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ABSTRACT

This study deals with the simulation of transport and interaction between
bodies considered as a rectangular shape particles, in urban flow. We used
an hydrodynamic two-dimensional finite elements model coupled to the
particles model based on Maxey-Riley equations, and taking into account
of contact between bodies. The finite element discretization is based on
the velocity field richer than pressure field, and the particles displacements
are computed by using a rigid body motion method. A collision strategy is
also developed to handle cases in which bodies touch.

1. INTRODUCTION
Many observations of damages caused by flash floods or dam-break floods indicate that
floating debris and debris jams are a substantial additional risk during flooding. The jams
result from accumulations of materials (Brushes, uprooted trees, carried cars. . . ), which
temporarily causes a water reserve to the upstream. When these jams yield or breakup, the
rupture causes the violent discharge of a great quantity of water and floating bodies. With the
downstream, the characteristics of the flood change then brutally (acceleration of the current,
abrupt rise of water, solid transport), and this in a not easily foreseeable way. Thus, they often
to the origin of the principal damages generated by the quick swellings (small water courses
to strong slope, pluvial urban streaming).

The jam generally occurs in the rivers and to proximity of the bridges, and often generates
a flood (Fig. 1). Thus, the motion and the orientation of transported bodies, which form this
jam, is a problems of practical interest to understand how these natural barriers are formed.
In particular for shallow water, the orientations for example of tree’s branches in river and
their collisions can form stopping between bridge piers and then perturb the flow (Fig. 2).

In the past decade, many researchers developed numerical methods for direct simulation
(DNYS) of fluid-particle interaction (see [1], [2], [3], [4]). These problems are fluid and solid
interaction problem and employ remeshing techniques or fictitious domain methods which
involve a lot of computational storage and long calculation time at each time step.
The purpose of this paper is to simulate the Debris-Jam formation by floating bodies. The
method used is based on the computation of the pathway of bodies of rectangular shape, by
including the translation and rotation movements, without the remeshing technique. Thus,
a numerical simulation of incompressible viscous flow past moving rigid bodies, when the
motion of the bodies is not known in advance but results from the hydrodynamical coupling
and external forces such as gravity and collisions, is performed. A simple strategy to take
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Figure 1 Schematic presentation of potential Debris-jam sites.
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Figure 2 Conceptual sketch of the formation and breaching of debris-jams at
potential locations (Bridges with piers).

into account body/body and body/wall collisions is then used. The outline of this paper is
as follows. The hydrodynamic finite element model is presented in section 2. The modelling
of the Fluid-Rigid body interaction is presented in section 3. Section 4 is devoted to
Particle-Particle collisions for rigid bodies. The computational procedure is presented in
section 5 and the numerical tests are presented in section 6. Results and discussions are
given in 7.

2. HYDRODYNAMIC FLOW MODEL

The two-dimensional hydrodynamical model was based on the resolution of shallow-water
equations, which were obtained by using hydrostatic and Boussinesq approximations and by
integrating Navier—Stokes equations over total water depth. Notice, that for many practical
surface-water flow applications, knowledge of the full three dimensional flow behaviors is
not needed and it is sufficient to use the depth average flow quantities in two perpendicular
horizontal directions. Thus, the depth-averaged momentum, and continuity equations lead to
the following Saint-Venant set of equations

auf

7+uf.Vuf+th—vVuf=F 0
oh

§+V(hllf) =0
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Figure 3 P2-P1 element: Six-nodes base triangle composed of 4 sub-triangles.

where u= (uf, 'Uf) the depth average velocity with iy and v, are the components in the
x and y coordinate directions, defined by: ' ‘

_ L
uf—Hbe (u,v)dz @

H (x, y, t) is the water depth, z,(x, y, 7) the bed elevation and A(x, y, ) = z,(x, y, ) + H
(x, y, 1) is the water surface elevation, v is the effective viscosity, which includes the
dispersion and the turbulence contributions. F = (Fx, Fy) integrate volume forces
(Coriolis), actions exerted on the bottom (friction) or on the free surface (wind) and also
forces as radiation constraints. Thus:

