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ABSTRACT

In this paper, we are interested in determining the seismic velocity of a

shallow under-ground layer from refraction traveltimes measures. We

present a study case taken from an experimental seismic survey. The study

case is a wide-angle seismic inversion using experimental traveltimes

measures and based on ray tracing technique and genetic algorithms. The

hypothesis on the velocity distribution, coming from the seismic

experiment, makes the computation of some seismic rays expensive in

time. We propose to reduce the computations time by introducing a

formulation of the inverse problem that avoids such costly rays, hence the

inversion becomes feasible.

Also we present a sensitivity analysis based on a singular value

decomposition of the jacobian of the traveltimes with respect to velocity.

We give the relationship between the traveltimes measure errors and the

velocity estimation error. We discuss the advantages of this method over

the classical one based on the resolution matrix.

Keywords: Seismic inversion, ray tracing, linearized eikonal equation, SVD,

sensitivity analysis

1. INTRODUCTION
Geological investigations are usually based on seismic surveys that allow obtaining images
of under-surface sublayers and interfaces between these layers. One of the aims of these
surveys is to carry out an estimation of the depth of the bedrock and the mechanical
properties of the rocks. This domain of geophysics is referred to “seismic inversion” as it
deals with seismic traveltimes measures to recover the seismic velocity in the underground.
Knowing its industrial applications, this tool has become in recent years very powerful to
reach high resolution images for complex geological structure.

In this paper, we are interested in carring out a seismic refraction traveltimes inversion to
determine the seismic wave’s velocity in a shallow underground sublayer. The inverse
problem is about seismic refraction in a two dimensional domain composed of two layers
(Ω1, Ω2) and separated by an interface (Γ). Let (v1, v2, γ) be the velocity in (Ω1), the velocity
in (Ω2) and the interface between them respectively. We call the vector of these three
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functions the continuous velocity distribution. Seismic traveltimes T are related to the wave’s
velocity through the Eikonal equation:

(1)

where υ(x) is the wave’s velocity at point x of the domain. Highlights of this model are
presented in section 2.

A seismic traveltime inversion seeks to find the distribution of the wave’s velocity (υ1, υ2, γ)
in the underground from an array d of NT experimental traveltime measures corresponding to
some positions of the seismic source si and the receiver ri , i = 1 . . . NT . The choice of the
model space and the data space, to which belong the velocity distribution and the traveltimes
measures, will be presented in section (3). The inverse problem is usually formulated as a non-
linear least squares optimization problem with a cost function (d – BT (υ))tCd

–1(d – BT (υ))
being the misfit function between the vector of experimental data d and simulated traveltimes
vector BT (υ) for a given seismic velocity υ, B is the operator that gives an array of values of
T (υ) for the pairs (si, ri) and Cd is the data covariance matrix (see [1], [2] and [3]). The
nonlinear least squares problem is solved using stochastic (“genetic algorithms”) and/or
deterministic methods. The literature associated with these two classes of methods is huge and
no attempt to review it shall be made in this paper.

In both cases it is assumed that, for any velocity distribution (υ1, υ2 , γ), the Eikonal solver
must provide a vector BT (υ) of NT elements to be able to calculate the misfit function. In
many applications this condition is trivial. However, when the depth of the interface γ is very
smaller then the distance between the source and the receiver (shallow layer), the
computation of all the components of the vector BT (υ) may be computationally not feasible.
The reasons of this are elucidated in paragraph (2.2). To overcome this difficulty we propose
in section 5 a formulation of the inverse problem that avoids computing expensive
traveltimes, thus allowing the inversion become feasible.

