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ABSTRACT
The advantages of an unsteady implicit partitioned Fluid-Structure
Interaction Scheme are, especially for large time step sizes, accompanied
by a high number of inner iterations needed. This work investigates the use
of extrapolation techniques in between time steps to obtain a smaller
number of inner iterations.

In contrast to previous works not only the structural displacement but also
the fluid field variables are considered for extrapolation. The different
extrapolation approaches are compared within a numerical benchmark.
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1. INTRODUCTION

In solving partitioned Fluid-Structure Interaction (FSI) problems, the implicit approach has
shown great advantages in terms of time step restrictions and stability. Especially when
exploiting its ability to use large time steps, a main challenge of this approach is to reduce the
number of FSI iterations within every time step. This challenge has been investigated by
numerous people.

Mainly the methods can be divided into two types. Methods working on acceleration
within individual time steps and methods integrating several time steps. The former include,
among others, adaptive under-relaxation of Aitken type as in [13, 6, 5, 14, 15, 9], reduced
order modeling [13], steepest descent methods [5], or vector extrapolation [6].

Methods using multiple time steps are typically based on extrapolating the converged FSI
solutions. Extrapolation in between time steps produce a more sophisticated first guess and
thus reduce the number of FSI iterations needed in the current time step to reach convergence.
This has been implemented into partitioned implicit [2] and partitioned explicit FSI solvers
[3], but attention has been singly on the structural parameters as in [8, 9] or the displacement
of the fluid field as in [14]. In [11] extrapolation has been implemented for the structural
displacement and the fluid pressure.

This work introduces a method of force extrapolation. The extrapolation routines for the
structural parameters are used for the fluid force acting on the structure at the FSI interface.
Compared to the classical displacement extrapolation, the force extrapolation results in a
greater acceleration. Furthermore, there are virtually no additional computational costs, as the
same functions and memory blocks, as being used for the displacement, can be employed.
Singly, one additional structure solution per time step is necessary.
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In the following chapter, the underlying conservation equations are given in the Arbitrary
Lagrangian-Eulerian formulation (ALE), then the native FSI algorithm is introduced.
Thereafter the extrapolation functions are presented as well as the implementation for
displacement and force extrapolation. After specifying the underlying solution software and
the FSI test case, numerical results of all implementations are shown and compared for 3
different time step sizes.

2. FLUID-STRUCTURE INTERACTION SYSTEM

In the following a subscript frefers to the fluid and a subscript s to the structure. Let €2 be our
computational FSI domain described in the ALE framework, which has a disjoint partition
into the structure domain §2_and the fluid domain €2, with FSI boundary I" = (TS N fo Let the
velocity and pressure denoted by (v, p) be well defined with all boundary conditions on the
respective remaining boundaries 052 1 \I". Then, the fluid part of the coupled problem can be
stated as the Navier-Stokes equations for incompressible Newtonian fluids in the ALE
framework

0 p B .
Efﬂfpf,,dV—kfw/pf(v—u )UndA—fm/an dA+fQ/pffde in €. (1)

0 g A
Efﬂfpfdl/—i—fm/pf(v—v )n dA =0 in Qf 2)

with v9the ALE grid velocity, p fthe fluid density, n the outer normal vector, ff outer forces
acting on the fluid,

af:uf(Vv+VvT)—pI 3)

the Cauchy stress tensor, p the pressure, / the identity, and p fthe dynamic viscosity.

As for the structure part, the elasticity equation with the St. Venant Kirchhoff material
model is used. Let X be the reference configuration and z = x(X, ?) the position in the current
configuration. The structure part of the coupled problem can be denoted as

“)

VA(FST)+p = p i @

with f, the outer forces acting on the structure, p  the structure density,

S=xtwr(B)I+2pE inQ )
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the second Piola-Kirchhoff stress tensor, X\, and j1  the Lam constants,
.
E:E(F FfI) in ©6)
the Green-Lagrange strain,

in Q (7

in Q 3

the structure velocity. The FSI boundary conditions for fluid and structure on I" then follow as

v = and ;FSFTn =0 9)
: det (| o

3. EXTRAPOLATION IN FSI
Let (¢)" be the discrete counterpart to a time and space dependent variable ¢ at FSI iteration
i, at time step n and e, the FSI convergence criterion.

3.1. NATIVE FSI ALGORITHM

One time step of the native partitioned implicit FSI implementation is depicted in figure 1.
The ith iteration of the nth time step can be described as follows. First the Navier-Stokes
equation is solved for velocity and pressure (v)", (p)" in the fluid domain. Using this solution

Time step _+
Navier stokes Boundary force L, Elasticity Under-relaxation Fluid grid
L . =
()% ()7 ()7 ()7 ()i )i (¥4
Navier stokes Boundary force Elasticity Under-relaxation Fluid grid
(i1 (P) i (07T ()41 (X)7+1 (9742
| -

v

Figure 1

Native implicit partitioned FSI algorithm.
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the force on the FSI boundary (o f)’; (nf)’; is derived. Implementing the force as boundary
condition, the elasticity equation is solved for the displacement ()" on the structure domain.
Then the procedure checks for convergence. If ¢ = 1 and

(10)

FSI convergence is achieved and the next time step is calculated. Otherwise, the structure
solution is under-relaxed by a constant under-relaxation factor o

(X); = a0y +1=a)00;, - (1)

Then, the fluid grid is displaced according to (X)’; and a new grid velocity (v9)7, , in the
fluid domain as well as a new fluid boundary condition on I" is computed.