) 0
F= —ﬁuf +2u, X ko sing— rEE”W"W (3)
— | S ——
Friction forces Coriolis forces Wind forces

where k = (0, 0, 1) is the vertical unit vector, @ is the earth velocity in rd/sec, ¢ the latitude
in degrees,  is a coefficient equal to 0.0026, w = (@, a)y) are wind components in X and y
directions, Q, and Q are densities of air and water respectively. 8 depends on the value of the
following coefficient y defined by:

-1
Y= |:19.81n(¥ﬂ 4)

Thus:
2
u
ﬁz% Hf if ¢>1
[y2 (5)
[
Bzgyz H3/4 if c>1
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Figure 4 Collision between 2 particles.

For each finite element, the turbulent viscosity is calculated using the Prandtl-Smagorinsky

formula:
1/2
h +2(Vllf ) + ( V u/rlction )2 (6)

\/’2

t

_12

For each finite element, u y is the averaged velocities, /s the averaged free surface,

the friction velocity and /,, the mixing length defined by:

u Sfriction

- 3/4
I =ah, a—1612“c us (7)
—/2 2 N2
2 2(Vu ) +(Vay)

2.1. FINITE ELEMENT DISCRETIZATION AND VARIATIONAL FORM

The weak form associated to the set of equations (1) is:

w=wuf+wh=0V 5uf,5h ®)

with:

ou, g‘“ ‘
Wyr =/95uf 7+(uf.V)uf+th+ /7 H+F dQ

+ 0 Véu, [—;]ds—jag ou, [TQ]” ds )

/Q( h——V(6h) Hu J dQ+ [, ShHu, ds
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ou o Oh are the Galerkin test functions, [r ] the viscous constraints tensor given by:

oy %..§?JL4_fﬁiﬁ
[1]221) o oo (10)
1 f?iﬁ_+fﬁi£ v,
)

I:T:In the edge friction tensor and S is the Neumann stress boundary.

The discretised model associated to the set of equations (9) is obtained by usinga P, P,
element for finite element approximation [10]-[13] (Fig 3).

3. MODELLING OF THE FLUID-RIGID BODY INTERACTION

A rigid body (Particle) in a non-uniform time-dependent fluid flow responds to the forces
imposed by fluid velocity and body forces. A delineation of the particle motion and the
interaction between the particle and fluid depends on the correct calculation of the forces.
Thus, the Lagrangian equation of a rigid body moving in an arbitrary 2D flow are governed
by the Newton’s laws, that includes in the force balance Buoyancy, pressure gradient of
ambient flow, added mass and drag forces.

dOG
=u
dt P

du
m —L=F

P dt

P

(11)

dw
1 2 k=FxGM
Pt

m, is the particle mass, u, = (u,, uy) is the translation velocity vector of the particle mass-
center is the moment of inertia, L, is the moment of inertia, @ is the angular velocity and
F? =( F?, pr) are total forces acting on the particle. G is the position of the center of mass

and M the position of the center of pressure where are concentrate hydrodynamic forces.

3.1. FORCES ACTING ON THE RIGID BODY

The essence of the present simulations is to treat the total forces imposed on the fluid by
particles of non spherical form, which can be obtained from the particle equation of
motion—equation (11), as a body force. Since the effect of the particle on the fluid is to
generate a disturbance in the fluid velocity field, it would also be appropriate to couple the
particle effect into the fluid in terms of a velocity disturbance. Since there is usually a relative
motion between the particle and the fluid, and also the particle can be rotating, the liquid
flow around individual particle leads to local variations in pressure and shear stress. Here
fives different contributions for the interaction force term can be taken into account, a
friction (Stokes drag) force , an added mass force, the pressure gradient force, the Basset
history force, and the Buoyancy force, leading to the following approximation for the force
of interaction, governed by the Maxey-Riley equation [12]:
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Figure 5 Sketch of the search line algorithm.
F’= FDrag + FPg +FVm +FGr + FBh (12)
where:
1 . .