The sensitivity analysis of a mathematical model, describing a physical system, is the
study of how errors in the output data (traveltimes measures) are affected by the perturbation
of input parameters (seismic velocity). The process of producing a solution to an inverse
problem is not complete without a sensitivity analysis of the solution with respect to the
measure errors. Thus in addition, one must study the robustness or the quality of the solution,
and not simply producing a single solution that minimizes an objective function. A common
quantitative approach to study the sensitivity of the solution is the computation of the
diagonal elements of the resolution matrix. As explained in [4], [5] and [6], the expression
of the resolution matrix is derived by assuming that the traveltime measures are noise free.
This is why this commonly used method does not provide a direct relation between the
estimation error of the velocity distribution and the measure errors.

In this paper, we consider a class of sensitivity analysis methods called optimal vectors
method. It is based on computing the singular value decomposition (SVD) of the jacobian of
the output data with respect to the input parameters (see [7] and [8]). This method gives a
relationship between the level of noise in the traveltime measures and the estimation error of
the velocity distribution. Such alternative enables us to find the parameters of the velocity
that are identifiable by inversion together with the traveltimes measures which are
significantly involved in the inversion. This sensitivity analysis method is compared with the
classical resolution matrix method which is usually used in the seismic inversion. To present
the advantages of SVD based method over resolution matrix one, we propose a study case
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taken from a seismic survey. The choice of our study case is motivated by two points. First,
the classical resolution matrix method is not appliable in this case but the SVD based one
gives reliable results. Second, we are considering a simple and realistic case of seismic
inversion where it is easy to predict intuitively the sensitivity analysis results and to verify
the validity of the method.

2. THE FORWARD PROBLEM
The forward problem seeks to compute the traveltime of a seismic wave knowing the
velocity distribution. The PDE that relates these two quantities is the Eikonal equation. This
equation represents the basis of our work. It is shown here how it can be derived from the
wave equation. For simplicity, the wave equation is considered only with acoustic case
(seismic waves in a fluid). The derivation of the Eikonal equation from elastic wave equation
(seismic waves in a solid) is very similar but it takes more steps in the mathematical
development. The geological domain Ω that represents the underground where the seismic
survey is done is two-dimensional and consists of two unbounded horizontally supperposed
layers (Ω1, Ω2) separated by an unknown interface γ (see Figure 1).

2.1. THE EIKONAL EQUATION
Eikonal equation is derived from the waves equation:

(2)

where π : Ω � R+ → R is the pressure field due to the wave’s propagation and υ(x) is the
spatially varying seismic wave’s velocity. Practically, such wave will be referred to as
“seismic ray”. Its main features are as follows (see 1):

1. � is defined on a compact support subset of Ω that includes the source, the
receiver and also intersect γ. The velocity of the seismic wave in the domain
is supposed to be continuous except along the interface γ.
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Figure 1 Seismic ray in a geological domain with two layers.
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2. Thus, ray shooting must have an incidence angle that allows fulfillment of
point one.

The Eikonal approach to the Eqn. (2) seeks solutions in the high frequency domain, where
an appropriate approximation of the solution π is sought in the form:

(3)

The functions Π(x) and T (x) represent respectively the amplitude and the traveltime of
the wave at point x.

Injecting equation (3) in (2) leads to:

(4)

By neglecting �2Π = 0 and by setting all the coefficients of the powers of ω to zero, one
deduces two main equations, the first of which is the transport equation obtained by setting
to zero the coefficient of ω :

(5)

The second equation obtained by setting to zero the term of Eqn. (4) in ω2 gives Eikonal
model:

(6)

This is a nonlinear first order PDE relating the wave’s traveltime T(x) to the wave’s 

velocity. If we let be the components of the slowness vector and 

be the Hamiltonian function an equivalent form of the

Eikonal equation is:

(7)

More details details about the Eikonal equation or the seismic ray theory in general can
be found in [9] where the existence of the solution is obtained using the method of
characteristics. This method seeks to replace the nonlinear first order partial differential
equation (7) with a system of ordinary differential equations along a special curve called
characteristic or seismic ray travel curve. Specifically, let x(s) be a parametric representation
of the characteristic curve with a parameter s, T (s) = T (x(s)) and p(s) = �T (x(s)). By by
formally differentiating equation (7) respect to s, we obtain:
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(8)

