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ABSTRACT

This paper describes the Reduced Order Modeling (ROM) for fluid rigid

body interaction problem and discusses Proper Orthogonal Decomposition

(POD) utilisation. The principal difficulty for using POD being the moving

domains, a referenced fixed domain is introduced. The POD is applied for

the velocity field obtained on the fixed domain. Then a method to reduce

dynamical system in rigid body fluid interaction is developed. This method

uses the fictitious domain method approach, which consists in treating the

entire fluid-solid domain as a fluid. The rigid body is considered as a fluid, by

using a high viscosity which can play the role of a penalisation factor of the

rigidity constraint, and by adding a distributed Lagrange multiplied

associated to this constraint in the weak formulation. The fluid flow problem

is then formulated on the reference domain and POD modes are used in

the weak formulation. The results are compared with computational

solution and discussed.

Keywords: Proper Orthogonal Decomposition (POD); Fluid Structure

Interaction; Moving boundary; Reduced model; Fictitious domain

1. INTRODUCTION
Classical problems in fluid structure interaction (FSI) require a long computational time.
Indeed FSI simulation needs to couple fluid and structure solvers, using the smaller time
step, and an important mesh near the fluid solid interface, which have to be remeshed with
the interface movement. In active control context, where compute in real time is asked,
current methods are not adapted. In a way to obtain short computational time, reduced-order
modelisation with low order dynamical system has been developed. Different methods had
been proposed for FSI context, the most significant are referred by Dowell [1].

There are two possible ways to construct ROM. The most famous one uses the notion of
eigenmodes of the flow fluid. This approach characterises a field in terms of a relatively small
number of global modes. By modes we mean a distribution of variables that characterises a
gross motion of the studied physical system. There are several techniques to find these modes.
One of these techniques concentrates on extracting the eigenmodes from the used model [2]
(finite element for example). However, in case of a very high-dimensional system, extracting
eigenmodes can be computationally very expensive. Thus, we use another method such as the
method of balanced modes [3] or Proper Orthogonal Decomposition (POD) which will be
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explained in details in section 2. The second technique to determine ROM is the input/output
model. This method uses a transfer function, that typically receives input in structure modes
and gives as output generalised forces weighted by structural modes [4].

We have chosen to study POD capacities in fluid structure interaction. Indeed, this method
was introduced in 1967 by Lumley [5] in fluid mechanics in order to extract coherent structures
in a turbulent fluid flow. It has been intensively used since the 90’s in many applications, such
as flows in a driven cavity[6], in boundary layer [7], or particle dispersion [8].

In structure mechanics, POD is a recent investigation domain similar to modal analysis [9] in
case of structure vibration. There are only few studies available in Fluid Structure Interaction.

First, this paper recalls the well-known POD method and its application in fluid mechanics.
Next, the classical ALE formulation for Navier Stockes equations for fluid rigid bodies
interaction is recalled. In the following section, a POD application method to a general case
of moving boundary problems is presented. Then, a low order dynamical system in case of
fluid-rigid body interaction problem is proposed and finally tested on differents cases. 

2. THE PROPER ORTHOGONAL DECOMPOSITION (POD)
2.1. THE POD FORMULATION
In this section, the POD method is briefly introduced. A detailed methodology is already
stipulated in literature [5, 10], for bibliography see [11, 12].

Considering a space Ω � Rn , n = 1, 2 or 3, T � R, x ∈ Ω, t ∈T. The POD consists in
finding a determinist function ψ, in a Hilbert space H, which gives the optimum
representation of a velocity field v (x, t) ∈H (Ω, T ), by solving the following maximisation
problem:

(1)

where denotes a statistic average operator, (•, •) denotes the inner product of H and • 2
H

the associated norm. In the case of H = L2 (Ω), the maximisation of problem (1) leads to solve
the following eigenvalue problem:

(2)

where R is the symmetric spatial correlation tensor, defined non-negative:

(3)

Moreover, if R is continuous, the following operator

(4)

(5)

is compact. Then the Hilbert-Schmidt theorem assures that there exists a set of positive
eigenvalues (λi)i ≥1 which decrease to 0
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and a set of eigenmodes (Φi)i ≥1 which is a Hilbertien basis for H. Thus, v can be decomposed
according the eigenmodes as:

(6)

where ai are the temporal coefficients. 
(Φi)i ≥1 are named modes. 

