limit, when n — oo, the result is satisfied.

While the T mapping is only non-expansive, it is understood that the Picard iteration {T™(x)} is not usually
convergent. By supposing the Euclidean space R and the mapping T (x) =-x where the sequence {T"(x)} is not
convergent unless x = ., the sequence defined by the Picard iteration x,,, = G¢(x;) is taken for every t € [0,1).
Moreover, if we hold the point x € C constant, there will be an approximation curve {x;} defined by a single
constant point of T; integration converging into the constant point of T when t — 1.

In fact, this had already been proved by Kirk in a general domain of CAT (0) spaces, forming a convergence
extension of Browder’s algorithm, which is detailed in the following section.

Halpern Algorithm of Non-Expansive Mappings

Suppose C is a closed convex subset of M and T: C — C is a non-expansive mapping. To solve the problem of
finding a fixed-point T outside of the linear spaces’ surface in [16], an implicit algorithm was developed for the
approximate fixed points of non-expansive mappings. Although the convergence result of the following theorem
is formulated for a specific Hadamard manifold state, an algorithm in the complete CAT (0) space can be studied
in detail.

Theorem: (1) Suppose C is a subset of M and is a closed bounded and convex subset; suppose T: C — C is a non-
expansive mapping of x € C, and for every t € [0,1), x; is a unique point, with

xe = expy(1 — )expe T (x,)

Where this point exists according to the Banach contraction principle; so, lim;_,x; = X and the closest single
point to x is in Fix (T).

In the Euclidean space R", the iterative method converts into x, = (1 — t)x + tT(x;), simultaneously occurring
implicitly with the Browder’s iteration.

Mann Algorithm of Non-Expansive Mappings

The Mann iteration and a number of the convergence results in Banach spaces to general metric spaces were
developed by Goebel and Kirk [17] [18] and Reich and Shafrir [19], who provided an iterative method to find
fixed points of non-expansive mappings in the spaces that included Hadamard manifolds as a special state. The
algorithm defined with:

xn+16(xn: T(xn)): d(xn: T(xn)) = (1 - an)d(xn: xn+1)

Where (xn, T(xn)) denotes a metric segment that connects x,, to T(x,). Strictly speaking, as suggested by the
assumption that {a,} is far from 0 and 1 and is bounded, Reich and Shafrir provided this iteration converging to

1290



International Journal of Multiphysics
Volume 18, No. 4, 2024
ISSN: 1750-9548

a fixed point of T defined in the Hilbert sphere with the hyperbolic metric. Having said this, the Mann iterations
in the Hadamard manifolds M are presented by recursive equations.

Xn+1 = expxn(l - an)exp;xlpan(xn)» vn =0

Later, it becomes clear that the sequence { produced by the above-mentioned Mann algorithm converges to a fixed
point of T, albeit when {a,} satisfies the following condition.

[ee]

Y an(i-a,) = o

n=0
Numerical Example

Suppose E™! is the vector space R ™*!. Let’s consider the following symmetrical bilinear form:

m

<xy>= inyi — Xmi1Ymi1, VX = (x),y = () € R™?

i=1
This bilinear form is the Lorentzian metric. M is the hyperbolic space H™ defined by:
{x = (x; 0, Xmy1) €E RMLi< x,x = —1,x41 > 0}

Note that 1 < x,,,4 is for every x€EH™, and is equal if and only if for every m, i= — 1000 and x; = 0 of the H™
metric are inferred from the Lorentzian metric <0,0>. H™ is a Hadamard manifold with local curvature -1 [20] and
[18]. In addition, the geodesic normalized by y: R — H™ starting from x€H™ is given by

y(t) = (cosht)x + (sinht)v ,VteR

Where v € T, H™ is a single vector, and the distance d is defined on H™. The exponential mapping can thus be
expressed as follows:

exp,(rv) = (coshr)x + (sinhr)v
For every r € R* and x€H™, and every single vector v € T, H™, we write the following for every x,y €H™:

y+<x,y>x
J<xy>2—1

Therefore, the Halpern algorithm takes on the form below:

expyt = (=< x,y >) ., Vx, yeH™

Xn41 = cosh((l —a,)r(u, xn)) u+ sinh((l — a,)r(u, xn)) V(u,x,) ,vn=0
The Mann algorithm will truly take on the form below:
Xny1 = cosh((1 — a)r(w, x,)) u + sinh((1 — a,)r(xn, %)) V(xn, x,) ,¥n =0
Saddle Points on the Minimal Problem

Rockefeller’s work [21] on the convergence of the origin point algorithm is when an associative maximal
monotone operator acts for the saddle points in the Hilbert space product H; X H,. The section focuses on the
convergence of the origin point algorithm of saddle functions on Hadamard manifolds.

Suppose M; and M; are Hadamard manifolds. The function L: M; X M, = R is called saddle, if, for every
L(x,0),x € M,, it is convex on M2 and concave on L(0, y), denoting that for every y €EM>, —L(0, y) is convex on
M. The point Z = (X,y¥) € M, X M, is called the saddle point L, when:

L(x,y) <L(x%,y) <L(x,y) ,Vz=(x,y) € My XM,

The associative property of the saddle functions L defines the value set A;: M; X M, — 2TM1 x 2Tz with
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A (ey) = 6(=L(0,9))C) x §(L(x, ) (),  V(x,y) € My X M,

As cited by the [12] p. 239 of Problem 10], the product space MM is the Hadamard manifold and the tangent
space of Mis in T,M = T,M; X T,,M,.z(x,y), the corresponding metric is expressed as follows:

<wod>=<u,u>+<v,0>,Vo = (u,v),0 = (1,v) € T,M

Note that a geodesic in the product set M is the product of two geodesics in M| and M,, respectively. So, for every
two points z(x,y) and Z = (%,7) in M:

14 _ -1 -1
expy Z = (expz X, exp;"y)

Therefore, defining the vector field monotonicity, the value set A: M; X M, — 2T1 x 2™z is monotone, and
only if:

o =,1v) €EAZ),w = (uv) € Al2), z(x,y)sz = (%,9)

<u,expylt > +<v,expy;ly ><< U, expy 'k > +< v, exp,ly >

Variational Inequality

Suppose C is a convex subset of M and V:C — TM is a unit vector field where for every C V(x) € T, M, as based
on [22], the problem of finding x € C with the condition

<V(x),expzly >=0.VY(y) €C

Is referred to as a variational inequality in C. Clearly, the point x € C is a solution of the above-mentioned
variational inequality, if and only if X is in a way that

* € V(x) + N¢(x)

, denoting x is the singularity of the vector field of the value set A =V + Nc. Using the Mann algorithm for A, we
have the lower origin point algorithm with the main point to find the variational inequality solution <
V(x),expsly =20. V(y) €C

0 €V (xps1) + Ne(xpyr) — Apexpzlsvn =0

Proposition: Suppose C is the convex compact subset of M, so, there exists a general geodesic sub-manifold N
as the subset of C, with N = C (closure) and the following condition is met for every ¢ € C/N and p€ N; for
every (0.1)exp, t(exp,q) € N and for every exp, t(exp,q) & C, t € (1,00).

Note: According to [12], int C:N is the interior points of C and bdC: =C \N is the boundary points of C. In addition,
if C is the convex compact set, then, bdC+0.
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