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ABSTRACT

A Lagrangian solver to realistically model large, non-spherical dirt particles

and their behaviour in the vicinity of deformable filtration fibres has been

programmed. While this paper focuses on basic solver concepts as well as

drag force implementations, a related article, concerning the realisation of

interaction effects and result verification, is forthcoming, [3].

Within the framework of a digitally reconstructed, deformable filter fibre

geometry, the solver traces the governing multi physics effects down to the

occurrence of single force- and torque vectors. In order to go from an initial,

spherical particle model [2], to a more sophisticated, non-spherical model,

the capabilities of a Six Degrees of Freedom Solver have been included in

the programming. A panel model and the concept of satellite help points are

used to handle particles that encompass several fluid calculation cells.

An innovative drag force implementation allows the consideration of

rotational- and shear flow effects on particle motion. Results are evaluated

and compared to an analytical formulation.

1. INTRODUCTION
The Open Source Computational Fluid Dynamics (CFD) toolbox OpenFOAM® has served
as a programming environment for the development of a novel, deterministic, micro scale,
fluid-particle-fibre filtration solver [1], [2]. This C++ based simulator is supposed to become
an important tool for the CFD design of filter media for automotive lubrication. It was
created to consider all physically relevant effects that go along with, or lead to a micro scale,
dirt particle deposition in a realistically reconstructed filtration fibre geometry.

Concerning this subject, two papers, have been previously published. While [1] focuses
on fibre deformation and fluid–structure interaction (FSI) effects, [2] describes the
development of a large, spherical particle model for filtration applications.

A second article [3] on the non-spherical particle model is forthcoming. It is closely
related to this work and is to be seen as a sequel. It mainly concerns itself with the handling
of particle interaction with its surroundings. Moreover it deals with the creation of a
simplified, semi-analytical approach to verify solver functionality and result quality.

The current work presents a significant extension of the spherical dirt particle model
formulated in [2]. It describes the basic concepts as well as the essential drag force
implementation method behind our novel, realistic, Lagrangian, non-spherical particle model.
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Some of the main aspects of the development effort behind this paper are:

• Implementation of a Six Degrees of Freedom (DOF) solver for the Lagrangian
particle momentum equations (PME) in OpenFOAM®.

• Design of an explicit, force- and torque vector model, that reduces the modelling to
the mere formulation of single force effects.

• Introduction of an adaptive time stepping scheme for explicit Euler discretization of
the PME, [4].

• Device of a surface help point scheme to account for large particle effects in terms
of fluid–particle, particle–fibre and particle–particle interaction.

• Creation and verification of a drag force implementation that uses a combination of
non-spherical, semi-empirical drag force formulas [23], a panel method to consider
free flow swirling effects, a plugging method to include inter particle and
particle–fibre hydrodynamics and a simple adoption of basic concepts known from
the immersed boundary method [16].

• An efficient particle–fluid, two-way coupling method [2].
• Certain, important limitations.

1.1 FILTRATION SOLVER
The original filtration solver, presented in [1] and [2] is capable of solving complex fluid–
particle–fibre interaction problems for microscopic, digitally reconstructed fibre samples
ranging up to a few hundred microns in diameter and thickness. To reconstruct the
microscopic geometry as accurately as possible, input data from computer tomographic
scans is used. Rudimentary stacks of grey scale images are being digitalized by Matlab®
utilities. An exemplary result is shown in Figure 1.

Both the fibres and their surrounding space are being transformed into structured grid
meshes that represent the solid and fluid framework for Computational Fluid Dynamics
(CFD) analysis.

Figure 1 Digitalization by matlab utilities. Transferring stacks of grey scale images
(left) to fully digitalized data (right).
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Because of the geometry range of ~200µm, the highly viscous, Newtonian oil current
featuring a kinematic fluid viscosity of ηf~10-4m2/s, and relatively slow flow velocities of
<0.4 m/s, the local Reynolds numbers in the fibre vicinity are expected to be mostly <0.5,
but surely <1.0. Furthermore Knudsen numbers range well below 0.015. Thus continuum
equations are valid and the consideration of diffusion effects on particle motion becomes
unnecessary. After all a simple, incompressible, laminar and isothermal fluid solver can
handle the situation.

For quite some time, deformation effects have been suspected to have significant impact
on the filter characteristics of a fibre. Therefore the original solver was designed to handle
fluid-structure interaction effects (FSI). The FSI utility features a stiff, explicit coupling and
uses only one, single finite volume solver to handle the governing fluid dynamics as well as
the structural mechanics on the solid side, [1].