2.2. POD MODES PROPERTIES
• The spatial modes, (Φi) are orthogonal and can be normalised:

(7)

and they fullfill the boundary conditions. In case of an incompressible fluid, the
velocity field fullfills the free divergence, ie div Φi = 0.

• The temporal coefficients ai (t) are obtained from the projection of v onto the (Φi)
basis:

(8)

• Moreover, they are not corellated and the eigenvalues are the temporal average:

(without summation on the repeated indices) (9)

• The eigenvalue λi is the energy captured by the mode Φi. For a given N, the POD
decomposition is the best energy decomposition which can be obtained.

2.3. THE SNAPSHOT POD
Solving equation (2) can be computationally intensive in higher dimensional problem. In
order to minimise the computational times, the so-called snapshot method has been
introduced by Sirovitch [13].

Let Nm be the node number, nc the component number and Φ a mode POD. If sampling
of M realisations (M << Nmnc) of the flow is sufficient to describe the problem, then we
search the temporal coefficients ak such as:

(10)

Introducing the temporal average , and using the inner product of L2 (Ω), we have to
solve the following eigenvalue problem:

(11)
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Hence, the spatial modes Φi are obtained from equation (10) and the temporal coefficients
ai are found by solving equation (8).

The use of the classical or snapshot method depends on the data type. In case of
experimental data, the classical method is used. However, in case of computational
simulation with a significant grid and time limit, the snapshot method is preferred. Note that
when a non-stationary problem is considered, another solution would be the bi-orthogonal
decomposition [14]. 

3. APPLICATION IN FLUID MECHANIC
In this section some general results obtained in the last decade in reduced order modeling in
fluid mechanics are presented.

Considering an incompressible fluid in a rigid domain Ωf , with the density ρf and the
viscosity µf , the fluid velocity v and the pressure p follow the dimensionless momentum
equation of the flow:

(12)

where Re is the Reynolds number. v is decomposed on the POD basis truncated at N modes:

(13)

The velocity decomposition (13) is introduced in the equation (12) and projected onto the
POD vector Φn. Thanks to the orthogonality and the free divergence of the POD basis Φ, the
following system has been obtained:

(14)

where

(15)
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The coefficient Dn which contains the pressure term p can be avoided. Indeed, for more
cases (for example the driven cavity) the velocity field is equal to zero on the boundary, and
as the POD vector complies with homegeneous boundary conditions, Dn is null. In other
cases, some particular methods have been developed. We can mention Rempfer [15], who
uses a vorticity formulation, Aubry [16] modelled this term for the study of the viscous
sublayer in a channel flow and Allery [11] uses a penalisation method. This method will be
explained later in section 6.

Thus, an N order dynamical system is obtained (equation 14). It consists in solving a
ordinary differential equation system in time with the coefficients B, C, D, which are 
non-time dependent and computed only once. In the practice, N is in order ten, that is why
this system is denoted low order dynamical system. Aubry [16] constructed the first model
for studying the motion of structures in the wall region of a flat plate turbulent. Next, various
configurations have been studied, for example near wall boundary layer ([15],[17], channel
flow [18], [19], driven cavity [6]. Further examples deal with [12], [20].

One exemple of this method efficiency is given by Allery [21], [8], who applied a method
to study the Coanda effect [21] and to model the fluid flow for computation of particle
dispersion in a two-dimensional ventilated cavity [8]. He underlines that for the Coanda
effect only six modes are sufficient to completely capture the spatial structure of the flow and
to obtain a good reconstruction with a low order dynamical system. In the second article, he
indicates that only four modes are necessary to obtain a residual between the reconstructed
velocity and the snapshot velocity less than 1.8 10−2 . 

4. ALE DESCRIPTION OF THE NAVIER-STOKES EQUATIONS
In this section, the ALE method for fluid rigid body interaction problems is exposed. This
method is used to obtain the snapshots of the velocity field.

Consider a rigid body immersed in an incompressible fluid. Figure 1 shows a schematic
description of the problem domain of interest, where Ωs(t) is the domain occupied by the
moving rigid body, whose the center of gravity is denoted by G; Ωf (t) is the moving spatial
domain upon which the fluid motion is described; ΓI (t) is the interface between Ωs(t) and Ωf
(t), and n the outward normal. The interface ΓI (t) moves according to the position of the rigid
body Ωs(t).