This equation is satisfied when the characteristics obey to the follows system (see([10])):

(9)

Differentiating T (x(s)) along the characteristic curve we obtain an additional information
for transporting T along the curve:

(10)

Replacing H with 1
2 {||p||2 – 1/υ2}, Eikonal equation can be equivalently formulated

through the characteristic system:

(11)

where s � [0, smax ] with smax to be determined by solving the first four equations of (11)
(that are independent from T ) in a way whereby the seismic ray originates at the source,
intersects (γ) and ends up by reaching the receiver when s = smax. The resulting travel
curve (Γ), is then used to obtain the the total traveltime by integrating the fifth equation
over (Γ):

(12)

The initial conditions on x(s) and p(s) are given by
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(14)

where α is the direction of the ray at the source, to be determined by the shooting method
technique.

2.2. THE SHOOTING METHOD
In the case of the seismic survey, each ray is composed of three segments (see Figure 1) and
has a discontinuity when the ray hits the interface γ. The discontinuity is handled using the
Snell-Descartes law (see [9]). The computation of the ray is done in three steps:

1. The ray leaves the source (x(0) = xsource) with an angle α with respect to the
horizontal such that α > α0; so this minimal angle α0 would permit the ray to
hit the interface γ and penetrate in the second layer. As such, the ray
direction is given by: p(0) = (cos(α)/υ(x(0)), sin(α)/υ(x(0))).
The initial value problem (11) is then solved in Ω1 using improved Euler
scheme leading to an intersection point Q1 = x(s1), s1 being the curvilinear
coordinate of Q1.

2. The Snell-Descartes law is then used to obtain p1, the new direction of the ray
in Ω2, from (x(s1), p(s1)) in Ω1. Similarly to step 1, the initial value problem (11)
is solved in Ω2 until the ray hits the interface at Q2 = x(s2), the second point of
intersection of the ray with the interface which curvilinear coordinate s2.

3. Once more the new direction of the ray in Ω1, p2, is obtained from (x(s2),
p(s2)) using Snell-Descartes law and System (11) is solved in Ω1 with in
initial conditions (x(s2) = Q2 and p(s2) = p2) until the ray hits the surface of
the domain at point xfinal.

Note that xfinal depends on α, the direction of the ray at the source. The shooting method
technique aims to find α for which xfinal (α) = xreceiver so that the computed ray connects the
source to the receiver. The implementation of the method considered is in two steps:

1. Define for α an interval of existence [αmin, αmax] such that both αmin and αmax >
α0. In our study case, one must have |αmin – αmax | ∼∼ 10−3 rad and xreceiver belongs
to the segment defined by xfinal (αmin) and xfinal (αmax).

2. Shoot N rays having α � [αmin, αmax], N ∼∼ 1000, then pick the two values of α,
α1 and α2 for which | xfinal (α) – xreceiver | is the smallest. Given that the width of
the interval [αmin, αmax] is O(10–3), this implies that α will be determined with at
least 6 significant figures and xf inal (α) is very sensitive to α.

3. Using α1, α2 apply the secant method solve the equation xfinal (α) = xreceiver.

However, for some velocity distributions (υ1, υ2, γ), solving the equation xfinal (α) =
xreceiver may require N shots of rays with N > 1000 and the simulation of the forward problem
becomes very expensive in computations. To overcome this difficulty, we propose in section
5 a formulation that avoids such expensive ray shooting thus allowing the inversion to
become feasible in time execution.

3. MODEL SPACE AND DATA SPACE
The model space, the space in which we are seeking the velocity distribution (υ1, υ2, γ), has to
guarantee the existence of G the Jacobian of BT (υ) because it will be needed to perform the

p x x( ) (cos( )/ ( ( )), sin( )/ ( ( )))0 0 01 1= α αυ υ
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sensitivity analysis. The theoretical basis of the choice of the functional space of (υ1, υ2, γ) is
given in ([11]). One must seek for (υ1, υ2, γ) in = (H1(Ω1), H1(Ω2), H1 (Γ)) with
H1 the Sobolev first order space . For practical reasons has to be discretized into 

a finite space using a regular grid of points and some interpolation functions.
is the space of the unknown velocity and RR+

NT is the data space, where NT is the
number of traveltimes measures.

