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ABSTRACT

Numerical implementation schemes of drag force effects on Lagrangian

particles can lead to instabilities or inefficiencies if static particle time

stepping is used. Despite well known disadvantages, the programming

structure of the underlying, C++ based, Lagrangian particle solver led to the

choice of an explicit EULER, temporal discretization scheme. To optimize

the functionality of the EULER scheme, this paper proposes a method of

adaptive time stepping, which adjusts the particle sub time step to the need

of the individual particle. A user definable adjustment between numerical

stability and calculation efficiency is sought and a simple time stepping rule

is presented. Furthermore a method to quantify numerical instability is

devised and the importance of the characteristic particle relaxation time as

numerical parameter is underlined. All derivations are being conducted for

(non-)spherical particles and finally for a generalized drag force

implementation. Important differences in spherical and non-spherical

particle behaviour are pointed out.

1. INTRODUCTION
A Lagrangian particle solver, based on the Open Source Computational Fluid Dynamics
(CFD) software OpenFOAM® [18, 19] was developed as described in (Boiger & Mataln,
2008, [1, 2] & [20, 21]). The simulation is supposed to model particle deposition effects in
deformable filter fibre media at low Reynolds and Knudsen numbers.

Within the course of programming, all particle modelling was based on the calculation of
individual, explicitly formulated force effects, [2, 20]. Because of the wide variety of
individual forces, and the specific set up of the code, the application of commonly used
discretization schemes such as the Runga Kutta Scheme [10], or semi analytical approaches
as described in (Göz, Lain & Sommerfeld, 2006, [11]), was found to be disadvantageous.
Therefore an explicit EULER implementation of force effects on particle movement was
selected. At constant time step ∆t the EULER scheme constitutes an approximation of the
semi analytical approach of order O(∆t), [10]. A well known problem of the simple, explicit
EULER implementation is the occurrence of numerical instabilities. It has to be addressed.

So far the OpenFOAM® based, Lagrangian particle solvers have used a constant number
of user defined Subcycles J, to account for particle time scales that are smaller than fluid time
scales. The simple relationship between fluid time step ∆tf, particle time step ∆tp and the
number of particle Subcycles J reads:
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(1)

with J∈Z, ∆tp ≤ ∆tf , J ≥ 1 and J = const. The ceiling function is of course preferred 
here to a floor function  , in order to be on the safe side. Per definition particle time steps
can not become greater than fluid time steps. Once the number of Subcycles is selected, it
remains statically linked to the fluid time step, regardless of particle dimensions, material
properties, or flow conditions. As a consequence, static time stepping can lead to
inefficiencies and numerical instabilities.

This paper proposes a simple method of adaptive particle time stepping, taking into
account the properties of each individual particle, such as particle mass mp, particle density ρp
and properties of the local fluid region, such as dynamic fluid viscosity µf as well as fluid
velocity uf, and particle velocity up so that:

(2)

Furthermore this work presents a way to quantify the degree of numerical particle stability,
that goes along with each chosen particle sub time step. Based on these results an adaptive time
stepping method is worked out, that allows the user to select accuracy and efficiency of the
explicit EULER force effect modelling.

2. EXPLICIT EULER TEMPORAL DISCRETIZATION OF DRAG
FORCE EFFECT ON (NON-) SPHERICAL PARTICLES
The simple, explicit Euler, temporal discretization of particle movement under the influence
of external forces for th jth time step can be written as:

(3a)

Issues concerning numerical instability, stemming from the explicit EULER, temporal
discretization, are at the focus of this paper. Those instabilities are limited to particle–fluid
interaction force effects and do not concern momentary forces caused by events such as
particle–particle, particle-wall or particle-fibre impacts (Boiger, Mataln, 2008, [2, 21]).
Therefore particle-fluid forces have to be inspected in detail.

2.1. PARTICLE–FLUID INTERACTION: DRAG FORCES
The Basset Bousinesque Oseen (BBO) equation offers a complete, mathematical
quantification of all possible interaction forces acting on any object being immersed in a fluid,
[5, 11]. Going on from this generalized description, the problem needs to be simplified.
Therefore the simple case of a particle, slowly speeding up in a uniform flow field shall be
considered. The governing particle momentum equation (PME) is then mainly governed by
fluid drag- and lift forces, Fd and Fh respectively, so that:
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(3b)

Lift forces are only relevant for arbitrarily positioned, non-spherical particles and shall be
disregarded here.