The original particle model was a spherical, Lagrangian, fully deterministic (non-
stochastic) approach with the capability to interact with the surrounding, Eulerian
fluid–fibre framework. Each particle can extend well beyond the borders of a single
calculation cell and can sense and affect fluid conditions within a multiple cell region of the
fluid mesh. In extension of the spherical particle model, a highly detailed, more
sophisticated and more accurate, non-spherical particle model was developed and can
hereby be presented.

1.2 DRAG FORCES AND PARTICLE RELAXATION TIMES
An obvious reason to go from a mere spherical dirt particle description to a more realistic,
non-spherical approach lies within a significant difference in drag-force-to-mass-ratio. A
good way to demonstrate the difference is to take a look at spherical and non-spherical
particle relaxation times τp of mass equivalent particles. With mp being the particle mass
and ρp being the particle density, the diameter of a mass equivalent sphere Dsph can be
written as:

(1)

Since the particle Reynolds numbers under consideration, range significantly below 1,
Stokes drag conditions can be assumed. Thus the expression for the particle relaxation time
for spherical particles τp,sph in the flow domain is given by:

(2)

Here µf is the dynamic fluid viscosity.
For non-spherical particles a drag force correlation, proposed by Hölzer & Sommerfeld,

[23] shall be chosen. In this case the definition of the non-spherical particle relaxation time
τp,nonsph is much more complex and reads:
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Here urel is the relative fluid–particle velocity and the constants C0, C1, C2 and C3 are:

(4)

Where ρf is the fluid density and Af,ell is the frontal area of an ellipsoid particle, projected
onto a plane, perpendicular to the relative fluid-particle velocity vector.

(5)

(6)

(7)

In Equ.5 to Equ.7 Φ, Φcross and Φlength are the shape dependent, overall sphericity, length-
wise sphericity and cross-wise sphericity, respectively, [23].

The comparison of Equ.2 and Equ.3 shows that non-spherical particle relaxation times are
generally lower than those of mass equivalent spheres. In [4] the parameter αax is introduced
to measure deviation from spherical shape. It represents the medium, relative half axis
deviation around Dsph and is defined as:

(8)

Here a, b and c are the lengths of the three particle half axis, whereby a ≥ b ≥ c. Using αax
as a parameter, it becomes apparent that, the further the particle shape deviates from being a
sphere (higher αax), the smaller τp,nonsph will be, [4]. A corresponding plot of the situation, as
seen in Figure 2, reveals that non-spherical particle relaxation times show a dependency on
local fluid conditions, while spherical particle relaxation times do not.

Furthermore the results in Figure 2 show that non-spherical particle relaxation times for
highly non-spherical particles (αax ≥ 1) amount to less than 1/5th of spherical relaxation
times. Therefore a mere spherical particle model would significantly underestimate fluid skin
friction- and form drag forces on supposedly arbitrarily shaped dirt particles. One obvious
consequence of disregarding particle shape effects for filtration simulation would be a certain
overestimation of filter fibre efficiencies

2 MODEL BASICS
This chapter lists some basic concepts and innovative implementation schemes that had to be
chosen and/or developed in order to create a suitable framework for the non-spherical
particle model.
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2.1 PARTICLE GEOMETRY: ELLIPSOID SHAPE
The non-spherical particle shape representation is chosen to be an ellipsoid with three
independent, geometrical degrees of freedom. This choice offers the versatility to
approximate many shapes from sticks to plates (see Figure 3) on the one hand and can be
mathematically described pretty easily, as seen in Equ.9, on the other hand.

(9)

Here x’, y’ and z’ are coordinates of a Lagrangian, co-rotational coordinate system, with base
vectors being aligned along the particle’s main axis (see chapter 3.2).
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Figure 2 Spherical (blue) and non–spherical (red, orange, yellow, turquoise)
particle relaxation time behaviour against particle Reynolds number. Increasing αax
(0-1) leads to lower τp,nonsph. All values are scaled by τp,sph(Re = 0).

Figure 3 The ellipsoid shape can approximate a wide variety of geometries, e.g.
plates and sticks.



The ellipsoid particle volume Vp is given by:

(10)

An essential quantity for calculating skin friction forces on the particle, is the particle
surface area Ap. In this work Ap for ellipsoids shall be approximated by a comparatively
simple approximation formula, proposed by Thomsen, [5]:

(11)

With p ≈ 1.6075, this formula is reported to yield a maximum of +/– 1.061 % deviation
about the correct result.