Bilinear function’s are used to define . We consider to represent the domain with a
rectangular grid of three horizontal lines and M vertical lines (see Fig. 2). The coordinates of
the nodes of the grids are in {0, z1, z2} � {0, x1, . . . , xM} where {0, z1, z2} are the depths of
the horizontal lines and {0, x1, . . . , xM} are the positions of the vertical lines. We denote by
υ(x) = υ1(x) if x � Ω1 or υ(x) = υ2(x) if x � Ω2. The velocity distribution (υ1, υ2, γ ) is
approximated by (υ1

h, υ2
h, γ h) such that in each cell (1

υ)2 is replaced by a bilinear function that
interpolates it at the four nodes of the cell. Thus in each cell υ(υ) is approximated by υh(x)
such that:

(15)

The discretisation of the velocity in the upper layer υ11
h depends on the the values of υ1

at the nodes of the grid in the upper layer: (υ1(x1, 0), . . ., υ1(xM, 0)) and (υ1(x1+M, z1), . . .,
υ1(x2M, z1)).

Similarly, the discretisation of the velocity in the lower layer 2
h depends on the

values of υ2 at the nodes of the grid in the lower layer: (υ2(x1, z1), . . ., υ2(xM, z1)) and
(υ2(x1+M, z2), . . ., υ2(x2M, z2)).

The interface is taken as a broken line having its nodes on some edges of the grid. The
coordinates of the nodes of the interface are (xi, zi

int), i = 1, . . ., M where {zi
int} are the depths

of the nodes of the interface.
We denote by m the vector of all the parameters on which depend the discreet velocity

distribution (υ1
h, υ2

h, γ h ):

(16)
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Figure 2 Parametrization of a geological domain of two layers: bilinear
interpolation of in each cell and a broken line interface.1
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h � �+
5M is defined as the set of functions υ(x) such that 1/υ2 is a bilinear function over

each cell of the grid and discontinuous along the interface between the two layers. The
inverse problem is seeking m � h given the array of traveltime measures d � RR+

NT .

4. FRÉCHET DERIVATIVE OF THE TRAVELTIME WITH RESPECT
TO THE VELOCITY
Our study is restricted to the sensitivity of the traveltimes with respect to the velocity model
only since it is known that in the wide angle context traveltimes are less sensitive to
interface’s shape than velocity (see [4]). On the basis that the pair (T, υ) solves the inverse
problem T = F (υ), where F is the eikonal solver, we seek the Fréchet derivative F' (υ) so as

For such purpose we start by linearizing Eikonal equation. If Γk is the ray connecting a
fixed source to a receiver k, let:

(19)

where υ(x) is the velocity field associated with the seismic ray Γk. Let now δ be the perturba-
tion operator: δυ and δTk are the perturbations of the velocity and the traveltime respectively.

A first order Taylor expansion about υ leads to:

(20)

thus

(21)

The integral over δΓ is equal to zero from the Fermat principle with fixed endpoints (see [4]).
Thus we find:

(22)

On the other hand note that

Γk,i being the intersection of Γk with a grid cell i.
Replacing υ by υh and using expression (15):
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(24)

Assembling (23) for all the cells i of the grid and all rays k, the linearized Eikonal
equation becomes in a matrix form:

(25)

where, a � R8M is an array of the coefficients of all the bilinear forms used to approximate
over the grid cells and J � RN

T
× 8M the Jacobian matrix deduced from Eqn. (23).

Equation (25) can be rewritten in terms of the value of at the grid nodes

whereby a = Cu with C � R4M�8M being the matrix of bilinear interpolation. Hence:

(26)

and

is the Jacobian matrix we are seeking to carry out the sensitivity analysis.