The general, well known formulation of the fluid drag force, for 1D, uniform flow
conditions reads:

(4)

Here cd is the drag coefficient, Af is the projected frontal surface area, urel is the relative
fluid–particle velocity, ρf is the fluid density and Rep is the particle Reynolds number, which
is defined as:

(5)

In Equ.5 ηf is the kinematic fluid viscosity and Dsph is the particle diameter of a volume
equivalent sphere. Dsph is defined as:

(6)

Here mp is the particle mass.
For spherical particles and low Reynolds numbers, Stokes’ law is applicable to calculate

the drag coefficient:

(7)

In total there are well over 30 equations (Haider, Levenspiel, 1988, [12]) in literature,
relating the drag coefficient of spherical particles to the Reynolds number.

The amount of equations in literature, describing the drag coefficient of non–spherical, e.g.
ellipsoid, particles is significantly lower. Reviews on this subject have been conducted e.g. by
(Haider, Levenspiel, 1988, [12]) and (Hölzer, Sommerfeld, 2007, [13]).

Hölzer & Sommerfeld have furthermore presented a cd correlation formula for ellipsoids,
that is reportedly valid over the entire range of Reynolds numbers [13]. The authors have
compared their formula, shown in Equ.8, to a wide range of experimental results for spheres,
isometric particles, cuboids, cylinders, disks and plates and report mean, relative deviations of
14.1%. This number compares to values of significantly more than 100% for several other
non-spherical drag force formulations in use. Consequentially this work will adopt it for the
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discussion of non–spherical drag force implementation and the related time stepping
problems.

(8)

In Equ.8, Φ denotes the sphericity of the particle, Φcross stands for the crosswise sphericity and
Φlength is the lengthwise sphericity.

2.2. PARTICLE SPEED UP
Previous works of e.g. Lain, Göz & Sommerfeld, [7]–[11], have considered the case of
gravitational particle settling and specifically the value of the terminal particle settling
velocity to study numerical instabilities. Since gravitational effects play a negligible role in
the context of automotive oil filtration [1], a different method to numerically and analytically
study time stepping- and instability effects was devised.

Hereby the case of a particle which speeds up in a uniform flow field shall be analyzed.
The ratio between particle–wall distance and particle diameter shall be considered as large and
any additional effects on the Lagrangian PME shall be disregarded as described above.
Therefore, in extension of Equ.3, the simplified particle momentum equation reads:

(9)

In this context up is the particle velocity, urel is the relative particle–fluid velocity, Vp is the
particle volume, ρp is the particle density and ρf the fluid density.

2.2.1. Speed up of spherical particles
The characteristics of the speed up curve of any particle being inserted at particle velocity up
= 0 m/s, into a fluid flow of uniform velocity uf , depend mainly on the implementation of the
drag coefficient. For spherical particles and low Reynolds numbers the analytical solution for
the development of particle velocity from zero, infinitely close to uf, against time, can be
found easily [6]. It reads:

(10)

Here urel,0 is the relative particle-fluid velocity at t = 0s. Figure 1 shows the plot of an
exemplary, spherical particle speed up curve and the usual, graphical interpretation of the
characteristic, spherical particle relaxation time τp,sph (see chapter 3.1).

2.2.2. Speed up of non–spherical particles
In the case of non–spherical particle speed up, an analytical solution for the speed up curve can
not be found that easily. By inserting the cd correlation of Equ.8 into the simplified PME of Equ.9
and by consequential integration over time and relative particle–fluid velocity, the following
expression is reached:
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(11)

Here the constants C0, C1, C2 and C3 are:

(12)

Where Vp is the particle volume and Af,ell is the frontal area of an ellipsoid particle,
projected onto a plane, perpendicular to the relative fluid-particle velocity vector.

(13)

(14)

(15)

Equ.11 however, is transient in nature, therefore a solution for up = f(t) can only be obtained
numerically. The Newton Raphson procedure [4] is used to get a plot of the results of the
explicit solution for up out of Equ.11 (see Figure1).

One focus of this paper is to point out the significant difference in speed up behaviour
between spherical- and non-spherical particles, which share the same volume equivalent
spherical diameter. Figure 1 shows a direct comparison of the speed up behaviour of an
exemplary spherical particle and a non-spherical particle of equal mass and volume, with
arbitrary sphericity and under matching flow conditions. Assuming the qualitative, physical
correctness of the non-spherical drag implementation of Equ.8, the decreased sphericity,
leads to decreased particle relaxation time, increased drag forces and thus to faster particle
speed up.