2.2 EULER AND LAGRANGE COORDINATE SYSTEM
The fluid and FSI calculations are based upon well known, Eulerian principles and require
only one Cartesian coordinate system, with base vectors ex, ey and ez and coordinates, x, y
and z. In the course of the FSI calculation however, the fluid mesh actually works as
Lagrangian mesh that adjusts itself to displaced fibres. Whereas the fibre structure mesh
itself remains in its original position, after the fashion of a typical Eulerian mesh, [1].

For the particle calculation the partly Lagrangian character of the fluid mesh is completely
irrelevant. The particle solver does not require separate meshing. To account for particle
position Xp and orientation, an additional co-rotational coordinate system is introduced. The
particle coordinate system, with base vectors epx, epy and epz being aligned along the main
particle axis, as seen in Figure 4, originates from the particle mass centre. Its coordinates are
written as x’, y’ and z’.
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Figure 4 Exemplary ellipsoid particle with co-rotational coordinate system.

The relationship of any single point P within the Eulerian system, to the corresponding
point P’ within the co-rotational Lagrangian system, is given by the following formula:
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Here the index n denotes the axe directions x, y and z respectively and the base vectors of
the particle coordinate system are given by:

(13)

According to Equ.12 the transformation operation T can be defined as:

(14)

With A being the transformation matrix:

(15)

Accordingly the retransformation from P’ to P is computed as:

(16)

Here the retransformation operation T’ is formulated by using the transposed
transformation matrix AT:

(17)

A similar multiple coordinate system approach is used by Rosdahl, [8]. His solver uses a
third, additional, co-moving coordinate system, which also originates from the mass centre
of the particle and is aligned along the basis of the outer, inertial, Eulerian coordinate system.

2.3 SIX DEGREES OF FREEDOM SOLVER
Non–spherical particle motion in general consists of three degrees of translational as well as
three degrees of rotational freedom. This is why the original, spherical particle solver had to
be transformed into a more general, six DOF solver. It can now solve the translational and
rotational, Lagrangian equations of motion for N external forces Fj, which act on the particle:
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moment of inertia tensor I and by use of Equ.21. I in its most general form can be described
by using a continuous, spatial density ρsp(x, y, z), [8]:

(20)

Here Vsp describes the local space which completely encompasses the object, rk is the
distance vector to the axe of rotation, E stands for the identity matrix and denotes the outer
product.

(21)

Inserting the expressions for standard, ellipsoid, principle moments of inertia, this finally
amounts to:

(22)

2.4 SINGLE FORCE AND TORQUE VECTORS
A number of individual, translational and rotational force- and torque effects with influence
on particle trajectory and deposition behaviour have to be accounted for. Those effects can
be parted into three basic categories: particle-fluid (see chapter 4), particle-fibre [3] and
particle-particle [3] interactions.

It is inaccurate to traditionally model one individual particle-deposition effect, without
taking into account the interaction with other particles, or a changing fluid field [11], [12].
Thus in this work all modelling is broken down to the level of individual force effects and
their resulting torques. The following interaction forces are relevant:

• particle–wall impact force, Fwall
• particle–fibre interaction force, Ffibre
• particle–particle impact force, Fcollision
• particle–fluid interaction (drag) force, Ffluid
• force due to pressure gradient (form drag), Fpressure
• force due to shear flow (shear drag), Fshear
• gravity, Fg

A simultaneous calculation of Ffluid, Fpressure and Fshear would yield an overestimation of
fluid–particle interaction forces. Depending on the specific mode of operation, either Ffluid
or Fpressure/Fshear are calculated.

In order to model resulting torques Tj, the exact positions rj of acting forces Fj need to be
known. This is why a surface help point method (see chapter 2.5) was devised. Figure 5
illustrates an assembly of small, non-spherical particles and the corresponding system of
acting forces and torques, that cause translation and rotation.