The motion of the fluid is governed by the incompressible Navier-Stokes equations which
are given as follows in the ALE description [22, 23, 24]: 
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Figure 1 Schematic description of the problem domain.



where v is the fluid velocity, w the fluid mesh velocity, p is the fluid pressure, µ is the
dynamic viscosity.

The boundary, ∂Ωf (t)\ΓI (t), is divided into two parts on which the following boundary
conditions are specified:

(20)

(21)

where nr is the unit outward normal vector to Γr and:

(22)

is the Cauchy stress tensor.
In this study Γl and Γr are assumed to be fixed in space. This assumption leads to 

(23)

The velocity on the moving interface ΓI (t) is denoted by v I .This velocity is unknown, but:

(24)

because of the non-slip condition on ΓI (t). In other words, are dealing with the Lagrangian
description on ΓI (t).

4.1. THE RIGID BODY MOTION EQUATIONS
In our application we consider a planar motion of a system of rigid bodies. In this case the
equation of motion is solved by the finite elements method and it can be written:

(25)

where u is the vector of structural displacement, and M, C and K are the mass, damping and
stiffness matrices, F and b contain the fluid force Ff and gravity force respectively. The fluid
force is given by the following equation:

(26)

4.2. MESH MOTION DESCRIPTION
The mesh velocity vector w may be arbitrarily specified though it has to satisfy the following
boundary conditions,

(27)

where vs is the velocity vector of the rigid body nodes on the interface.
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In this study, the mesh velocity in the fluid domain is determined by solving the following
equation 

(28)

where λ(x) is judiciously chosen to control the mesh deformation. In this case, λ(x)is taken
equal to 1 for all x ∈ Ωf (t). 

4.3. FLUID-RIGID BODY INTERACTION ALGORITHM
Implicit Euler method is used to the time discretisation of fluid equations (19) and finite
elements method to the spatial discretisation.

To solve the coupling equations, the following explicit scheme is used [25].
Supposing that time t = tn, the fluid velocity and pressure fields, the rigid body displacement

and position are known. The time step of the Navier-Stokes equations solver is the same
as in the rigid body equations.

1. The body equations (25) are solved in order to compute the displacement velocity vS
at time tn+1. Then, the position of ΓI (tn+1) is determined.

2. The mesh velocity equation (28) is solved and the velocity w(n+1) of the fluid nodes
displacement at time tn+1 is determined.

3. The rigid body and the fluid nodes are moved at the predicted position by solving
the equation x(n+1) = w(n+1) �t + xn for all the mesh nodes. Then the fluid domain Ωf
(tn+1) is defined.

4. The fluid equations (19) are solved in the domain Ωf (tn+1).
5. The fluid forces acting on the rigid body are computed using the equations (26).
This explicit algorithm is easy to implement, but it is only of order one and requires a

small time step to its stability. An implicit scheme can also be used. 

4.4. NUMERICAL APPLICATION
4.4.1. Rigid cylinder in an annular fluide space
The first studied case considers a two-dimensional rigid cylinder immerged in an annular cavity
(Figure 2(a)). At the beginning, the fluid is at rest and the rigid cylinder is removed from its
equilibrium position. Due to the spring effect the solid moves, starts to oscillate and generates
a fluid flow. The fluid flow generates fluide forces, which damp the fluid oscillations.
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The motion of the fluid is governed by the incompressible Navier Stokes equations in the
ALE formulation and computed using Castem code (CEA, 2005) during 6.28 s using the
followings: R1 = 0.1 m, R2 = 0.2 m, ρf = 1000 kg.m−3 , ρs = 31.83 kg.m−3, µf = 0.001 kg.m.s.
The initial coordinates of the rigid body center are x0 =(0, 005, 0), and “at rest” the length of
spring is equal to 0.1 m.

For the spatial discretisation of the Navier Stokes equations the finite element
Crouzeix-Raviart (Q2 – P1) has been used. For the velocity-pression coupling, a projection
method has been applicated, and a SUPG method for the convection term stabilisation has
been employed.

The rigid body displacement follows the following equation:

(29)

where ω ξ ω ξ( ) .= −1 2

x t x t e t( ) cos ( )=  
−
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The damping parameter ξ can be computed on one pseudo-oscillation period, which
allows to evaluate the numerical solution obtained by Castem. Indeed,

(30)

where δ denotes the decrement logarithmic curve of rigid body displacement. On Figure
4.4.1, the analytical solution and that obtained by Castem show a good fit, which validates
the solution.