2.3. NUMERICAL INSTABILITY OF EXPLICIT EULER DRAG FORCE EFFECT
IMPLEMENTATION
For a given, exemplary fluid time step, fluid properties, spherical particle dimensions, particle
density and flow conditions, a variation of particle Subcycles easily reveals the weakness of
static particle time stepping. Figure 2 shows a plot of three numerically calculated, spherical
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particle speed up velocity curves, with the number of Subcycles J being the parameter. The
results are compared to the correct, analytical solution of Equ.10.

At decreasing numbers of Subcycles, e.g. increasing particle time steps, the speed up
curves show increasing deviation from the analytical solution (Figure 2, J = 40, J = 20). If a
certain particle time step limit is exceeded, the particle starts experiencing unsteady
acceleration (Figure 2, J = 10), and for even higher time steps the numerical solution collapses
altogether.

A similar behaviour of the results can be observed if the number of Subcycles is held
constant, but the particle diameter, is in turn decreased, or the dynamic fluid viscosity is
increased. When drag forces on non–spherical particles are considered, an additional
parameter to be taken into account is the local, relative fluid–particle velocity urel. Here an
increase of relative velocity has analogous effect to a decrease of Subcycles.

3. PARTICLE RELAXATION TIME AND STUDY OF 
NON-SPHERICAL SPEED UP BEHAVIOUR
This chapter will investigate the particle relaxation time τp more closely. The well known
definition of the particle relaxation for spherical particles will be compared to an expression
for the non-spherical particle relaxation time. Moreover the dependence of τp,nonsph on local
fluid conditions and on the degree of non–sphericity will be investigated. Therefore a new
quantification method to describe sphericity will be introduced.
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3.1. SPHERICAL PARTICLE RELAXATION TIME
Out of Equ.10 a well known, essential parameter for the particle speed up characteristic can
be derived. It defines the time scale for any individual, spherical particle under Stokes drag
conditions, is called the spherical particle relaxation time and can be written as:

(16)

The graphical interpretation of the parameter τp,sph is given by the intersection point of the
speed up curve tangent at t = 0s with the u = uf line and is depicted in Figure1.

It is worth noting that, by using Stokes’ law, τp,sph depends only on material properties,
regardless of local flow conditions.

By inserting Equ.16 into Equ.10, it can be rewritten as:

(17)

3.2. NON-SPHERICAL PARTICLE RELAXATION TIME AND SPEED UP
BEHAVIOUR
As previously discussed, Equ.11 yields an expression for a non–spherical particle speed up
curve, implicitly containing up (within urel). Equ.11 does not necessarily have to be evaluated
numerically for up = f(t), to obtain essential parameters of the speed up curve.
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Figure 3 shows an exemplary plot of Equ.11 and reveals that the characteristic non–spherical
particle relaxation time can be extracted from this implicit expression for up as well.

Analogous to the spherical speed up case, the parameter τp,nonsph is given by the intersection
point of the speed up curve tangent at t = 0 s with the urel = 0 m/s line. Therefore τp,nonsph is
defined by:

(18)

Uniting Equ.18 with the expression for t(urel) out of Equ.11 and with the definitions of C0,
C1, C2 and C3, found in Equ.12 through Equ.15, the non-spherical particle relaxation time for
Hölzer/Sommerfeld drag implementation reads:

(19)

The non–spherical particle relaxation time, based on Equ.8, depends not only on material
properties and particle dimension, but also on the local, relative fluid–particle velocity. As a
consequence τp, nonsph depends on the local particle Reynolds number while τp, sph does not.

Even an actual particle sphericity of Φ = 1 does not eliminate the velocity dependence in
Equ.19. The plot in Figure 4, which holds true for any set of particle properties, shows that,
the larger the particle Reynolds number becomes, the worse the accordance of the two τp
implementations for two identical, spherical particles will be. This reflects the fact that the
Stokes version for spherical particle drag is only valid in the zero Reynolds limit.

Further evaluation of Equ.19 helps to get an idea of the relationship between particle shape
and particle relaxation time. Figure 5 contains a plot of τp against Re for particles of varying
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sphericity, but constant Dsph. Furthermore Figure 5 demonstrates the basic difference between
velocity dependence of “Stokes’ drag spheres” and “Hölzer/Sommerfeld ellipsoids”. 
In addition to that, the plots in Figure 5 qualitatively show that, the further the particle shape
is from being a sphere, the smaller τp becomes.