2.5 PARTICLE SHAPE CONCEPTS
In order to consider rotational effects, collision–impact scenarios or any shape-related
phenomenon, the moving object has to extend beyond a simple, point-like representation.
Thus the surface help point method, as well as a simple panel method to discretize the
particle surface are introduced.
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2.5.1 Surface and pressure/velocity help points
A cloud of up to M= 68 help points per particle is used (see Figure 6). 18 surface help points
are positioned directly at the surface of the particle to serve as collision detectors and
pressure/velocity probes. An additional 48 pressure/velocity help points are located at crucial
positions of the particle–panel model (see chapter 2.5.2) and detect local fluid field
conditions. The help points surround the ellipsoid at constant positions HPm‘ within the
framework of the co-rotational particle coordinate system. Thus each help point conserves
its relative position to the particle centre, while the particle moves arbitrarily within the
Eulerian fluid domain, “dragging along” the Eulerian help point positions HPm.
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Figure 5 Illustration of acting forces and torques on an assembly of non-spherical
particles.

Figure 6 Non-spherical particle with 18 surface help points and 48 pressure/
velocity help points.



The help points essentially serve two purposes:

1. In their function as pressure/velocity help points they detect local fluid conditions.
2. They predefine the current particle movement by tracking the individual, projected

trajectory. Collision that might occur along this course are detected.

Using a simple, temporal Euler discretization [4], the help point position HPm
i at time i

can be projected to its new position HPm
i+1, at time i+1, after particle time step ∆tp . The new

position can be calculated as:

(23)

Here rhp is the help point distance vector to the particle mass centre. This particle progression 

scheme is only used if collision events are to be expected. The linear trajectory 

is probed for obstacles. If a collision occurs at position Xcoll before HPm
i+1 is reached, the

fraction fm is set to:

(24)

Then the new particle time step ∆tf
* is calculated as:

(25)

Now the actual particle movement is conducted.
If no collision events are to be expected, the solver conducts translational and rotational

operations on the particle mass centre Xp and on the particle base vectors ep,n. To find the
new help point positions at time i+1, a simple coordinate transformation suffices:

(26)

Note the fact that the co-rotational help point positions HPm‘ remain unchanged at all times.

2.5.2 Panel method
While the surface help point scheme has been designed to aid in the modelling of collisions
and in the detection of local flow field conditions, a simple panel method is introduced to get
a hold of hydrodynamic drag- and lift forces. Within the co-rotational coordinate system, the
fixed help point positions are used as a framework to encase the ellipsoid with a system of
edges and panels (see Figure 7).

2.6 ADAPTIVE TIME STEPPING
Because of the simple, explicit, temporal Euler discretization that is used for particle
progression, certain numerical instabilities have to be opposed [18]-[21]. Studies on the
subject have led to the development of an adaptive time stepping scheme, that compensates
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individual particle needs for higher time resolution. With σrel,UD being the user-definable,
relative standard deviation between a numerical and an analytical particle speed up curve, the
number of particle sub time steps J can be calculated for two levels of accuracy.

For σrel,UD ≤ 1.2% uf:

(27)

For 1.2% uf < σrel,UD ≤ 4.0% uf:

(28)

Hereby uf stands for the uniform velocity of the surrounding fluid field. A full report on
the results has been published in [4].

3 PARTICLE MOMENTUM EQUATION
All changes in translational and rotational motion of a particle stem from the sum of acting
forces. Applying Newton’s second law, the translational particle momentum equation (PME)
for arbitrarily shaped particles and arbitrary flow conditions, is given. The PME presents the
framework for all particle-motion modelling behind the non-spherical particle solver. It can
be written as:
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Figure 7 Non-spherical particle surrounded by help points and panels.



Here Fd is the drag force, Fh the hydrodynamic lift force, FMagnus is the Magnus force,
FSaffman is the Saffman force, FFaxen is the Faxen force, Fg is the gravity force, Fb is
the buoyancy force, FVM is the added (virtual) mass effect, FBasset is the Basset (history)
force and Fe,i stands for the i-th of N event forces [6], [14], [15]. The individual force
contributions, summarized in Equ.29 can be divided into three main categories: steady
state forces, unsteady forces and event forces.

The specialization of Equ.29 for small, spherical particles, that are not two-way-coupled to
a uniform, surrounding fluid, gives the Basset Bousinesque Oseen (BBO) equation [13], [27]
without Faxen terms or interaction with solids or other particles. In this case the individual
force contributions can be formulated as seen in Figure 9.
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In Figure 9, cd denotes the drag coefficient and Rep stands for the particle Reynolds
number.

Usually a PME formulation like the one in Equ.29 is used for small particles and the
classical Euler-Lagrange approach [24]. This work however, treats large particles that
span multiple fluid cells, and still retains the typical Euler-Lagrange methodology. Thus a
specifically adjusted, numerical scheme to model particle-fluid interaction becomes necessary.

Comparable programs, like that of Schütz [7], are using particle-related re-meshing of the
fluid grid.