4.4.2. Rigid body immerged in a channel
The second case studied is concerned with a cylindrical solid rigid immerged in a channel
fluid flow. The rigid body is attached to the bottom wall by a spring. In this case the solid
movement is imposed, i.e. there is no displacement along the x axes. For the fluid parameters,
we consider the fluid density ρf = 1000 kg⋅m−1, the viscosity µf = 0.001 kg/m⋅s, the inlet
velocity V0 = 2⋅10−4m.s−1. The solid parameters are the mass m = 1 kg, the radius R = 0.5 m,
thus a solid density ρs = 1.23 kg⋅m−1. The Reynolds number is Re = 200. First, a Strouhal
number is computed for a non moving cylindrical solid rigid. The value obtained is
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where f denotes the vortex shedding frequency. According to Koopman [26], the cylinder
oscillation frequency is chosed to be equal to vortex shedding frequency. In fact, at this
frequency the lock-in phenomenon is achieved, i.e. the vortex shedding frequency is the
same as when the rigid body is fixed. Thus, the solid displacement follows the equation: 

(32)X t
tG ( )

. . sin ( )
=

+






0

6 0 0 25 ω

68 Low order dynamical system for fluid-rigid body interaction problem using POD method

−5 0 5 10 15
0

2

4

6

8

10

12

−0.60−0.24 0.12 0.48 0.84 1.20 1.56 1.92 2.28 2.64

x1e-4

(a) vx Snapshot 1 (b) vx Snapshot 30

(c) vx Snapshot 45 (d) vx Snapshot 60

(e) vx Snapshot 90 (f) vx Snapshot 120

−5 0 5 10 15
0

2

4

6

8

10

12

−0.64 −0.28 0.08 0.44 0.80 1.16 1.52 1.88 2.24 2.60

x1e-4

−5 0 5 10 15
0

2

4

6

8

10

12

−0.52−0.16 0.20 0.56 0.92 1.28 1.64 2.00 2.36 2.72

x1e-4

−5 0 5 10 15
0

2

4

6

8

10

12

−0.52  0.20 0.12 0.44 0.76 1.08 1.40 1.72 2.04 2.36

x1e-4

−5 0 5 10 15
0

2

4

6

8

10

12

−0.40−0.080.24 0.56 0.88 1.20 1.52 1.84 2.16 2.48

x1e-4

−5 0 5 10 15
0

2

4

6

8

10

12

−0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

x1e-4

Figure 6 Velocity field snapshots at different time.



The results have been validated by compared lift coefficient frequency. The lift coefficient
curve is shown on Figure 4.4.2. This adimensionless frequency is equal to the adimensionless
vortex shedding frequency. This results validate the computational velocity field obtained.
100 snapshots have been taken all the 241.68 s.

Figures 6 and 7 show differents snapshots taken on one rigid oscillation period. 
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5. POD APPLICATION TO MOVING BOUNDARY PROBLEMS
The solution obtained by this method is computed on a time-variant grid. POD method
cannot be applied in this case: indeed a fixed domain is necessary to apply POD. For
example, the snapshot method leads to solve eigenvalue problem (11), thus compute the L2

inner product of velocity field at two different instants. But the fluid velocity fields (or
structure velocity fields) are not define on the same domain for two different time steps.
Snapshot method cannot be applied.

One solution consists in considering a global domain Ω fixed in time which contains
all the time variant domains and in searching POD vectors for the global velocity fluid
on this domain. Thus in case of a fluid structure interaction problem the global fluid
velocity is:

(33)

where vf (respectively vs) denotes the fluid velocity (respectively solid velocity), I the
unit and IΩ f (x, t) the characteristic function of fluid domain is defined as the following:

(34)

The main objective is to obtain low order dynamical systems using POD basis truncated at
N modes. In fluid mechanics, on a fixed domain, the Navier Stokes equations are projected
on the POD vectors, and thanks to the orthonormality of POD modes, a low order dynamical
system whose size is equal to the number of POD vector selected is obtained. For Fluid
Structure Interaction, the ALE formulation of the Navier Stokes equations cannot be used,
because POD basis have to be compute on a fixe domain. 

6. LOW ORDER DYNAMICAL SYSTEM FOR FLUID RIGID BODY
INTERACTION PROBLEMS
Next the low order dynamical system for fluid rigid body interaction problems is studied.
This case is chosen due to previous works about eulerian formulation of rigid bodies [27, 28].