The sphericity can not fully describe the measure of similarity to spherical
shape, - crosswise- and lengthwise sphericity are needed as well. Therefore an alternative
parameter to measure similarity to a sphere is introduced here. It is the ratio between the
standard deviation of the half axis a, b and c around Dsph. This parameter shall be denoted as
αax and is defined as:

(20)

Higher values of αax signify higher deviation from spherical shape and clearly lead to
smaller τp,nonsph values, which decrease further for higher particle Reynolds numbers. The
plot in Figure 5 strongly makes the case for the consideration of particle shape effects in
particle calculations. It shows that for values of αax ≥ 1, the non–spherical particle relaxation
time becomes less than 1/5th of the relaxation time of a volume equivalent sphere.

Figure 6 is a plot of τp,nonsph/τp,sph against αax. With the particle Reynolds number being
used as parameter, this plot is valid, regardless of material properties or particle diameter Dsph.
The plot shows that increasing deviation from spherical shape leads to a strong reduction of
τp,nonsph values. The trend starts levelling of for αax ≥ 1.5. Higher particle Reynolds numbers
lead to a τp,nonsph reduction as well. This effect is more pronounced for nearly spherical
particles (αax →0) and mostly within the creeping flow regime (Re < 1).
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The analysis of Figure 6 shows, that the non–spherical particle implementation leads to
generally lower relaxation time values than that of the spherical case. Even if the ellipsoid half
axis are of equal length (αax = 0), the non–spherical results deviate from the spherical
implementation. Only if the particle Reynolds number reaches the limit Re = 0 and αax = 0,
a match is achieved.

In essence all those insights lead to the conclusion that non–spherical particles have smaller
characteristic time scales than volume equivalent spheres. As a consequence they require
higher time step resolution. The stronger the non–sphericity, the smaller the time step will
have to be to achieve numerical stability.

If maximum efficiency is desired, non–spherical time steps can be increased as a particle
accelerates, and relative velocities as well as particle Reynolds numbers decline. However if,
on the other hand, the chosen time step criterion is adjusted to the situation of highest possible
particle Reynolds numbers, e.g. to the instant of particle injection, it will surely hold for the
entire calculation.

3.3. GENERALIZED PARTICLE RELAXATION TIME
The expressions for spherical (Equ.16) and non–spherical (Equ.19) particle relaxation times
are given in chapter 3.1 and 3.2 respectively and can easily be extended to a generalized
version. It holds for arbitrarily shaped particles and can be written as (Lain, Bröder,
Sommerfeld, 1999, [7]):
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relaxation time behaviour against particle Reynolds number. Assumtion:  a is aligned
along fluid stream lines. Increasing αax (0–1) leads to smaller τp,nonsph. All values are
scaled by τp,sph (Re = 0).



4. ADAPTIVE TIME STEPPING
After pin-pointing the problem, formulating expressions for particle relaxation times and after
examining spherical- as well as non-spherical speed up behaviour, a scheme of Adaptive Time
Stepping can be sought. First the multi parameter character of the problem has to be reduced.

4.1. ONE PARAMETER TO DEFINE NUMERICAL STABILITY
By inserting the generalized particle relaxation time τp (Equ.21) into the PME (Equ.3) and by
consequential, temporal discretization and substitution for urel = uf − up one obtains:

(22)

Here ∆tp, is the numerical particle sub time step and up,t is the particle velocity after ∆tp.
With Equ.22 a simple formula is given, which relates the ratio of the chosen particle time step
and particle relaxation time to the ratio of relative particle–fluid velocity change, ∆urel and
relative particle–fluid velocity, urel,0 before ∆tp.

It is quite clear that if the ratio on the right hand side of Equ.22 gets larger than 1, the particle
at its new velocity will in any case travel faster than the surrounding flow field. A result like this
is not only wrong but will cause the particle to accelerate in the opposite direction in the
following time step. As will be shown, a ∆t/τp ratio of ≥2 will collapse the particle calculation
as a whole. The numerical stability of the calculation can only be guaranteed by substantially
reducing the ∆t/τp ratio. It turns out that the terms in Equ.22 are the single most important
quantities to measure the extent of numerical (in-)stability of the calculation.
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Equ.22 takes the subject away from being a multi parameter problem, which depends on
particle dimension, fluid viscosity, fluid velocity and particle density, towards being a single
parameter issue, which depends only on the ratio of particle sub time step and particle
relaxation time ∆tp/τp.