4 PARTICLE–FLUID INTERACTION
To maximize calculation efficiency, a detailed drag implementation, specifically adapted to
the case of dirt particle filtration in lubricants has been created. The particle–fluid interaction
model, consists of two alternative modules:

Free Flow particle–fluid module
Fibre vicinity particle–fluid module

Dirt particles are injected into the free flow regime upstream of the filter fibre geometry,
where they occur in very low volume fractions. Particle-particle interaction and hydrodynamic
particle impact on the fluid can be neglected here. As soon as the particles reach the fibre
vicinity, the two-way coupling takes effect and inter-particle- as well as full particle-fluid
interaction becomes relevant. Those fundamentally different situations require separate drag
modelling schemes in order to guarantee a good balance between accuracy and efficiency.

4.1 FREE FLOW PARTICLE-FLUID INTERACTION MODULE
Within the free flow regime, all particle interactions with their surroundings are handled by
the free flow module. In this zone, the most important aspects of the prevailing hydrodynamic
situation are:

1.) The ratio between particle diameter Dsph and minimal distance to the nearest fibre
(wall) boundary patch hw can be considered as small. Wall proximity has no effect
on particle drag.

2.) Due to very low particle volume fractions, the ratio between Dsph and the minimal
distance between neighbouring particles hp can be considered as small. No physical
nor hydrodynamic particle interaction takes place.

3.) Due to very low particle Reynolds number Rep and very low particle volume
fraction, the hydrodynamic particle effect on the fluid can be neglected. No two-
way-coupling is necessary.

In the free flow regime it is primarily important to grasp torques, acting on the particle.
Rotational effects due to non-uniform flow fields can lead to a pre-alignment of the particles,
so that average penetration depth and filter fibre efficiencies are being influenced. In that
context the panel description (see chapter 2.5.2) of the ellipsoid shape is of special
importance. The particle is enclosed by M panels and each panel j is subject to drag forces
Fd,j (which consist of pressure- and shear flow contribution, Fp,j and Ft,j respectively) and
hydrodynamic lift forces Fh,j. Forces that are better calculated by considering the entire
particle are: gravity Fg, buoyancy Fb and N event forces ΣFe,i. Thus the adapted PME within
the free flow regime looks like Equ.30.
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In analogy, torque effects on non-spherical rotation are described by:

(31)

Here rj stands for the distance vector of each surface panel centre HPj to the particle mass
centre Xp and ri denotes the distance vector from Xp to any particle help point HPi that senses
an impact event.

The Basset history force and the added, virtual mass are being neglected because of the
lack of strongly in stationary, relative particle-fluid flow. Comparing Equ.30 with Equ.29,
the following parallels can be drawn:

(32)

Figure 10 shows a sketch of how the individual force contributions act on each panel and
affect the particle.
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Figure 10 Sketch of local force balance and force effect on panel centre.

In Figure 10, Fin stands for the force contribution of the incoming current, while Fout is the
force contribution of the outgoing current as it would look like if it were deviated by the
panel surface. The total force acting on each panel Fpanel is given by:



(33)

The following sub chapters describe the procedural calculation of free flow drag- and lift
force as well as torque effects within the module.

4.1.1 FORCE CALCULATION
First the drag force contribution Fd,j on each panel j has to be calculated. The drag force term
consists of a form drag- and a shear drag contribution, Fp,j and FT,j. While FT,j acts
perpendicular to the panel surface normal np,j, Fp,j acts parallel to np,j. However, since Fd,i is
supposed to act in the direction of urel,j, the following ratio has to hold:

(34)

Here eurel,j is the base vector of the relative fluid-particle-panel velocity encountered at the
panel centre. The total panel drag coefficient cd,panel depends on the form drag coefficient cd,p
and on the shear drag coefficient cd,shear and is given by:

(35)

In Equ.36 to Equ.40, form drag- and shear drag vectors are listed, as well as the total panel
drag vector and its dependence on form and shear contribution, Fp,j* and FT,j* respectively.
Figure 11 shows a sketch of the situation.

