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Abstract 

Artificial Intelligence (AI) is rapidly transforming horticulture by introducing innovative 

solutions for phenotyping, cultivation practices, crop protection, postharvest handling, and 

breeding. Although significant advancements have been achieved in recent years, 

challenges such as scalability, affordability, limited farmer training, and the lack of 

transparency in AI models continue to restrict widespread adoption. Between 2019 and 

2023, notable progress has been made, with systematic reviews of literature from 

databases such as Scopus, Web of Science, ScienceDirect, and IEEE Xplore highlighting 

promising applications. Out of 512 initially retrieved studies, 124 were shortlisted, and 72 

were included after applying strict selection criteria. The findings suggest that AI holds 

immense potential in vision-based phenotyping, remote sensing, agricultural robotics, 

genomics integration, and the development of digital twin models. However, critical gaps 

remain in optimizing quality, diversifying datasets, improving farmer-oriented 

interpretability, and developing supportive policy frameworks. Emerging technologies such 

as Vision Transformers, neuro-symbolic AI, digital twins, and federated learning are 

shaping the future of AI-driven horticulture [2]. For equitable adoption, research must 

prioritize dataset standardization, participatory validation with farmers, cost-effective 

deployment strategies, and ethical governance. A practical roadmap for the future includes 

establishing dataset validation protocols, integrating hybrid AI with affordable robotics, and 

enabling ecosystem-wide adoption supported by regulatory and ethical frameworks. 

Keywords: Artificial Intelligence, Horticulture, Precision Agriculture, Vision Transformers, 
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1. Introduction 

Horticulture is a cornerstone of global nutrition security, rural livelihoods, and sustainable development. With 

rising climate variability, pest outbreaks, labor shortages, and supply chain disruptions, the sector is under pressure 

[1]. Artificial Intelligence (AI) provides data-driven solutions, shifting horticulture from intuition-based to 

evidence-based decision-making. 

 

This review provides a critical assessment of AI in horticulture, integrating evidence from vegetable, fruit, and 

ornamental production systems. Unlike prior reviews, this paper emphasizes socio-economic impacts, farmer 

empowerment, and equitable adoption alongside technological progress. 

2. Methodology 

2.1 Literature Search Strategy 

A systematic literature review was conducted following PRISMA guidelines. Search strings included "Artificial 

Intelligence in horticulture", "Machine learning in crop phenotyping", "Deep learning in fruit grading", and 

"Digital twins agriculture". Databases searched: Scopus, Web of Science, ScienceDirect, PubMed, and IEEE 

Xplore. 
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2.2 Inclusion Criteria 

Studies were included if they: 

• Focused on AI/ML/DL applications in horticulture 

• Covered vegetables, fruits, and ornamentals 

• Published between 2019-2023 

• Provided empirical or validated methodologies 

• Were published in English language 

2.3 Data Extraction 

Data extracted included: crop studied, AI technique, validation methods, performance metrics, socio-economic 

considerations, and adoption barriers. 

2.4 PRISMA Flow 

Articles retrieved: 512 

Screened: 220 

Shortlisted: 124 

Final reviewed: 72 

 

Records identified (n = 512) 

↓ 

Records screened (n = 220) 

↓ 

Full-text articles assessed (n = 124) 

↓ 

Studies included in review (n = 72) 

 

Figure 1. PRISMA Flow Diagram 

3. Literature Review 

AI adoption in horticulture accelerated post-2020. Key milestones included deep learning benchmarks for stress 

phenotyping (2021), IoT + AI integration for greenhouse monitoring (2022), operational greenhouse automation 

and the rise of Vision Transformers and federated learning frameworks (2023). 

3.1 Phenotyping & Imaging 

Recent advances demonstrate a growing shift toward lightweight and interpretable AI architectures for 

horticultural applications. Plant disease identification has benefited from transformer-based approaches such as 

the PMVT model, which integrates MobileViT and attention mechanisms for accurate disease detection on mobile 

devices.[11]  

 

Hybrid frameworks like IEViT leverage inception modules with Vision Transformers, achieving high 

classification accuracy with minimal computational cost. Multitask ViT-based models such as PDLC-ViT have 

enabled simultaneous disease localization and severity scoring. Beyond visible spectrum imaging, UAV and 

multispectral-based systems such as SugarViT predict disease severity in sugar beet. 

