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ABSTRACT

A main aspect in the design of passenger cars with respect to pedestrian

safety is the energy absorption capability of the engine hood. Besides that,

the hood has to fulfill several other requirements. That makes it necessary

to develop easy and fast to solve prediction models with little loss in

accuracy for optimization purpose. Current simulation tools combined with

standard optimization software are not well suited to deal with the above

mentioned needs. The present paper shows the application of

mathematical methods on a simplified self developed model to reduce the

optimization effort. A linear and a nonlinear model are introduced and a way

for solving both is pointed out. Finally it is shown, that it is possible to simplify

models and get optimization results much faster by using mathematical

theory. Such results can be used in support of the original problem or as an

input to space mapping based optimization algorithms, such as surrogate

optimization.

Keywords: nonlinear optimization, partial differential equation, p-Laplace,

surrogate model, finite element method

1. INTRODUCTION
Within the broad area of simulation in vehicle development there is the special field of
pedestrian safety which has gained importance due to ongoing introduction of aggravated
legal requirements. Therefore vehicle manufacturers are obligated to produce cars which are
less harmful to pedestrians in case of collision. One of the main aspects in that area is the
engine hood. The hood is one of the most important contact points of a pedestrian’s head with
the car during a collision with a speed up to approximately 40 km/h. That is why it is
necessary to change the scenario of the head impact on the hood. There are two possibilities
to take this into account. One thing is to change passive protection (geometry, stiffness,
material, etc.) and the other thing is to use active protection systems (actuators that move the
hood before the impact). The main focus in this paper is how to model, solve and optimize
a hood-like problem in an analytical/mathematical way. This model will not include as much
physics as some Finite-Element-Method (FEM) software packages but it will allow a first
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step to use analytical methods. Furthermore a special optimization method (“surrogate
optimization”) will be applicable, which is the topic of current research (see [1]).

In the following chapter 2 the physical problem is shown and a nonlinear and a linear
model, represented by partial differential equations (PDEs), are introduced. The optimization
problem is stated and it is shown how the gradient information for the linear problem can be
derived (chapter 3).

Finally, chapter 4 depicts how a solution can be achieved for the nonlinear problem by
using a fixed point iteration. Furthermore a typical optimization run and the results of a
parameter study are presented.

2. DEVELOPING THE MODEL
2.1. PHYSICAL PROBLEM
For simplification a plane plate representing a vehicle hood is used (Figure 1). The
boundaries of the plate are constrained with zero degrees of freedom (DOF) and each inner
point has one degree of freedom, which is the movement in z-direction.

Figure 1 Simplified engine hood.

Notation for Figure 1:

2.2. THE NONLINEAR AND THE LINEAR MODEL
A variational principle valid within the framework of deformation theory of plasticity
(Hencky, Ilyushin and Nadai; see [2]) yields a nonlinear governing Euler-Lagrange equation
for the deflection of the plane plate, shown in Figure 1.

(1)

u = 0 on Γ

− ∇ ∇ =div(2(1 + inn t u u fn) )� �2
2 Ω

f fK : ,Ω → R load at each point of the plate

u uK : ,Ω → R z-displacement of each point of the  plate

� � �⊂ = ∂�2,
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With:

Hollomon coefficient (constant material property, typically n = 0,15...0,35)

plate thickness at each point of the plate Ω

z-displacement of each point of the plate

load at each point of the plate

The solving of the nonlinear PDE in Eqn (1) is shown in chapter 4.1 by using a fixed point
iteration. For easier handling and solving reason Eqn (1) was changed into a linear PDE
which can be formulated as follows:

(2)

u = 0 on Γ

This equation forms the basis to state the optimization problem in the next chapter.