- F,.= _ECdmf[“P —u,]- is the Stokes drag term, where C, is the drag
coefficient which depends on the particle form u_and m, are the velocity and
the masse of the particle respectively, whereas, u, is the fluid velocity.

Du (1) : . .
. F, =m, , is the pressure gradient related to fluid acceleration,

L [dn,@ dw@] .
F,=- 2 m, “a ,1s the virtual mass contribution (or added mass

effect). It arises because acceleration of the particle requires acceleration of
the fluid surrounding the body, and the pressure gradient force accounts for
the acceleration of the displaced fluid (i.e. the force a fluid particle of the
same size would experience in absence of the particle).

*  Fy,=—g(m,—mp)k, is the Buoyancy force,

»  Fy,, is the Basset history term. It adjusts the particle acceleration by taking
into account the past acceleration on the particle motion, including the effect
of the conditions that prevailed during development of the flow. In the two-
dimensional study, where gravity is absent, this term may be negligible,
especially because the particle is not released from rest but with an initial
velocity corresponding to the ambient fluid velocity.

Elsewhere, in the above equation, the Buoyancy term: F ; as well as the pressure gradient

Fpg because of the 2D horizontal space problem. We also neglect neglect the Faxen

correction term, which becomes significant only in the event of large curvature in the

velocity profile.
We notice that the derivative d/dt is used here to denote a time derivative following the
moving particle, thus:
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d 0

and the derivative D/Dt denotes the time following a fluid element, so that

i:2+(u

dt ot V) (14)

is the fluid acceleration as observed at the instantaneous center of the particle. In what
follows, we assume the following assumption :

Du_du
Dt dt

then from (11), the set of equations for calculating the particle location, and the linear and
angular velocities in vector form becomes:

dOG_ll

P
dup Buf

mp7:A ?+(uf.Vuf) +B[uf.Vup]+C[uf—up] (15)
da)p auf

Ip = k=| 4 > +(uf.Vuf) +B[uf.Vup]+C[uf—up] xGM

2(1 3
where AZE(Emp +mf],B:—mp and C=—ZmpCd. C, is commonly expressed over

the entire Reynolds number spectra as:

C,= ﬂSeﬁ ‘uf—up“(uf—up) (16)

where S is the particle area normal to the direction of the drag force. It changes with the
incidence angle o between relative velocity (uf— up) and particle major axis direction and is
determined by

Seﬁzrtlz\/sinz05+(4L/7t)2 cos” o (17)

L and [ are the length and large of the particle respectively, 3 is the drag coefficient which is
determined by [5]:
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Figure 6 Schematic presentation of the sweep line algorithm.

B 24

L= (1+0.1118(k,k, R*%57) + 0.4305
klkZRe

1727 1+0.3305/ (kk,R,) (18)

k,

kl :(dn /3d +2 / 3@0.5 )—l; k2 :101.8148(*10g@)0-5743

where d = ,4Se/f /n 1s the equal projected area circle diameter, Re is the particle Reynolds

number, defined on the basis of the relative velocity between particle and the surrounding
fluids and equal-volume sphere diameter; ©=s/S is the particle sphericity, where s is the
surface of a sphere having the same volume as the particle and S is the actual surface area of
the non spherical particle. The equations (15) calculate the translation velocity vector at the
center of mass. The velocity vector for an arbitrary point M on a rotating and translating rigid
body is then:

u(M.T)=u,()+o,xGM (19)

G is the position of the center of mass.