This approach uses domain fictitious method, which consists in treating the entire fluid-
solid rigid domain (the fictitious domain) as a fluid, by using Navier-Stokes equations for
solid rigid domain and adding a rigid constraint to the solid domain: 

where ρs is the solid density, D(v) = 0 denotes the rigid contrainst, vΓ the velocity fluid at
fluid-structure interface, D(•) denotes the strain operator:
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Thus the Navier Stokes equations are extended to the rigid domain. To apply the rigidity
contrainst a lagrange multiplier D(λ), which correspond to a stress field, is used [27]. The
weak formulation using POD basis leads to the following:

Find a field v such as div v = 0 and for all Φ a virtual velocity field, div Φ = 0:

where ρf is the fluid density, µf the fluid viscosity and the solid viscosity µs is the
penalisation factor of the rigidity constraint and Γf = ∂Ωf \ΓI .

ρ and ν are defined on the global domain Ω:

(37)

Thus the weak formulation is obtained for the global domain Ω with information about
fluid and solid domains which are contained in density ρ and viscosity µ functions.

The basis obtained by solving (2) is truncated at N modes. For example N is searched as

> 0.9999, where λi denotes the ith eigenvalue of POD problem, and M the snapshot

number. Thus the velocity field v is evaluated by using this truncated basis as equation (13):

(38)

This decomposition is introduced in (36) and the following dynamical system is obtained
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There are some differences with low order dynamical system obtained using POD basis
in classic fluid mechanics exposed in section 3. In fact coefficients A, B, … are time
dependent and must be computed at each time step.

The term pΦnndx is avoided by a stress formulation in conjunction with a penalisation

of the non-homogeneous Dirichlet boundary conditions [11]. This method consists in 
considering that on the non zero velocity fluid boundary Γσ , the strain boundary condition
is the following:

where uΓσ denotes the velocity computed on Γσ , uBC the velocity imposed and G a
constant. Choosing G relatively larger than F  leads to consider that

Finally, the initial problem is transformed into a more simple system of ordinary differential
equation in ai(t) with few degrees of freedom. Indeed, in practice the POD method gives a
basis which is maximal in terms of energy, with only a few functions. 

7. APPLICATION
7.1. ONE DIMENSIONAL EXAMPLE
The first case study considers a one dimensional problem of fluid modelled with the Burgers
equation

coupled with spring mass equation (Figure 8). The Burgers equation is solved with the ALE
method [22, 23, 24] with an initial fluid velocity v (x, 0) = sin (2πx) on Ωf (0), and the initial
interface position ΓI (0) =1.
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Figure 8 Scheme of the fluid and structure domain.

7.1.1. Energy contribution of POD modes
We apply POD method developped in Section 2.3. The first six POD modes have more than
99.99% of the kinetic energy (Table 1).

Table 1 Kinetic energy contribution for the five first modes.

mode i eigenvalue λ i % energy 

1 18.255 91.648 
2 1.515 99.256 
3 8.393 10–2 99.677 
4 6.079 10–2 99.982 
5 2.347 10–3 99.994 
6 7.804 10–4 99.999 



The first mode gives information about the most energetical structure of fluid, and is
constant on the solid domain. The followings modes capture fluctuations at the fluid-
structure interface and have constant value on rigid domain.

Next, the reduced system using the 6 first modes is solved with N = 6. Each POD mode
having a energy contribution, truncated the basis at the first N more significant modes, means
fail the smaller energy scale, which are the most dissipatives. Thus, the low-order truncation
of the POD basis inhibits generally all the transfers between the large and the small
(unresolved) scales of the fluid flow. Consequently, to recover the effects of the truncated
modes, that is generally of the small scales, we use an “eddy viscosity” [16]. The viscosity
for the mode i is multiplied by (1 + i0.001).

Reducing the system with only six modes, gives a good result with an error less 4%,
illustrated in Figure 9(a). The figure 9(b) shows that the error is relatively not very significant.

The reconstructed temporal modes resulting from the reduced system and those resulting
from the snapshot method are compared on figure 10. The difference is very small and comes
from computational approximation of modes and derivatives at the interface. Indeed, the
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Figure 10 Temporal coeffients.
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interface position is between nodes and we need to know for example Φi (ΓI) by interpolating
on the first two nearest modes.