(36)

(37)

(38)

(39)

(40)

In Equ.36 through Equ.40, Aj is the panel surface area and urel,j is the relative fluid-
particle-panel velocity uf-up,j. The particle-panel velocity is given by the velocity of the
particle mass centre up and the rotational velocity contribution:
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The panel Reynolds number is written as Rej and is defined by using the hydraulic
diameter dh,j of the panel and the kinematic fluid viscosity ηf:

(42)Re , ,
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rel j h j

f

u d
=

⋅
η
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Figure 11 Sketch of form- and shear force contribution to panel drag force.
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Secondly the hydrodynamic lift force Fh,j, which stems from the deviation of the fluid at
the panel, is calculated. The hydrodynamic lift is connected to Fin,j, Fout,j and Fd,j via a simple,
local force balance (see Figure 10):

(43)

Note that the superscript ’ denotes the fact that force values are scaled by the acting
surface area Aj. In addition to Equ.43, Fh,j is defined to act perpendicular to Fd,i , so that:

(44)

The drag Fd,j
’ is given by Equ.40, while Fin

’ can be easily derived out of the local fluid
field information, obtained by the pressure/velocity help points. 

(45)

While the value of Fout’ is not known in advance, its base vector eout,j is given because of
panel orientation np,j and relative panel-fluid velocity urel,j.

(46)

Equ.43 and Equ.44 constitute a system of four equations and four unknowns: The three
components of hydrodynamic lift Fh,j,x , Fh,j,y, Fh,j,z and the absolute value of deviated flow
momentum |Fout,j|. The solution yields the following expressions for the local, hydrodynamic
lift force vector Fh,j‘ and the vector of deviated fluid momentum Fout,j’:
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(47)

(48)

Due to non-coupling, the wake of the particle is not simulated in the free flow module.
Therefore a panel has to face the current in order to yield acceptable Fd,j and Fh,j results. The
condition for calculating the individual force balance and for considering the panel is:

(49)

Consequentially the overall, unscaled drag force Fd
unsc and hydrodynamic lift force Fh

unsc

are given by the contributions of all N considered panels:

(50)

(51)

4.1.2 Weighing method and torque effect calculation
The Fd,j and Fh,j calculation serves a useful purpose: to obtain an idea of the force distribution
over the particle surface. This is necessary to grasp rotational fluid field effects on the
aligning particle.

In order to improve the quantitative estimate on overall drag and lift force contributions,
the panel results are being scaled to fit a newly found, empirical drag law for non-spherical
particles that has been presented by Hölzer & Sommerfeld, [23]:

(52)

Here Φ, Φlength and Φcross, are the standard-, the lengthwise- and crosswise-sphericity,
respectively. Using the Hölzer-Sommerfeld approach, the over all scaled drag force Fd

sc on
the particle can be calculated. In order to get a hold of realistic, rotational torque effects, the
originally calculated, unscaled force contributions are scaled by the ratio Fd

sc/ Fd
unsc:
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Then the more accurate, scaled, rotational torque effects are computed using Equ.31:

(55)

Figure 12 shows a test case, where a longish, non-spherical particle approaches a valve of
higher flow velocities and lower pressure. As physically plausible and expected, the given
drag implementation models the occurring shear flow and pressure gradients over the particle
surface in such a way that the particle aligns itself along the fluid stream lines. The
translational and angular velocity vectors adapt to the local fluid field conditions which leads
to a particle-slip effect (see Figure 12).
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Figure 12 Ellipsoid particle accelerating towards valve. Alignment along the current
stream lines. Particle takes up its most stable position of least drag- and lift forces.
This behaviour causes the non-spherical slip effect with relevance for filtration
efficiency and particle penetration depth [3].

4.1.3 Particle in fibre vicinity
As soon as the particle enters into the vicinity of the fibre geometry, the hydrodynamic
situation changes as a whole and the fibre vicinity drag module takes over. The situation
features the following characteristics:

1.) Particle–wall flow effects can no longer be neglected since the ratio between
particle diameter and minimal particle-wall (fibre) distance hp is per definition no
longer small.

2.) Particles accumulate at the fibre in considerable volume fractions and the ratio
between particle diameter and medium, minimal particle-particle distance hpp is no
longer small either. Particles interact hydrodynamically and physically by plugging
each others flow path.

3.) The high particle volume fractions, lead to a plugging of the fluid flow path,
diverting the flow and causing increased pressure drop over the filter.
Hydrodynamic particle impact on the fluid (two-way coupling) becomes essential.



Empirical expressions, describing every one of those effects individually, can be found in
literature [27], [13].

The fibre vicinity drag module incorporates all those effects in a dynamic combination to
a highly complex, multi-parameter interaction situation. Local fluid cells, encompassed by
particles are plugged by porosity adjustment. The procedure is analogous to the one
presented in [2] but has been extended to non-spherical particle shapes, refined and
quantified as shall be seen in the following.