As the center of pressure P does not coincide with the center of mass at nonzero incidence
angles, hydrodynamics forces described above, which act at the center of pressure P rather than
at the center of mass G, will give rise to a torque on the particle. Thus, the distance //d// between
G and P is given by (see [5] ):

d](G.an)=0.120 -0 D)‘cosS a‘ (20)

4. PARTICLE-PARTICLE COLLISIONS FOR RIGID BODIES
The inter-particle collision depends mainly on the body motion and on it’s size, and on the
fluid dynamic transport effects, that is, drag and pressure gradient forces. However, the
calculation of the particle linear (up) and angular (a)p) velocities change caused by an inter-
particle collision is related to the following assumptions:
e Bodies are assumed to be rigid, and no shape deformation of the bodies
during the collision process is considered.
e Bodies move in a two-dimensional plane. There is no linear movement and
rotation in a third-dimensional space.
e Collisions are instantaneous, and during the collision calculation, only
impulsive forces are considered.
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Thus, in what follows and for the sake of simplicity, we will present only the case of contact
between two bodies. This approach can be extended to more complex cases by treating them
as series of contacts between two bodies. Suppose a vertex on particle A is colliding into an
edge of particle B at the point M, (see Fig. 4)

GA and GB are the centers of mass of particles A and B respectively d,, and d, are the
distances vectors from GA and GB to point P for particles A and B respectively. n is the normal
vector to edge of particle B. Two solutions exist to model collision between particles. The first
one is to introduce an impulsion force directly in equation (15) when collision occurs. That
means to know details about the materials of the particles, their exact geometry and how they
deform under stress, etc. This approach is recommended when one wants to know more
details on collisions but require lot of CPU time cost. The second approach consists on
modifying the directions and magnitudes of velocities vectors after the impact of the particles
by introducing the concept of impulse [5]. An impulse is the change in momentum of an object
when a force is applied over a very brief period of time. We imagine that during the collision
there is a force acting for a very brief period of time. If you integrate that force over that brief
time, you get the impulse. This is resumed on the following equation:

final final _ intial initial
(uA —ul" In=—e(’" —u’;"" )n (21)

tial  intial / / . . .. .
u/iel il yfiral Sl are the initial and final translational velocities of particles A and B

respectively. This equation says that the velocity at which the particles fly apart is
proportional to the velocity with which they were coming together. The proportionality
factor is the parameter e. The elasticity contact parameter e is equal to 0 if the collision is
inelastic and 1 if the collision is perfectly elastic. Our goal is to identify the collisions between
particles and to know approximately how stopping are formed in river for example when
tree’s branch contact bridge piers and perturb the flow. Because of its relative simplicity, our
choice is focussed for the second method. If we neglect the friction force (which is parallel to
the edge) and assume that the only force during the collision is in direction perpendicular to
the edge, which is given by the vector n, and using the equation (21), the pre- and post-
velocities are related by the following equations:

. o . o
final ____intial AB . final __ intial AB
w, =, +—=n 0, = 0, +d, X n
4 (22)
. o . o
final __ intial _ " AB . final __ intial AB
Uy =u, —=n; 0y = 0 +dpXx n
B
"™, @™, o' @' are respectively the initial and final angular velocities of

particles A and B. is I, is the moment of inertia od the particle A, o, is the impulse
parameter and it’s expression is calculated by introducing equations (21) into equation (22)
and assuming that n.n = 1. The expression of a.,, is then:

_(1 _ e)(ul;;m'al _ ui;itial )n

2 2
Vm 41 m g +(d, xn)? /1, +(dyxn)’ /1,

YuB= (23)
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Figure 7 Sweep direction.

We can use this last equation (22) for calculating collisions with a wall by assuming the mass
of the wall is infinite, hence it becomes:

_(l_e)uintialn
o= . 5 (24)
Vm +1/mz+(d, xn)’/1,

Notice that all those equations calculate velocities at center of mass. For an arbitrary point C
in particle, one uses the following equation to estimate the velocities:

c c
us=u,+ o xd; (25)

5. COMPUTATIONAL PROCEDURE
We discretize the system of equations (15) using a finite element procedure, with an additional
constraint given by equation (19) and by taking into account of inter-particles collisions.