The first obvious conclusion is to start scaling the time axis by τp and to start expressing
the degree of numerical stability by ∆tp/τp.

4.2. DESCRIBING THE INSTABILITIES
To get a hold of the encountered instabilities, it is first necessary to thoroughly understand and
describe them. The key to do that is to consider the iterational effects of the Euler scheme on
velocity evolution. Using i as index for the specific iteration at runtime t = ∆tp*i, Equ.22 can
be rewritten to:

(23)

With particle velocity at iteration i = 0 being u0 = 0.0 m/s and with the relative
fluid–particle velocity at that time consequentially being urel,0 = uf , the implicit statement of
Equ.23 can be transferred into the following explicit expression for ui:

(24)

The evaluation of Equ.24 for various ratios of ∆tp/τp is depicted in Figure 7. Obtained
results immediately show that Equ.24 accurately explains the encountered instabilities which
are partly shown in Figure 2.

By taking a look at Equ.24, the initial assumption (see chapter 4.1), that ∆tp/τp is the
decisive numerical parameter can be confirmed. The following facts can be stated:
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The calculation will remain stable and the particle velocity will steadily converge to uf.
Overall numerical error will increase as ∆tp/τp increases.

2. For 1 < ∆tp/τp < 2 and for all i ∈ Z:

(28)

(29)

For all i ∈ Zeven:

(30)

For all i∈Zuneven:
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Figure 7 Evaluation of Equ.24 for varying ∆tp/τp, with uf = 0.2 m/s. For ∆tp/τp ≥ 1
particle velocity evolution starts showing unsteady behaviour. For ∆tp/τp ≥ 2 the
particle calculation collapses. The results accurately match the instability behaviour
encountered in the OpenFOAM® solver (Figure 2).
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In the 1<∆tp/tp<2 regime the particle velocity will eventually converge to uf, just as before,
but it will show completely unsteady velocity jumps, oscillating around uf.

3. For ∆tp/tp= 2 and for all i∈Z the particle velocity oscillates unsteadily between
ui= 0 and uf until the geometry boundaries are reached.

4. For ∆tp/tp> 2 and for all i∈Z:

(32)

(33)

If ∆tp/τp > 2 the particle velocity will explode and the calculation will collapse. The
consequence of this analysis is simple: ∆tp/τp must stay well below 1.0 to ensure steady
evolution of particle velocity. What remains to be done is to quantify the extent of numerical
error within the “regime of steady velocity evolution”.

4.3. QUANTIFICATION OF NUMERICAL ERROR
Numerical error is best quantified by considering its effects. Here the resulting speed up curve
for any specific ∆tp/τp shall be compared to the correct, analytical solution. An explicit,
analytical solution is only known for spherical particles, accelerating under Stokes’ drag
conditions (see Equ.10). For non–spherical particles, the ∆tp/τp speed up curve shall be
compared to a numerically calculated reference curve, of small, yet basically variable ∆tp,0/τp.
As quantitative measure of the overall amount of deviation between numerical and reference
results, the medium standard deviation σ shall be chosen. The medium standard deviation is
calculated according to Equ.34.

(34)

Here the index i indicates the individual, numerical time step, the index n indicates a result
from the numerical solution for ∆tp/τp and index a, indicates a result from the reference
(analytical) solution. Let the parameter M denote the last compared velocity point at runtime
tend, so that:

(35)

Then the total number of compared, discrete time steps imax is:
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(36)

The exemplary plot of two compared speed up curves in Figure 8 illustrates the numerical
error quantification scheme.

4.3.1. Quantification of spherical, numerical error
By using Equ.10 and by representing the particle runtime as t = ∆tp*i, the analytical solution
for iterational particle velocity for spherical particles becomes:

.

(37)

Therefore, the resulting σ(∆tp/τp) value for spherical particles can be calculated in
accordance with Equ.34 which yields:

(38)

The index n−a represents the comparison between the numerical and the analytical
solution. To get an idea of the relative deviation, compared to the uniform fluid velocity uf,
the relative medium standard deviation can be written as:

(39)

4.3.2. Quantification of non–spherical, numerical error
For non–spherical particles the reference curve shall be created by selecting another speed up
curve, based on Equ.24. Therefore a very small ∆tp/τp ratio, that serves as the reference value
∆tp,0/τp has to be chosen. Hence, the resulting σrel(∆tp/τp) value for non-spherical particles is
calculated like this:
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Here the index n-n represents the comparison between the inspected numerical speed up
curve and the numerical reference solution. The new variable n stands for:

(41)

The variable n is not to be mixed up with the n used in the indices n-n and n-a. 
Of course the reference-value-based, σrel(∆tp/τp) calculation, shown in Equ.40, can also be

applied for spherical particles, where an explicit, analytical reference solution is available. In
that case the σn-n value converges to σn-a as the reference value ∆tp,0/τp converges to zero:

.