The plugging causes the fluid to be diverted around the fluid cell which leads to a local
pressure build up pi, that can be sensed by any of the N pressure help points HPi at the
particle surface (see Figure 13). Since each pressure help point represents 1/Nth of the entire
particle surface area Ap and since pressure always acts perpendicular to the local surface
normal ni, the total pressure force Fp on the particle can be written as:

(56)

For infinitesimally fine grid spacing and an infinitely large number of pressure help points
this expression amounts to:

(57)

The second, decisive force contribution results from viscosity effects (see Figure 14).
Because of a lack of wall boundary conditions at the border between plugged and unplugged
cells, no “zero velocity” condition can be introduced at the particle surface. What happens is
that an effective “zero velocity” condition is imposed along a virtual surface including all
cell centres just within the particle borders. Therefore local shear forces FTi at the help point
positions can be approximated by using the velocity value of the nearest, unplugged fluid cell
uf,i, at distance hu,i perpendicular to the particle surface. Thus the overall shear force FT on
the particle can be calculated as:

(58)

For infinitesimally fine grid spacing and an infinitely large number of pressure help points
this expression amounts to:

(59)

Where is the Jacobean of uf. Under the condition of incompressibility, div uf=0, this
expression can be expanded and generalized. With τ being the viscous shear stress tensor,
this amounts to:
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Pressure and shear stress contributions to the overall drag force on an ellipsoid particle are
represented in Figures 13 and 14.

426 Simulation of filtration processes in deformable media

Figure 13 Pressure force contribution to over all fluid-particle force. Exemplary,
two-way coupled ellipsoid. Pressure build up in frontal particle area. Formation of
pressure gradient across particle surface.

Figure 14 Shear stress contribution to over all fluid-particle force. Exemplary, two-
way coupled ellipsoid. Plugging equals a zero flow velocity boundary condition at
engulfed cell centres. Boundary layer is approximated. Shear stresses can be
derived.

As a consequence of Equ.57 and Equ.60 the entire PME for the fibre vicinity module can
be written as:

(61)m
du

dt
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For a limited number of discretizing surface elements N this expression yields:

(62)

It has to be stated that this drag- and lift force implementation is grid dependent. The
applied meshes however, are structured grids with never changing resolution. An exact
knowledge about particle shape and surface structure of actual dirt particles is not given. Yet
plausibility commands the following statements to hold:

• Arbitrarily shaped dirt particles rather behave non-spherically than spherically.
• Dirt particles have rough surface structures than smooth surfaces.

Figure 15 qualitatively shows how some two-way coupled, non-spherical particles can
affect the surrounding fluid flow.

To quantify the results, a fluid-particle force evaluation within the fibre vicinity module
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Figure 15 Flow field deviation by ellipsoid particles getting stuck in simplified fibre
structure. Flow field before injection of multiple non-spherical particles (left).
Deviated flow field after particle injection and impact on fibres (right).

has been conducted. Results have been compared to the corresponding values yielded by the
free flow module, which is based on semi-empirical correlations (Hölzer/Sommerfeld, [23]),
and to anlytical formulations (Stokes drag). Here the outcome shall be brievely discussed for
the special case of equiaxed (=spherical) ellipsoids.

The fibre vicinity drag module gives a binary, coarse, grid spacing ∆s dependent
representation of the particle surface. Consequentially the module yields significantly higher
fluid-particle forces than a corresponding representation of smoothly surfaced objects.
However, the qualitative drag behaviour against Rep is fine. Figure 19 summarizes the drag
force behaviour of simple Stokes-flow-spheres and fibre-vicinity-module- spheres. The ratio
S = ∆s/Dsph is used as a parameter.

For supposedly, arbitrarily surfaced particles the CFD results can be expected to be more
appropriate, than any smooth surface representation. Still, correction functions have been
introduced to compensate for surface roughness, and numerical resolution effects on a user



defined basis. Because of the good qualitative behaviour of the solution, the finding of a
suitable correction function is comparatively simple. Possible parameters of dependence
are the particle Reynolds number Rep and the grid spacing ratio S. Exemplary cases within
the parameter ranges 0.05 ≤ Rep ≤ 2.0 and 0.05 ≤ S ≤ 0.5 have been evaluated. Note that the
particle model is, as of now, declared valid only for creeping flow conditions Rep < 0.5. The
correction function ζ is defined via the cd values of the analytical Stokes results cd,Stokes and
the model results cd,model:

(63)

An evaluation of the Rep-influence shows, that for Rep<0.5 the correction ζ does hardly
vary with Rep, if compared to the local average ζ, as seen in Equ.64 and in Figure 16.