5.1. THE TIME-INTEGRATION SCHEME

The time-integration scheme consists on using the Runge-Kutta scheme with an adaptive
step size control algorithm. The goal of this adaptive time discretization step control is to
achieve some predetermined accuracy in the solution with minimum CPU-time. Thus, after
writing the set of equations (15) in the form:

dy
_ 26
3 /(@) (26)

the basic idea of the Runge-Kutta with adaptive step size control algorithm, may be given as
follow:
+  Combine a 4" order Runge-Kutta method and a 5" order Runge-Kutta method;
»  Estimate error for each local step combining solution of the 4th and 5th order;
e Ifthe local truncation error is larger than a given accuracy, reduce the step size;
o Ifthe local truncation error is smaller than a given accuracy, increase the step size
For the 5" order Range-Kutta, the solution is:
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Table 1 Numerical values

257

i a ai—bl ¢ dij
1 16 1 0 0
135 360
2 0 0 1 1l
4 4
3 6656 —128 3 3 9
12825 4275 8 32732
4 28561 2197 12 1932 7200 7296
56430 75240 13 2197 ° 2197 > 2197
5 19 1 1 439 _q 3680 —845
50 50 216° O 513 4104
6 2 2 1 -8 ~ 3544 1859 -I1
55 55 2 27°%°2565° 4104 40

6
yE+AD=y()+ X asS,
i=1

For the 4" order Range-Kutta, the solution is:

B+ A=)+ 35S,
i=1

27

(28)

where At is the time discretisation step, y is the function to be approximated, S; are computed

as regular Range-Kutta methods:

6
Si=[f(t+ci’y+i§‘ldijsjjAt

(29)

f is the right hand side, the parameters introduced in this method are given in the table 1,

where the error reads:

6
err=y(t+At)-y(t+At)= 3 (a,—b,)S,
i=1

(30)

Thus, the adaptative time discretisation step Range-Kutta algorithm is as follow:

L. Inputf, t, t, Aty tol
Atl'nin =0
Atmax :(tlast - tO) /16
y()=y,

t=t0+At
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Figure 8 Geometry of the bend tube.

2. while (t<t,)

Calculate S, as (29)
Calculate y(i) as (27)

Calculate error err as (30)

0.2
. . . . tol
3.  Estimate optimal time step size as: N, = 0.8At[|0—|]
err

>~ min

. if |e|>tol , then At:Max[Atopt,%At At J and goto 1

. else if lel < ol

At= Min(At ,éAt,At J
opt 2 max
t=t+At,i=i+1land goto 1

Remark 1 In the above algorithm, y(t+ At) is never calculated

5.2. GENERAL ALGORITHM
The computational algorithm mainly consists of the following steps:
1. Flow simulating
Solve Saint-Venant flow equations
Set initialization conditions of particles and time step size At
2.  particle simulating
Calculate all forces and torques acting on the particles
Solve the basic equations of motion using Egs. (12) Over At
3. Update particles positions and orientations.
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Figure 9 Mesh of the bend tube.

5.3. SEARCH ALGORITHM FOR INTERPOLATION

To get information for each particle moving through the finite element mesh and solve
numerically equations (15) and (21) — (26) at each time step, one need to interpolate data
associated with unstructured grids. This interpolation can take a non-negligible portion of
total CPU-time, especially for large applications. To optimize this CPU-time, we use a fast
neighbor-to-neighbor technique [6] that accelerates speedup by a factor 5 compared to usual
techniques.