5. INVERSE FORMULATION
A classical formulation of the inverse problem would be:

(27)

In this paper we do not give theoretical results about the existence and the uniqueness of
the solution of this optimization problem (see [12] and [13]). However we know from ([11]
and [14]) that this optimization problem is ill posed and one has to add regularization terms
and/or constrains to the cost function in order to guarantee the well posedness of the problem.
In the following two subsections we present the regularized version and the constrained
version. 

5.1. REGULARIZED INVERSE FORMULATION AND RESOLUTION MATRIX
BASED SENSITIVITY ANALYSIS
With the first possibility, the inverse problem is formulated as follows:

(28)

where m0 is some reference discreet velocity distribution, Cm is a covariance matrix of the
discreet velocity distribution and η is a damping factor. The solution of (28) is the discreet
velocity distribution m∗ such that the gradient of the cost function in (28) is null at m∗:

m
min  t

d
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md T m C d T m m m C m
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(29)

with G is the jacobian matrix This equation can be solved using an iterative 

method such as the Gauss-Newton method. A sequence of discreet velocity distributions mk
is constructed as follows:

(30)

We keep updating mk until the cost function is less then a tolerance value.

Adding and retrieving to Eqn.(29) leads to:

(31)

Let mtrue be the true velocity distribution, we have d = BT (mtrue ) + ξ where ξ is the error
measures. If we replace in the RHS of Eqn. (31) m∗ by mtrue and assume that ξ ≡ 0 we obtain:

(32)

with the resolution matrix.

This linear relationship between m∗ and mtrue stats that each element of m∗ is a linear
combination of the elements of mtrue . The sensitivity analysis based on the resolution matrix
consists in checking the values of the diagonal elements of R. If Rii is close to 1 then the
element m∗

i is estimated with a high precision. If Rii< = 0.7 then it is usually considered that
the estimation of m∗

i is not reliable.
The major drawbacks of this method are that:

• it requires providing the covariance matrix Cm of the model. If this matrix is
not provided (Cm = 0), this leads to R = I and m∗ = mtrue which is not possible
using noisy measures. So this method is only appliable in the case of the
regularized formulation and not in case of the constrained formulation,

• it assumes that ξ ≡ 0 so there is no direct relationship between the measure
errors and the accuracy of the estimated velocity distribution. With this
method, it is not possible to know which parameters of the discreet velocity
are not identifiable for a certain level of noise in the traveltimes measures.

5.2. CONSTRAINED INVERSE FORMULATION AND SVD BASED
SENSITIVITY ANALYSIS
We choose to add constrains to 27 based on physical considerations. As outlined above, the
refracted rays must have a certain curvature in order to be able to connect the source with the
receiver, and given that the curvature of the ray is proportional to the gradient of the velocity
we impose constrains on the gradient of the velocity to insure the wellposedness of the
problem. The gradient of the velocity in the first and the second layer is considered bounded
between the values G1, min, G1, max, G2, min, G2, max respectively. We write also the implicit

R G C G C G C Gt
d m
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constrain that the number of computed traveltimes NR (m) for the discreet model m is equal
to the number of traveltimes measures NT.

(33)

To solve 33, one can use an iterative deterministic method such as the SQP augmented La-
grangian method in [14]. This method constructs a sequence of iterations mk until iteration k
such that , the mean square misfit error, is less then a tolerance ε. One can

note that the choice of ε is independent of NT , the number of traveltimes measures.
The difficulty in our case is that the computation of all the elements of the vector BT (mk )

is not always possible.
Let Bc(m) be the operator that gives the available computed traveltimes, and A(m)d the

corresponding traveltimes measures, where A = A(m) � RNR(m) × NT is the correspondence
matrix ((A)ij(m) = 0 or 1) between the measured data and the associated simulated
traveltimes. is the mean square misfit error for the NR(m) computed

traveltimes. Our formulation of the inverse problem consists in finding the discreet velocity
distribution m for which the number of computed traveltimes is maximal under the constrain

that

(34)

We consider that formulations (1) and (2) are equivalent in the sens that:
• it is obvious that if m∗

1 is a solution for formulation 1 it is also a solution for
the formulation 2: m∗

1 is the solution of formulation 2 which gives (NR (m∗)
= NT),

• if m∗
2 is a solution for the formulation 2 then

We found that the constrained version gives more reliable results in our case, so
we will be using this method in the numerical experiment.