The first mode which is consistent with the mean velocities properties, captures at least
99% of the kinetic energy in all tested cases. Other modes are used to keep velocity
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variations in the fluid. We can see that where the domain is always structured, the POD
modes are constant. In fact we supposed that the body is a rigid structure.

7.2. TWO DIMENSIONAL EXAMPLE
7.2.1. First case
In this subsection the case presented in section 4.4.1 is used to test the method. Hundred
snapshots have been taken during one pseudo-oscillation period.
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Figure 11 Isovalues of the first and second velocity component at the snapshot 70.



First, the POD vectors have been searched and the reconstructed velocity has been defined as

and is compared to the initial velocity. On Figure 12, we can see that we have a good
reconstruction with 3 modes and a maximal error near to the fluid-solid interface.

In fact the first POD eigenvalue contains 99.2% of the total kinetic energy and with three
vectors almost 99.99% of the energy is captured.
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Figure 12 Isovalues of the difference between the reconstructed solution with 3
modes and the initial at the 70 snapshot.
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That is why with only three POD vectors the reconstructed velocity is a good
approximation of the initial velocity. 

Next, the low order dynamical system with three modes is constructed and the temporal
coefficients obtained are compared with those obtained by computing the POD vector (at each 
snapshot . There is a good conformity between them, for example 
for the first temporal coefficient a1 (Figure 13(a)).

In the following the low order dynamical system during a longer period than the
snapshot period will be presented. The solution obtained has not been compared to a
numerical solution, but the gravity center displacement can be predicted by an analytical
solution and compared to those computed. In fact, in this case the analytical solution is

being evaluated on the snapshot period. The solution for

a period longer than 10 times the snapshot period gives good prediction for the gravity center
position (Figure 13(b)). It is an adequate criteria to conclude that the reduced system
obtained gives a good result with a few degrees of freedom and this case gives a good
prediction for simulate a period longer than the snapshot period. 

X t Xg g( ) ( )cos , = −
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
0 1 2ω ε εωe t ε

t a t v ti n i i i, ( ) ( ( , ), ))= • φ
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Figure 13 Low order dynamical system result.

7.3. EXAMPLE 2
In what follows, the ROM method is applied to the second case presented in section 4.4.2.

First, the POD vectors have been computed, and the results indicate that almost ten modes
are needed to obtain almost total energy. Results are identical in comparison with the
reconstructed velocity on the truncated basis (Figure 14).



Figure 15 shows the two isovalues components of the two first modes. We can see that the
first vector contains the most important information about fluid flow compared to velocity
field at different time steps (Figure 6).

The first POD vector does not capture very well the fluid fluctuation near the moving
interface. Those are the following POD vectors which contain this information. That is why,
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although Reynolds number is very low (200), more POD vectors are needed compared to the
POD application in fluid mechanics (see section 3).

The low order dynamical system using the first ten modes is constructed and computed
with a good adequation to the initial velocity field. Indeed the maximal error in time is about
5% in L2 norm. The difference between the isovalues of the reconstructed velocity field using
reduced system solution and snapshot velocity field at the maximal error time are showed on
Figure 16. The error is located on a very small area and does not disturb the rest of the flow.
The result presented makes it possible to obtain the same Strouhal number.
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corresponding to the snapshot 70.



8. CONCLUSION
This paper introduces an application method of the proper orthogonal decomposition for
moving boundary problems, more specifically in the case of fluid rigid body interaction
problem. The method uses a global domain fixed in time for computing the POD vectors of a
global velocity fluid. To construct low order dynamical system for a fluid rigid body
interaction problem, a fictitious domain method has been used and a variational formulation
using POD bases is obtained. The method gives good results, but precision seems to be lost at
the fluid solid interface. This method can be applied to 3D problems without difficulties. In
the case of a deformable structure the current formulation cannot represent the deformations
of the solid domain. A tensor deformation for the solid domain has to be introduced. It will be
studied in a further work. 

NOMENCLATURE
(•, •) inner product
n outword normal of the domain Ωs
nf outword normal of the domain Ωf
µf fluid viscosity 
Ω spatial domain
Ωf fluid domain
Ωs solid domain
Φ POD mode
Φi POD mode number i
ρ density field
ρf fluid density
ρs solid density
Re Reynolds number
ai temporal coefficient i
M Number of snapshots
p pressure field
t temporal variable
v(x, t) velocity field at time t and coordinate x
vf fluid velocity field
vs solid velocity field
x spatial variable
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