Consider an unstructured finite element mesh (see Fig. 5), as well as a point P with
coordinates (xp, yp). A straightforward way to determine if the point M is inside a given
element i is to determine the shape-function values of P (Vi) with respect to the coordinates
of the points belonging to element i as follow:

Xp =2 NX,

(€2))
Y,=3NJ,
where N, are the shape functions, that verify:
e for a 3 nodes triangle:
Ny =3 = 2006, = )= (= 5,0, = 3, Area
Ny =(( = 3305 = x,) = (35, =)0, — ) )/ Area a2

N3=((y2 = yx, —xp)—(x2 =x)(, —yp))/Area

Areaz(x3 —xz)(y1 =y, —(x —xz)(y3 =)

«  for six nodes finite element, we split each element into four triangles and
evaluate each of these sub-triangles. Then the point M is in element i, if and
only if:

Min (N,,1-N,) 20 Vi (33)
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Mesh module water surface elevation
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Figure 10 Water surface elevation.

Starting with “starting element”, the algorithm jump from an element to its neighbor in the
known grid. If the element into which x falls can be found in a few attempts (< 10), this
procedure, will outperform all interpolation algorithms. The algorithm is as follows:
1.  Form the list of elements adjacent to element for the given mesh
2. Loop over all particles
3. Obtain good starting element “starting element”
4.  For “starting element”, evaluate Ni
If (Min(N; 1-N;)20,i=1,3
Exit
else
Set “starting element” to neighbor associated with Min(N,)
Goto 4

5.4. FAST LINE-SEGMENT INTERSECTION
For each time step, one must detect if the particles, considered as rigid bodies, intersect each
other. Especially for large number of particles, this intersection’s search can take a lot of total
CPU-time and must be optimized to reduce computational time. A simple way to calculate
intersection between two segments is to construct the convex hull of the segments. Two
segments intersect if and only if the convex hull is a quadrilateral whose vertices alternate
between the two segments. Nevertheless, this technique could be used only when the number
of particles is small. In this section, we propose the sweep line algorithm witch is more
complicated to program than the first one, but accelerates drastically speedup especially for
large number of particles. Two segments AB and CD intersect (Fig. 6) if and only if :

»  the endpoints A and B are on opposite sides of the line CD, and

»  the endpoints C and D are on opposite sides of the line AB.
To test whether two points are on opposite sides of a line through two other points, we use a
counter clockwise (CCW) test. A and B are on opposite sides of line CD if and only if exactly
one of the two triples A, C, D and B, C, D is in counter clockwise order. To test the order of
the triple A, B, C, we use the simple algorithm CCW:

1. CCW(A,B,C)
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Mesh module velocity_mag
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Figure 11 Isco-contour of the velocity magnitude.

if(yc_ yA) (XB_ XA) > ()’B_ yA) (XC— XA)

return TRUE

else

return FALSE

Xpr Yar Xp» Yo Xoo Y are the coordinates of A, B, C points respectively. So the intersection
algorithm of two segments is:

2. INTERSECTION (A, B, C, D)

If CCW (A, C,D)=CCW (B, C, D)
return FALSE
else if CCW (A, B, C)=CCW (A, B, D)
return FALSE
else
return TRUE

In order to detect whether there is an intersection in a set of more than just two segments,
we use the sweep line algorithm (Fig. 7). The segments which the sweep line intersect form
a “working set” of line segments, amongst which we test for intersections. If the working set
is ordered from left to right, then only neighbors in the working set could intersect each other.
As the sweep line moves down, segments enter and leave the working set, and the working
set is maintained in left-to-right order. Every time the working set changes, we search again
for possible intersections.

6. NUMERICAL TESTS AND RESULTS

6.1. VALIDATION OF THE HYDRODYNAMICAL MODEL

The validation of the hydrodynamical model (Eq.1) is carried out by using a bend tube as a
benchmark test. The geometry used in this study was a 180° U-bend, with a diameter B, as
shown in Fig. 8, where the mesh grid used in the present 8 calculations is given in Fig. 9.
This geometry has been used in several experimental 9 and numerical investigations [7], [8],
[9]. The computed water elevation, the velocity magnitude contours and iso-vectors are
presented respectively in Fig. 10, Fig. 11 and Fig. 12. As illustrated in Fig. 10, in the external
part of the curve, the pressure force is in balance with the centrifugal force, however, the
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Figure 13 Geometry of the channel.

fluid particle velocity decreases. Consequently, the centrifugal force acting on it declines. The
maximum velocity tends to be found closer to the inner curve (Fig. 11 and Fig. 12). It is also
worthwhile to mention that for square-sectioned ducts or for non-circular ducts, the velocity
vectors may give rise to secondary motion, which may be strong enough to generate small
vortexes near the boundary layer.