(42)

4.3.3. Evaluation of quantified, numerical error
Based on the quantification procedure described above and in particular based on Equ.39 and
Equ.40, extensive parameter studies have been carried out. OpenFOAM® - CFD test runs,
featuring spherical and non-spherical particles have been conducted. The particles are set to
speed up in a large flow channel with zero wall friction and thus uniform flow conditions.
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Figure 8 Comparison of analytical (red) and numerical (blue) speed up curve with
∆tp/τp = 0.3 and uf = 0.2m/s. The points of numerical evaluation are shown
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Hereby the parameter ∆tp/τp was varied, speed up curves were monitored and the σrel(∆tp/τp)
values were written out. In parallel, equivalent evaluations, directly based on Equ.39 and
Equ.40 were conducted. The results for spherical particles are shown in Figure 9, where the
two σrel(∆tp/τp) curves are plotted against ∆tp/τp. Especially for σrel ≤ 0.2 the two curves
match almost exactly.

The very same figure can be produced for spherical and non–spherical particles, even
though the non–spherical CFD calculation uses Hölzer/Sommerfeld drag instead of Stokes’
drag, and the non–spherical, analytical curve stems from Equ.40 instead of Equ.39.

A variation of the parameters: fluid velocity, dynamic fluid viscosity, volume equivalent,
spherical particle diameter and particle density, confirms the derivations of chapter 4.3. The
σrel(∆tp/τp) results show absolutely no dependence on those factors and thus can be considered
as universally suitable in terms of particle properties as well as fluid properties and conditions.

Considering Equ.39 and Equ.40, only three further sources of possible influence on the
final result remain: the reference parameter ∆tp,0/τp (relevant for non–spherical particles), the
parameter M that affects imax over Equ.36 and the chosen ∆tp/τp range. For a discussion of
those sources of influence see chapter 4.4.1 to 4.4.3.

The σrel(∆tp/τp) curve shown in Figure 9 however, enables the user to chose a certain ∆tp/τp
value and immediately get an estimate of the relative standard deviations of evolving,
numerical particle velocities, compared to the correct result.

4.4. SIMPLE, LINEAR CORRELATION FOR DEVIATION
Any serious simulation will use values of ∆tp/τp < 0.8 so that, according to Figure 9, the relative
standard deviation to the correct speed up result, will range well below 0.1 (10% uf). In that region
the exponential character of the σrel(∆tp/τp) curve is not yet developed and a linear correlation with
a coefficient of determination, R2 > 0.99 can be found. This means that a very simple, linear rule
for σrel − ∆tp/τp dependence can be obtained. Since for ∆tp/τp = 0, also σrel = 0, the linear
correlation bears only one degree of freedom, the slope krel. Hence for σrel < 0.07 (7% uf ) we
find:

(43)

Figure 10 can be plotted by evaluating the situation shown in Figure 9 for ∆tp/τp values that
range from 0 to ∆tp,end/Tp = 0.55. It shows the comparison of results yielded by
OpenFOAM® and the evaluation of Equ.39. Hereby an almost exact match can be achieved.
In this ∆tp/τp range a linear correlation with R2 = 0.9935 can be drawn and the resulting slope
value krel can be found to be:

krel = 0.1118 (44)

As a consequence the σrel − ∆tp/Tp correlation for σrel < 0.07 (7%uf), M = 8.2 and ∆tp/Tp
values, ranging from 0.0 to ∆tp,end/Tp = 0.55, can be written as:
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This holds true for any set of particle properties, for spherical and non–spherical particles
and for any set of fluid properties and conditions. By inserting into Equ.45 the user can chose
an appropriate ∆tp/τp value and immediately estimate its impact on overall numerical deviation
to the analytical solution, in relation to the given fluid velocity. On the other hand it is possible
to chose a desired, maximum deviation σrel,max, and then to immediately estimate the
maximum, allowed time step ∆tp,max for any particle with particle relaxation time τp.

To finally decide on the universality of Equ.45, the dependence on parameters like M, the
∆tp/τp range and (for non-spherical particles) the reference parameter ∆tp,0/τp will have to be
checked.