We carry out a sensitivity analysis following the one given in [8].
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Let n = NT , q = 4M (n >> q) and consider the singular value decomposition (SVD) of the
Jacobian matrix (F'(u)) which was defined in section (4).

where W = [w1,...wn] and V = [υ1, ..., υq ] are orthogonal basis for traveltimes and velocity
respectively:

One easily verifies that:

Given that

A first order analysis yields to:

Thus

(35)

from the SVD of F’
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Dividing Eqn. (5.2) by In eqn. (36) we obtain:
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uk is identifiable iff Hence we have:

(38)

Otherwise, if there exists some k such that then the estimation of the kth

parameter in the singular basis can’t be validated ([8]). Inequality (38) represents the forward
relationship between the traveltime measure error and the error in the velocity estimation.
It will be used in the seismic inversion in section 7.

6. DATA ACQUISITION
In 2002, the IFREMER1 has done a seismic survey in Morocco. The goal of this survey is to
study the structure of the margin of the Moroccan coast in the sea and in the underground.
Figure (3) shows the geographical location of the survey. A linear profile 50km long is con-
sidered, 28 shoots (red stars) were done at the surface of the ground by shacking trucks. The
signals were recorded by 25 different stations (black dots).

The recorded signals are processed to eliminate the noise as well as any other perturbing
factor. The signal process is in four steps:

1. Correlation: the recorded signal is compared with the source signal to extract
the significant response of the underground.

2. Summation: signals coming form the same source-receiver pair are summed
to obtain an averaged signal by shoot.

3. Filtration: the correlation and averaged signals are filtered again to eliminate
the residual noise.

Figure (4) shows a seismic section which is a compilation of all the processed signals.
In our case study, the observation of the seismic sections shows the existence of two

signals which suggests the existence of two supperposed layers separated by an interface.
This is the reason of considering in this paper a two dimensional domain of two layers.
Typically, these two layers would be a layer of basalt (υ2 � 5000m.s−1) over a layer of
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Figure 3 Geographical location of the survey: seismic sources (red stars) and
recording stations (black dots).



sediments (υ1 � 2000m.s–1) . One can deduce from these sections the traveltimes of the first
arriving signals. Traveltimes represents the input data of the inverse problem. They are of
type wide angle refraction because the first arriving signals have to propagate in the second
layer where the velocity is much higher than in the first layer. This hypothesis with the range
of distances between the source and the receiver put some constrains on the shape of the
refrated rays. The ray must have an incident angle with the interface very close to the critical
angle and it has to be slightly bended in the second layer to be able to propagate over a long
distance near the subsurface (see Figure 1).

7. NUMERICAL RESULTS
Traveltime measures are taken from the seismic experiment described in section 6 with NT =
102 and ε = 0.1s. G1, min, G1, max, G2, min and G2, max are defined on the basis of prior
geophysical information on the nature of underground. We solve the inverse problem with
different values of M, the number of columns in the grid, to determine the number of columns
needed to model accurately the physical domain. This approach is called a multi-scale
approach. Results for different values of M are shown in table (1). One can deduce that the
solution model with M = 5 (NR (m∗) = 76) is sufficient to describe the underground structure
studied in the survey. Velocity distribution and ray tracing corresponding to the solution
model m∗ are shown in Figures (5) and (6).