6.2. TRANSPORT AND JAM FORMATION: RESULTS AND DISCUSSIONS
We consider the simulation of the motion of tree’s branches in river and their collisions with
four bridge piers. The tree’s branches have rectangular shape with 1m large and 20 m long.
The channel has 1500m length and 170 m large and inclined at slope 0.01 (Fig. 13). The
obstacles have circle shape and their radius equal 30 m. The computational domain is
discretized using triangular mesh for a total of 4468 finite elements and 9357 nodes with
15000 degrees of freedom (Fig. 14). At each node, the unknowns of the problem are the water
surface elevation /(x,f) and the velocities u and v. The physical parameters for the fluid are as
follows: the density, Q = 1:Kg/m?; the Reynolds number, Re = 1000 and the Manning
coefficient’s friction= 0.03m"3/s~!. Initial solution, # = v = i = 0; boundary conditions

e onAB, h=10m,

e on CD, h =9.80m,

» on AC and BD, a reflection boundary condition is imposed.
The simulation takes about 300 second CPU, on a Windows based PC with 2:8Ghz Pentium.

The computed water elevation, the velocity magnitude contours are presented respectively
in Fig. 15 and Fig. 16. Snapshots of the positions and orientations of the particles are shown in
Fig. 17. The total number of particles is 7 (the number of particles released is not restrictive ).
Initially the velocity of the particle is given ug =0 and angular speed of the particle is

given a);)7 =0 . The time increment is Ar = 0.1 second, and the repulsion coefficient ¢ = 1.0
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Figure 14 Mesh of the channel: two piers are located in the zoomed picture.
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Figure 15 Water surface elevation.

Fig. 16 shows that complex flow around the piers reflects eddies in the hydrodynamical
flow field and Fig. 17 shows the collisional effects from the particles accumulation around
the piers, and that particles tend to orient with long axes parallel to flow in the center of the
channel. Furthermore, Fig. 17 shows that interactions among multiple particles have
tendency to both increase and decrease particle transport: particle-to-particle collisions
entrain previously deposited particles, while immobile particles can obstruct moving ones,
causing deposition, and formation of log jams.

Nevertheless, in order to examine interactions among hydraulics, channel geometry,
transport distance and deposition of floating bodies, and to assess the potential effects of
floating bodies on the dynamic morphology of streams, we need to understand where these
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Figure 16 Velocity magnitude through de bridge.
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Figure 17 Particle transport passing through piers, located in the channel. Particles

consist of floating long sticks.
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bodies will deposit and how long they will remain there. Furthermore, the natural formation
of debris jams, is a build-up of floating bodies of variable sizes and quantities. Thus it is
necessary to simulate numerically the pathway of particles of different size and shapes, while
taking into account channel geometries.

7. CONCLUSION

In this paper, a model is successfully derived to track the motion of non spherical rigid-
bodies in a non-uniform flow field. The model reproduces successively the bodies pathway
by including translation and rotation movements, and by taking into account of the Particle-
Particle collisions. By using the fast neighbor-to-neighbor technique [6], the results showed
the capacity of the model to reproduce the collisions between bodies and walls without
increasing the computing time.

This model can help to identify potential problems for flood management in urban areas
as well as to improve the accuracy of flow modelling of these areas. It can also be useful to
researchers during investigations of the interaction between the floating debris, the flood
wave propagation and the jam formation. Indeed, the information available consists mainly
of after-flood observations of the remains of debris jams.
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