Studies in ornamentals show AI's potential in greenhouse risk prediction for tulips [2]. Collectively, these studies 

highlight a paradigm shift from single-task, data-intensive deep learning models toward resource-efficient, multi-

task, and sensor-integrated frameworks. 
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3.2 Robotics & Automation 

Robotics integrated with AI has advanced precision operations in harvesting, spraying, and weed management. 

Robotic harvesters equipped with soft grippers and deep learning–based vision systems demonstrate efficiency in 

delicate crops such as strawberries and apples. 

 

Vision-guided spraying reduces chemical inputs by 60–80%. Autonomous vineyard robots with CNN and ViT-

based detection achieve selective weeding. While effective, high cost and limited adaptability remain barriers, 

emphasizing the need for modular robotics and low-cost algorithms for smallholder adoption[13]. 

3.3 Socio-economic Adoption & Policy 

Socio-economic challenges critically shape adoption. Proprietary AI models risk excluding smallholders who lack 

access to high-end devices and connectivity. Cooperative ownership models, shared service platforms, and 

subsidies are needed to ensure inclusivity. 

 

Transparent, explainable AI systems can prevent farmer dependency on opaque algorithms. Policy frameworks 

emphasizing data rights, AI-linked insurance, and farmer-first governance are in early stages. Without 

intervention, risks of corporate monopolization persist. Therefore, adoption strategies must prioritize equity, 

affordability, and trust. 

4. Current Applications 

4.1 Phenotyping and Crop Monitoring 

• Computer Vision: YOLOv5 and Mask R-CNN for fruit detection (tomato, mango) 

• Vision Transformers (ViTs): Superior accuracy in disease classification under occlusion 

• Stereo Imaging: 3D lettuce phenotyping [15] 

4.2 Remote Sensing 

• Satellite + UAV Fusion: Early disease detection in tomatoes 

• LiDAR: Plant height and canopy volume assessment 

• Thermal Sensors: Precision irrigation scheduling 

4.3 Robotics and Smart Machinery 

• Harvesting Robots: Strawberry and apple picking with soft robotics 

• Selective Spraying: Reduces pesticide usage by 60–80% 

• Weed Detection: Deep learning-enabled robots in vineyards 

4.4 Omics and Breeding 

• Deep Neural Networks: Genomic prediction for drought-tolerant varieties 

• Transformer Models: Regulatory element design 

• Metabolomics AI: Identifying flavor profiles in fruits 

4.5 Postharvest Applications 

• AI-based grading for apples, bananas, and mangoes 

• Quality freshness detection in leafy vegetables 

• Supply chain optimization using predictive analytics 

Table 1. Applications of AI in Horticulture Across Crops 

Domain AI Technique Crop Examples Key Outcomes 

Phenotyping ViTs, CNNs Tomato, Mango, Lettuce Disease detection, stress 

phenotyping 
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Remote Sensing UAV, LiDAR, Thermal Tomato, Grapes, Cabbage Disease prediction, 

irrigation management 

Robotics Deep learning + Robotics Strawberry, Apple, 

Vineyard 

Harvesting, spraying, 

weeding 

Omics & Breeding DNNGP, Transformer Wheat, Rice, Vegetables Genomic prediction, trait 

selection 

Postharvest ML + CV models Apple, Mango, Leafy 

Greens 

Sorting, grading, supply 

chain optimization 

 

 

Fig 2. Crop-Specific AI Performance Matrix in Horticulture (2019-2023): Accuracy Across Disease 

Detection, Yield Prediction, and Quality Assessment [6] 

5. Research Gaps and Challenges 

• Quality vs. Quantity Trade-off: Most AI systems optimize for yield rather than quality attributes 

• Data Limitations: Insufficient diverse, multi-location datasets for robust model training 

• Farmer Empowerment: Lack of explainable, user-friendly interfaces for farmers 

• Affordability: High costs exclude smallholder farmers from AI adoption 

• Policy and Ethics: Inadequate governance frameworks for data rights and AI accountability 

6. Emerging Technologies 

6.1 Vision Transformers (ViTs) 

Vision Transformers represent a paradigm shift in agricultural imaging, offering superior performance in: 

• Multi-scale phenotyping with token-based approaches 

• Robust disease detection under varying illumination conditions 

• Multi-modal fusion of RGB, multispectral, and thermal data 

• Advanced canopy analysis with occlusion handling capabilities 
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6.2 Neuro-Symbolic AI 

Combining neural networks with symbolic reasoning enables: 