4.4.1. Slope dependence on reference value, ∆t
p,0

/tp
For non-spherical particles the σrel − ∆tp,0/τp curve can be calculated by using Equ.40 and by
choosing an appropriate reference parameter ∆tp,0/τp. Thus an additional parameter of possible
result dependence is introduced. An inspection of dependence magnitude is necessary.

By applying Equ.40 on spherical particles and by letting ∆tp,0/τp converge to 0.0, the result
converges to that of Equ.39. Consequentially it can be concluded that, the lower the value for
∆tp,0/τp is chosen, the higher the quality of the result will be. To quantify this statement a
parameter study for non-spherical particles has been conducted. Therefore the parameter
∆tp,0/τp has been varied and for each value a full σrel − ∆tp/τp correlation, yielding krel values
according to Figure 9, has been established. Using ∆tp,0/τp = 0.001 as starting point, krel
values have been calculated for ∆tp,0/τp ≤ 0.02.
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Figure 9 Plot of σrel against ∆tp/τp for a spherical particle of arbitrary size and
composition which speeds up in an arbitrary fluid. Each data point is calculated by
comparing the corresponding numerical speed up curve to the analytical speed up
solution for spherical particles. Comparison of OpenFOAM® implementation (blue)
and evaluation of Equ.39 (pink). Chosen M-value is 8.2. The equivalent procedure
for an arbitrary, non-spherical particle yields the exact same result.



The plot in Figure 11 shows that, for ∆tp,0/τp < 0.013, the krel result deviates by only +/− 5%o

around the starting point result, which means that in this range krel can be considered to be
completely independent of ∆tp,0/τp .

4.4.2. Slope dependence on M = TEND/TP
As seen in Figure 8, a variation of the parameter M will almost certainly lead to a change in
the calculated, medium deviation between the compared curves. Not to mention the fact that
the parameter imax(M) has a profound impact on Equ.39 and Equ.40. Qualitatively it can be
stated that:

(46)

(47)

Furthermore it is clear that σrel will show a maximum somewhere within the range 0 ≤ M ≤ ∞
However it must be noted, that the obvious σrel – M dependence does not change the numerical
situation (e.g. stability) at all. It only brings about a different view point of one and the same
numerical speed up curve and its analytical- or reference solution.
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Figure 10 Plot of σrel against ∆tp/τp with ∆tp/τp ranging from 0.0 to ∆tp,end/τp = 0.55.
Situation is equivalent to Figure 9. Linear correlation with coefficient of determination
R2 = 0.9935. Numerical speed up implemented in OpenFOAM® yields a slope of
krel,OF = 0.1113 and evaluation of Equ.39 yields slope krel,Equ.50 = 0.1124. Results are
valid for spherical and non-spherical particles.



To quantify the σrel − M dependence, and in particular the krel – M dependence, a
parameter study has been conducted. Therefore the parameter M was varied and for each
value a full σrel − ∆tp/τp correlation, yielding krel values according to Figure 9, was
established. For each calculation of krel the ∆tp/τp value was varied between 0.0 and
∆tp,end/τp = 0.15. Figure 12 shows the resulting plot of krel against M. As expected: krel =
0.0 for M = 0 and also converges to 0.0 for M→∞. A maximum krel value krel,max can be
found for M = 1.60. It is krel,max = 0.170.

Considering the facts stated above, a reasonable course of action in dealing with the krel – M
dependence is to simply define a constant M value throughout the quantification procedure.
Thus a constant, never changing frame of reference is established. A reasonably appropriate
point to evaluate the behaviour of the entire speed up curve is the M-time M99,9, when the
accelerating particle has reached 99,9% of the fluid velocity uf. In that case the ratio between
relative fluid–particle velocity and fluid velocity is:

(48)

with, p = 3.
Using the analytical speed up solution for spherical particles (Equ.17), M99,9 can

consequentially be defined as:
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From Figure 12 the corresponding krel;99,9 value can be derived as:

(50)

4.4.3. Slope dependence on ∆tend/τP
A third and final parameter with potential influence on the ultimate krel result is the ∆tp/τp
range of possible relative time stepping width, or rather the upper time stepping limit
∆tp,end/τp. While the ∆tp/τp values for the linear σrel – ∆tp/τp correlation in Figure 9 range from
0.0 to ∆tp,end/τp = 0.55, the krel – M curve in Figure 12 was calculated for ∆tp,end/τp = 0.15.
A qualitative analysis of the σrel – ∆tp/τp curve in Figure 9 shows that the higher ∆tp,end/τp, the
steeper the “linear” slope krel will be. For values ∆tp,end/τp > 0.8 a linear correlation is neither
appropriate nor necessary.