Next, a SVD of the Jacobian matrix about the solution m∗ with M = 5 is computed. Figure
(7) shows the singular values ratios (sk /s1, k = 1 . . . q). Following the criteria given in Eqn.
(38) to define an identifiable parameter, one can deduce from Figure (7) that four singular
discreet velocity parameters (discreet velocity parameters expressed in the singular basis)
can be recovered if the level of noise in the traveltimes measures is less than 10%.
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M # of parameters model NR (m∗) (out of NT = 102)
1 10 52
5 25 76
10 50 73

Figure 5 Seismic traveltime inversion: velocity distribution using 102 traveltime
measures.

Figure 6 Seismic traveltime inversion using 102 traveltime measures: the
corresponding ray trace.
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multiscale approach



Given that the absolute traveltime measure error ε = 0.1, we found that among the NT
traveltime measures available from the experiment 27 present more than 10% of noise. Thus
these measures must be discarded from the inversion to identify correctly four singular
parameters. The inversion is repeated with this new subset of traveltime measures (NT = 75)
and the discreet velocity distribution obtained now is the “final” discreet velocity distribution
containing a reliable estimation of the four singular parameters. Figure (8) shows the “‘final”
discreet velocity distribution corresponding to the new traveltime measures subset of the
survey and Figure (9) shows the corresponding ray tracing.

Figure (10) shows the coordinates of the four singular parameters of the discreet velocity
distribution, parameters expressed in the singular basis. Each singular parameters is a linear
combination of the physical parameters. The coordinates (1–5, 16–20) of these singular
parameters are neglectable when compared to the others. Thus these four singular parameters
depend only on the physical parameters numbered (6–15). Hence it can be deduced that the
physical parameters (6–15) are the identifiable ones. In our numbering, they correspond to
the lower nodes of the first layer and the upper nodes of the second layer. Thus one can
conclude that with these refraction traveltimes measures, we are able to recover only the
velocity near the interface. All the other parameters can not be recovered with the present
traveltime measures.

A physical justification would be that, in the considered experiment, traveltimes depend
mostly on the second segment of the seismic rays (see Figure (1)). The second ray segment
is defined using the velocity in the second layer (the characteristic equations) and velocity in
the first layer near the interface (the Snell-Descartes law).

With this technique of sensitivity analysis it is also possible to find the traveltime
measures that contain the significant information on the wave’s velocity in the domain. From
Eqn. (5.2) and given that four singular parameters are identifiable, on can deduce that four
singular traveltime (expressed in the singular basis W) constrain effectively the velocity
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Figure 7 Sensitivity analysis: singular values ratios.
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Figure 9 Seismic traveltime inversion using NT = 75 traveltime measures entailing
less than 10% of noise: the corresponding ray trace.
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Figure 8 Seismic traveltime inversion: velocity distribution using NT = 75 traveltime
measures entailing less than 10% of noise.
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Figure 11 Coordinates of first four singular traveltimes showing the measures
containing significant information for the inversion.
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Figure 10 Coordinates of first four singular vectors showing the identifiable
physical parameters.



distribution m. Each singular traveltime is a linear combination of all the physical traveltimes
measures. Figure (11) shows the coordiantes of these four singular traveltimes. One can
notice that no coordinate is null in all of the four singular traveltimes thus it can be deduced
that all the traveltime measures are participating equally in the inversion.

8. CONCLUSION
In this paper, we presented a traveltime inversion seeking to determine the seismic velocity
of shallow layer. The inversion is based on the simulation of seismic rays. In this special case
of shallow layer, the computation of some seismic rays may become very expensive in time.
To avoid the computation of such seismic rays, we proposed a formulation of the inverse
problem that does not require such expensive rays.

Also we studied the sensitivity of the velocity distribution with respect to the noise in
the traveltime measures. The sensitivity analysis is based on a SVD of the jacobian of the
traveltimes with respect to the velocity. By relating traveltimes measure errors to the error
in the estimation of the velocity, we concluded that we are only able to identify velocity
near the interface. A physical justification is given to validate the result.
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