3. OPTIMIZATION PROBLEM AND IMPLEMENTATION
We are interested to have an optimization solution for Eqn. (2) to make a first move towards
the original problem mentioned in chapter 2.1. The general base for numerical optimization
can be found in various literatures (e.g. [3], [4], [5] and [6]). Whereas [7] gives a brief
overview on optimization in structural mechanics from an engineering point of view. In this
paper we have to additionally consider the theory of optimal control of PDEs. For a general
reference refer to [8], for application to [9], [10], [11], [12] and [13].

One of the main aspects for car manufacturers is the factor of weight. The weight of a
component is directly proportional to the volume, which is the objective of the following
optimization.

3.1. STATING THE OPTIMIZATION PROBLEM

(3)

with Ladτ = ∈ < ≤ ≤{ }t x y t t x y t( , ) ( ) ( , )2 0Ω |

s.t. div: ( ) ( , ) ( , ) ( , ) ( , )− + ∇( ) = ∀2 1 n t x y u x y f x y x y ∈∈
= ∀ ∈
≤ ∀ ∈
∈

Ω

Ω
u x y x y

u x y u x y

t x y

( , ) ( , )

( , ) ( , )

( , )

0 Γ

τ aad ∀ ∈( , )x y Ω

min ( , )t x y dxdy
Ω
∫

− ∇ =div(2(1 + inn t u f) ) Ω

f f… �: ,� →

u u… �: ,� →

t t… �: ,� →

n n…0 1< < ,

Ω Γ Ω⊂ ∂R
2
, =



lower an upper bound fpr the plate thickness

upper bound for the z-displacement

In this subsection we formulate the optimization problem and derive first order necessary
optimality conditions. For more details refer to [1].

The Lagrange multiplier for the state constraints is a measure, therefore we
penalize the state restriction on u. This turns Eqn. (3) into the following optimization
problem with an augmented objective functional.

(4)

t_ , t
–

...lower and upper bound for the plate thickness

u– ...upper bound for the z-displacement

κ, a...positive weight functions for the volume and the penalty term

To deduce the gradient for the objective functional of Eqn. (4) it is necessary to
express the Lagrange function as follows. For better readability the arguments (x, y) are
omitted.

(5)

which leads us to the directional derivative

(6)

for δu: Ω → R and’ · ‘the scalar product of two vectors.

By the optimality condition
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we are able to derive the adjoint equation

(8)

Furthermore we need another directional derivative

(9)

for This leads to the variational inequality

(10)

Now we can state the optimality system which consists of Eqns. (2), (8) and (10).

3.1.1. Optimality system 
If (t*, u*) is a solution for Eqn. (4), then there is a p* that satisfies the following relations:
state equation:

–div(2(1 + n)t*∇ u*) = f in Ω
(11)

u* = 0 on Γ

adjoint equation:

–div(2(1 + n)t*∇ p*) = –α max(u*– u–, 0)  in Ω

p* = 0 on Γ

(12)

variational inequality:

(13)

Thus we have the gradient of the extended objective functional (4):

(14)

Therefore we have to solve the state equation (10) first to calculate the gradient of u*.
Afterwards the adjoint equation has to be solved (under respect of the actual solution u*) to
gain the solution for p*. With both solutions it is possible to obtain the wanted solution for
the gradient in Eqn. (14).

3.2. IMPLEMENTATION DETAILS
The optimality system in Eqn. (10) is implemented and solved in Matlab combined with
COMSOL. Matlab is used as a general development environment whereas COMSOL serves
as PDE solving tool.

∇ = + + ∇ ⋅∇∗ ∗ ∗J ( ) ( )t uκ 2 1 n p

( ( ) )

( )

( )κ τ+ + ∇ ⋅ ∇
∇

− ≥ ∀ ∈∗ ∗

∗

∗

∫ 2 1 0n pu

t

t t t

JΩ

 dxdy add

( ( ) ) ( ) .κ τ+ + ∇ ⋅ ∇ − ≥ ∀ ∈∗ ∗ ∗∫ 2 1 0n pu t t t  dxdy  ad
Ω

δ t : .Ω → R

L dx dy+ dx dyt u t p t t t t u( , , ) ( )δ κ δ δ= + ∇ ⋅∇∫ ∫
Ω Ω

2 1 n p

p∗ = 0 on Γ

− ∇( ) = − −∗ ∗ ∗div 2(1 + ) inn t p u uα max( , )0 Ω
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A trust region algorithm “dogleg” was chosen for optimization purpose. This algorithm
is a part of the Matlab optimization toolbox. Trust region algorithms are well suited to deal
with nonlinear medium scale problems. An overview of these algorithms can be found in
[14] and [6].