• Transparent decision-making with explainable recommendations 

• Integration of agronomic knowledge with machine learning 

• Causal reasoning and "what-if" scenario analysis 

• Adaptive learning from expert feedback and field outcomes[4] 

6.3 Digital Twins 

Digital twin technology provides comprehensive system modeling: 

• Real-time crop-environment optimization 

• Predictive modeling for growth simulation and yield forecasting 

• Risk assessment and adaptation strategy development 

• Resource optimization for input use efficiency 

6.4 Federated Learning 

Distributed learning approaches enable: 

• Privacy-preserving model training across multiple farms 

• Collaborative intelligence without data sharing 

• Reduced bandwidth and storage requirements 

• Farmer control over data sovereignty and usage 

7. Implementation Roadmap 

A three-phase roadmap is proposed for sustainable AI adoption in horticulture, addressing immediate needs, 

medium-term goals, and long-term vision. 

 

Short-Term (0–12 months): Dataset standardization, AI-linked insurance 

↓ 

Medium-Term (1–3 years): Hybrid AI, affordable robotics, cooperative models 

↓ 

Long-Term (3–7 years): Integrated ecosystems, farmer data trusts, ethical governance 

Figure 3. Implementation Roadmap for AI in Horticulture 

7.1 Short-Term Priorities (0-12 months) 

• Dataset standardization and validation protocols 

• AI-linked insurance and risk management systems 

• Performance assessment frameworks with multi-objective metrics 

• Field validation under operational constraints 

7.2 Medium-Term Goals (1-3 years) 

• Development of hybrid neuro-symbolic AI systems 

• Affordable robotics and modular automation solutions 

• Cooperative ownership models and shared service platforms 

• Training and support infrastructure for farmers 

7.3 Long-Term Vision (3-7 years) 

• Integrated AI ecosystems across the value chain 

• Farmer-owned data trusts and governance structures 

• Ethical frameworks and regulatory compliance 

• Climate-resilient adaptation strategies 
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8. Case Studies 

1. Tomato Leaf Disease Detection (India): CNN-based models achieving 96% accuracy in field  

    conditions. 

2. Strawberry Harvesting Robot (Japan): Soft robotics with computer vision reducing labor costs  

    by 40%. 

3. Grape Vineyard Monitoring (Italy): UAV-based multispectral imaging for precision viticulture 

4. Apple Sorting (USA): AI-powered quality grading systems improving market premiums by   

    15%. 

5. Parsley Freshness (Israel): Non-destructive quality assessment for export optimization 

9. Economic and Social Implications 

9.1 Economic Impact 

AI adoption in horticulture demonstrates significant economic benefits: 

• Input reduction: 20–40% reduction in water, fertilizer, and pesticide costs 

• Yield increase: 15–25% improvement through precision management 

• Market premium: Quality grading commands 10-20% price premiums 

• Labor efficiency: Automation reduces labor requirements by 30-50% 

9.2 Social Implications 

• Digital divide challenges requiring inclusive technology design 

• Need for farmer training and skill development programs 

• Preservation of traditional knowledge alongside modern AI 

• Cooperative models for equitable technology access 

9.3 Policy Considerations 

• Data rights and privacy protection frameworks 

• Insurance mechanisms for AI-related risks 

• Regulatory standards for AI validation in agriculture 

• Support for smallholder farmer adoption 

10. Conclusion 

  Key recommendations include: 

• Development of explainable AI systems tailored to farmer needs 

• Implementation of cooperative ownership models for technology access 

• Establishment of AI-linked insurance mechanisms for risk management 

However, successful adoption must prioritize farmer empowerment, affordability, explainability, 

and ethical governance. The three-phase implementation roadmap proposed herein emphasizes 

immediate dataset standardization, medium-term hybrid AI development with affordable 

robotics, and long-term ecosystem integration with farmer-centric governance. 

 

AI holds transformative potential in horticulture, from phenotyping and precision management 

to supply chain optimization. This comprehensive review of 72 recent studies (2019-2023) 

demonstrates significant advances in Vision Transformers, robotics integration, digital twins, and 

federated learning approaches [15]. 
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• Creation of policy frameworks ensuring data rights and ethical AI use 

10.1 Future Outlook 

By 2030, AI-driven horticulture should achieve: 

• Resilient production systems adapted to climate variability 

• Equitable access to AI technologies across farm sizes 

• Transparent and trustworthy AI decision-making systems 

• Sustainable intensification balancing productivity and environmental protection 
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