The basic situation is the same as for the parameters ∆tp,0/τp and M: a variation does not affect
the numerical situation, but only the evaluation of one and the same status. Parameter studies,
establishing krel – M curves (analogous to chapter 4.4.2) for two basic cases of ∆tp,end/τp have
been conducted. The first case, where ∆tp,end/τp = 0.15, holds for σrel ≤ 0.012 (=1,2% uf) and
the second case, where ∆tp,end/τp = 0.04 holds for σrel ≤ 0.4 (= 4,0% uf). Figure 13 shows a
direct comparison of the two krel – M curves.

As expected krel increases for increasing ∆tp,end/τp, but the basic properties of the curve
(convergence and maximum krel,max at Mmax = 1.60) remain the same. For further applications
of the quantification scheme, the ∆tp,end/τp = 0.15 curve will be chosen as reference.

4.5. ADAPTIVE TIME STEPPING OF USER DEFINED ACCURACY
Finally a simple, adaptive time stepping rule, for spherical and non-spherical particles, for any
set of fluid- and particle properties and for any given local flow field, can be presented.

krel , , .99 9 0 100=
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For M99,9 = 6.91 and with ∆tp,end/τp = 0.15 [σrel < 0.012 (<1,2%uf)] the krel value can be
determined out of Figure 13 as:

(51)

So the linear σrel relation, using Equ.43 reads:

(52)

For M99,9 = 6.91 and with ∆tp,end/τp = 0.40 [σrel < 0.040 (< 4%uf)] the krel value can be
determined out of Figure 13 as:

(53)

So the linear σrel relation, using Equ.43 reads:

(54)

The user can select any desired, medium standard deviation σrel < 0.040 (< 4%uf). Then
the appropriate number of particle sub time steps J, that is specifically adapted to the particle
as well as the local fluid properties and conditions, can be calculated by use of Equ.2.
For σrel,UD ≤ 1.2%uf:

(55)

For 1.2%uf < σrel,UD ≤ 4.0%uf:

(56)

5. CONCLUSION
A dirt particle deposition solver, based on the Open Source CFD toolbox OpenFOAM® has
been created. The solver is capable of handling spherical and non–spherical particles in the
vicinity of realistically reconstructed filter fibre geometries. Due to the specific programming
structure of the code, it proved advantageous to use an explicit EULER discretization scheme
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to handle the particle momentum equation. The major drawback of this choice is, that
numerical instabilities occur more readily than with other discretization schemes such as the
Runga Kutta method. In this work the case of a (non-) spherical particle speeding up in an
otherwise uniform, laminar flow field was chosen to describe, study and finally eliminate the
encountered numerical instabilities.

The speed up behaviour of spherical and especially non–spherical particles was inspected
in detail, and the necessity to consider particle shape deviations from spherical shape was
pointed out.

By identifying the parameter ∆tp/τp as single most decisive factor for the occurrence of
instabilities, the complexity of the problem was dramatically reduced. Particle- and fluid
properties as well as fluid conditions can be expressed by τp.

In addition to that a descriptive formulation for the instabilities was found, which
accurately formulates the problem.

A method to quantify the numerical stability of each speed up run was set up by comparing
numerically calculated speed up curves to analytically obtained ones. By producing plots of
relative, medium standard velocity deviations, against ∆tp/τp, a simple, linear dependence for
low ∆tp/τp values was encountered. Thus, by carefully eliminating any possible parameters of
influence on the final result, a simple, linear σrel − ∆tp/τp relation could be defined, that holds
for any set of fluid- and particle properties as well as fluid conditions. This relation enables the
user to chose a measure of accuracy (in terms of σrel) for the simulation run. Out of this choice,
the appropriate particle sub time step (the number of particle Subcycles per fluid time step) for
each, individual particle, immersed in any local fluid field can be calculated. An adaptive
particle time stepping scheme to eliminate instabilities due to explicit Euler implementation can
thus be presented.
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Figure 13 Plot of krel against M. Chosen parameter is ∆tp,end/τp = 0.15 (red) and
∆tp,end/τp = 0.4 (orange). Maximum of both curves lies at Mmax = 1.60. Difference
between curves converges to 0.0 for M→∞.
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