The required algorithm is called by the Matlab function fmincon. Standard settings of this
function did not provide appropriate results. It was possible to obtain better results by using
modified options (GradObj: on, DerivativeCheck: off, LargeScale: off, MaxIter: off, Display:
iter, Diagnostics: on).

Typical values for the weight factors were chosen with k = 1 and α = 100.000.
COMSOL as well as the Matlab function fmincon offer the possibility to numerically

calculate the gradient information. A self programmed central difference scheme did not
make much difference to the result but helped understanding the behavior of the gradients of
u* and p*.

4. RESULTS
4.1. SOLVING THE NONLINEAR PROBLEM BY FIXED POINT ITERATION
The solution of Eqn. (2) can be calculated by COMSOL, but solving the original Eqn. (1) did
not work the same way.

A first approach is the Banach fixed point theorem which leads to a fixed point iteration
(see both in [15]) to use the solution of Eqn. (2) on solving Eqn. (1). The necessary iteration
rule is stated as follows:

(15)

with uk + 1 = 0 at Γ.

Notice the slight change (additional ε-term) which was made from Eqn. (2) to Eqn. (15).
This is necessary to avoid singularities during the PDE solving for gradients equal to zero.
The implementation of the iteration rule leads to the following results.
Using the parameters n = 0, 22, f = 5N (const.) and a randomized thickness distribution
(Figure 2) leads to the convergence of the fixed point iteration according to Table 1.

uκ +
−

1satisfies
div(2(1 + nn t u f

n t u un

) ) in

div (2(1 )

∇ =

− + + ∇ ∇

+κ

κ κε

1

2

2

Ω, κ = 0

( ) ++ =






1) inf Ω, κ > 0
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Figure 2 Randomized thickness distribution.
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Table 1 Convergence of the Fixed Point Iteration

k 0 5 10 15 17 18 40
u kmax [mm] 0,0551421 0,1008773 0,0998521 0,0998688 0,0998686 0,0998685 0,0998685

rel. Change 8,29E-01 -1,02E-02 1,67E-04 -2,00E-06 -1,00E-06 <-1,00E-06

Table 1 shows, that there is quite some relative change in the maximal displacement 
(u kmax) until iteration step 17. From iteration step 18 to iteration step 40 the absolute value of
the relative change in the maximal displacement is smaller than 1e-6. That shows, that
accuracy is not much gaining during 22 iterations. Hence, 20 iteration steps seem to be
accurate enough to obtain a solution for Eqn. (1)

4.2. RESULTS FOR A TYPICAL OPTIMIZATION RUN
Consider the optimization problem in Eqn. (4) for which the equations in the optimality
system of Eqn. (14) have to be solved. The available parameters are set as follows: t
= 0,2 mm, t–=10 mm, u– = 0,045 mm, α =106, κ = 1, n = 0, 22, f = 5N (const.) and a starting
thickness of 1,75mm. With these parameters the optimization process generates the iteration
steps in Figure 3. There you can see the change in the thickness for discrete FE nodes. Blue
denotes small and red large thickness values.

Figure 3 A typical optimization run. Thickness change during 40 iteration steps.
(blue...small thickness values; red...large thickness values).