(64)
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Figure 16 Plot of ζ against Rep. For Rep < 0.5 there is no relevant result
dependence on Rep.

equation is possible, as seen in Figure 17.
A linear fit to the ζ(S) results gives:

(65)

A third order, polynomial fit gives:
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(66)

Here S’ stands for S-S0, with S0=0.05. The smoothness correction ζ(S) is valid for Rep <
0.5 and 0.05 ≤ S ≤ 0.5. Within that region, the corrected cd-values show an overall, relative,
medium deviation from analytical results of ~8.1% (linear fit) and ~5.2% (polynomial fit).
Similar results can be obtained for arbitrarily shaped ellipsoids.

A consideration of Figure 17, Equ.65 and Equ.66 yields the surprising result that ζ will
have to be smaller for larger S-values than for fine grid spacing, even though the shape
representation gets worse. The explanation for this is given by the fact that, with larger S, the
closed fluid cell volume Vblock decreases as compared to the analytic volume of the object
Va, until S~0.5. For S-values larger than 0.5, the “large” particle model forfeits its validity
anyway.

Figure 19 shows analytical, un-corrected and smoothness-corrected model results in terms
of cd-values.

5 CONCLUSION
A non-spherical dirt particle model for filtration applications has been programmed under the
Open Source CFD tool box OpenFOAM®. This work has presented the most essential,
underlying concepts behind the new solver. Moreover the two drag-/lift force modules for the
free flow regime and the filter fibre vicinity have been thoroughly explained and
investigated. Thereby the efficient, porosity based, two-way coupling strategy was discussed.
A related, sequel article [3] is to be published as well. It focuses on event force modelling in
terms of particle-particle, particle-wall and particle-fibre interaction effects. In addition to
that, [3] deals with data conditioning and the development of a semi-analytical result
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Figure 17 Plot of ζ against S. Results (red) are fitted linearly (blue) and by a third
order polynomial (green).



verification scheme.
Based on the geometrically versatile shape of ellipsoids, dirt particles, that feature six

degrees of motional freedom, can now be modelled. A wide variety of particle shapes, -
anything from plates to sticks to simple spheres -, can be approximated by this concept.

The development effort behind this paper has entailed several prominent sub steps, such as:

• Design of an explicit, force- and torque vector model, which reduces the modelling
to the mere formulation of single force effects.

• Introduction of an adaptive time stepping scheme for explicit Euler discretization of
the PME, [4].

• Device of a surface help point scheme to account for large particle effects in terms
of fluid–particle, particle–fibre and particle–particle interaction.

• Application of a drag force implementation that uses a combination of non-spherical,
semi-empirical drag force formulas [23], a panel method to consider free flow swirling
effects, a plugging method to include inter particle and particle–fibre hydrodynamics
and a simple adaptation of basic concepts known from the immersed boundary method
[16].

• Implementation and description of an efficient particle–fluid, two–way coupling
method [2].

This paper presents the framework for large, non-spherical, versatile particles with
multiple abilities. The concept of additional event forces, which can be added to the PME,
enables the modular addition of individual interaction effects like those, presented in [3]:
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Figure 19 Plot of log(cd) against log(Rep). Averaged (over S range), original model
results (purple) are fitted by polynomial smoothness correction, using Equ.66 (blue)
to analytical Stokes drag results (yellow). Model is valid within the Stokes drag
regime, log(Rep) ≤ –0.30.



• Particle-particle interaction effects
• Particle interaction with wall boundary patches
• Particle-fibre interaction effects

The nature of the solver is such, that other, additional features could be implemented
pretty easily in the future. Some possible examples are:

• Electro static interaction
• Diffusion contributions to particle motion
• Particle-particle skin friction forces

In a further step, the fully assembled particle module can be easily added into any laminar,
continuum based, Eulerian fluid solver.

Since validation is crucial as well, extensive measures to verify solver functionality and
result quality had to be taken. Article [3] reports of the development of a semi-analytical
verification scheme to back up CFD results.

In the future this CFD tool will enable the virtual, purely digital pre-design of filter fibre
materials. It will then be possible to upload artificially created fibre structures, conduct the
CFD analysis and to use the results as a good estimate on the expected performance of the
newly designed fibre material.
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