For the optimization run it was necessary to solve the PDE from Eqn. (2) 316 times. For
comparison, consider, that an optimization without adjoint equation (Eqn. (14)) and analytic
gradient information takes more evalutations. In this example, the optimization with a
numerically differentiated gradient needs 5461 evaluations of Eqn. (2). The advantage of
using mathematical methods to derive an analytical gradient results in an 17 times lower
PDE evaluation effort for an optimization result.
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4.3. PARAMETER STUDIES
The influence of different parameters on the optimization solution and optimization
convergence was examined by a parameter study. Parameters are described in the following
part, whereas values and/or settings for the parameters are shown in Table 2.

4.3.1. Description of varied parameters
• Norm of the gradient: Because of the discrete scalar product it is necessary to

define a norm. One possibility is to use an Euclidean norm, another one to use
a h-2-Norm (weighted Euclidean norm) which can be stated as follows:

(16)

With υ an arbitrary vector of length N and T the area of the entire plate. Additionally N
depicts the degree of freedom of the finite element discretization.

• The plate thickness starting value in each FE-node (tstart)
• Hollomon coefficient n: A material parameter used in the material law of

Ludwik-Hollomon [16]. It describes the relation between effective stress and
effective strain.

(17)

With σ– effective stress, κ and n material constants and ϕ– the effective strain.

• Weighting factor κ: Weighting of the volume in the objective function
• Weighting factor α: Weighting of the penalty term in the objective function

σ ϕ= Κ n

υ υ υ υ υ2 2

2

1
2, ,: ,

h h i
i

NT

N

T

N
= ( ) = =

=
∑

Table 2 Values and settings for the parameter study

values/settings
gradient norm Euklidean norm h-2 norm
tstart 0,2 1 1,75 2,113 3 5 7 10

n 0,1 0,15 0,22 0,3 0,4 0,5
α 1 1e2 1e3 1e5 5e4 1e5 5e5 1e6 2e6
κ 0,001 0,01 0,1 1 1 10 10

4.3.2. Results of the parameter study, according to the 
values/settings in Table 2

• Gradient norm: Both norms differ solely by a scaling factor, which explains
why the optimization results do not qualitatively differ. Accurate results are
only derived with the h-2-norm, but the directional vectors differ in terms of
length only. An implementation of a stepsize rule (e.g. Armijo stepsize rule
[17]) would speed up the convergence of the optimization.

• The plate thickness starting value: Values, far beyond the optimum value led
to a slower convergence of the optimization but resulted in the same optimal
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thickness parameters. The convergence rate could also be increased by the
above mentioned stepsize rule. There was no other observed influence on the
optimization result.

• Hollomon coefficient n: Variation of this parameter showed only small effects on
the result of the state equation. This is can be explained by Eqns. (11) and (17).

• Weighting factor α: Because of the small value of the restricted maximal
displacement (0,045mm) this factor was important for the weighting of the
penalty term in Eqn. (4). It has to set the penalty term to a reasonable level,
which allows the objective function to consider the maximal displacement
and to don’t exceed it. A value of 1e6 showed good results.

• Weighting factor κ : This factor, combined with α , accounts for the order of
magnitude of the objective function. So it has a similar role as α. It (κ ) was
set to 1 to achieve the effective plate volume. Hence there is just a left for
setting the order of magnitude correctly.

5. CONCLUSION
The physically motivated problem was to optimize the thickness distribution of a vehicle
hood. It was mathematically described and stated as a linear and a nonlinear model. Using
Lagrange functions it was possible to derive a solution for the gradient of the stated
optimization problem. This caused a significant decrease of function evaluations. By using a
fixed point iteration it was shown, that the solution of the nonlinear PDE (p-Laplace
equation) can be computed. Parameter studies showed the influence of different parameters
on the optimization with respect to the optimization result and convergence.

Ongoing and future research is to incorporate the models from this paper into the space
mapping technique and surrogate models (see [18], [19] and [20]). This optimization method
is promising to be used with sophisticated models and time-consuming simulations. First
results will be published in [1]. Moreover, some efforts will be done to further enhance the
solving of the PDEs (Eqns. (1) and (2)) by a multigrid method according to [21] to improve
calculation time.
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