3.2. EXTRAPOLATION FUNCTIONS

Extrapolation is a well known technique to accelerate many kinds of unsteady processes, as it
can provide a sophisticated initial guess to the underlying solver. In implicit partitioned FSI
computations it is mainly used in two areas. Either it is applied within a time step, i.e. as vector
extrapolation (see U. Kiittler and W. Wall [6]), or to generate a more promising initial
structural displacement in the current time step using polynomial extrapolation as in J.
Vierendeels et al. [13] or M. Schiifer et al. [9].

As polynomial extrapolation functions have been proven of value in this field, see
[2, 11, 3, 14], they are also used in this work. To demonstrate the effect of different orders
of extrapolation, four different orders are implemented, namely the first four Lagrange
polynomial interpolation functions.

Let ()% be the state of variable (¢) at FSI convergence in time step n. Then the Lagrangian
interpolation functions state:

Othorder: ¢ =¢"" (12)
Ist order : ¢ = 2¢*"_1 — (b:’_z (13)
2ndorder: @' =3¢""' =3¢" ¢ (14)

Brdorder: ¢ =4¢" ' —6¢" 2 +4¢" P —g" . (15)
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These functions are used for both displacement and force extrapolation. Higher order
extrapolation suggest a higher order of accuracy, thus less iterations to convergence, however,
their implementation requires more memory and computing time.

3.3. EXTRAPOLATED DISPLACEMENT

In the case of displacement extrapolation the structural displacement x on I is altered in the
first FSI iteration of every time step. Singly the variables on the FSI boundary, as opposed to
the entire fluid region €2 1, are extrapolated in order to minimize memory consumption. The
course of this algorithm 1n time step n is depicted in figure 2.

In contrast to the native algorithm, the fluid solution, derivation of force on the boundary,
and solution of the structure problem are skipped. Instead, the first structure solution (x)’} is
extrapolated by one of the equations (12) to (15). Additionally, no under-relaxation is applied
to the displacements, as this would damp the advantage of extrapolation. The following
iterations are carried out according to the non-extrapolated case.

Time step +

Extrapolate displacement Fluid grid
n n
()1 (v9)}

L Navie;lr stol:es L Boundnary fonrce L, Elastigity L, Under—r_elf:xation L, | Fluid %rid
(v)5, (p)3 (a7)3 (ng)3 ()3 (x)3 (v9)3
| _———_—. ]

Figure 2 FSI algorithm with displacement extrapolation.

3.4. EXTRAPOLATED FORCE

In the case of fluid force extrapolation, the boundary forces o snon I" acting on the structure
are extrapolated. This affects the FSI procedure in the same way as extrapolating the fluid
variables v and p on the entire domain (2 1 but saves memory, as singly values on the interface
have to be stored. A sketch of this algorithm in time step n is given in figure 3.

Here, the first FSI iteration omits the fluid solution and the derivation of force on the FSI
boundary. In this case, the force (o f)’{ (nf)q' is extrapolated by one of the equations (12) to (15).
Once again the under-relaxation of the structure solution is omitted in the first iteration, as for
the displacement case.

Time step +
Extrapolate force L, Elasticity ] ] Fluid grid |
(a1 (npf ()1 (195
L Navic-ir stotes L Boundfry f?che L, Elastlglty ] Under—r_elgxatlon L, Fqu:Ig %nd |
(v)3, (p)3 (Uf)Z (”f)2 (x)3 (x)3 (v9)}
| _————

'

Figure 3 FSI algorithm with force extrapolation.
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Again, the following iterations are identical to the non-extrapolated case. Compared to the
displacement extrapolation this introduces an additional structure solve per time step.
However, the gain in accuracy outweighs this additional solve in terms of CPU time needed
for convergence.

4. SOLVERS

The fluid structure coupling is realized by an implicit partitioned approach. under-relaxation
is applied to the structural displacements by a constant Under-relaxation factor. This ensures
that the acceleration of the FSI procedure originates singly from the initial guess in every time
step, thus the applied extrapolation.

The fluid is solved by the in house finite volume code FASTEST [4]. It utilizes the
SIMPLE algorithm by S.V. Patankar and D.B. Spalding [7], the linearized fix point problem
is solved using an incomplete ILU factorization and a geometric multi grid is implemented to
accelerate the procedure. The code operates on block structured hexahedral grids. As for time
stepping, a second order backwards difference scheme is used.

The non-FSI grid boundaries are moved by interpolating splines and a transfinite
interpolation scheme is used to smooth the inner-block grids.

The structure problem is solved by the finite element code FEAP by R. L. Taylor [10]. It
uses Newton iteration and the resulting linear system is solved by a conjugate gradient solver.
The second order transient Newmark scheme is used for temporal integration.

The coupling and exchange of forces and displacements on the non-matching grids is
realized by the code coupling interface MpCCI [1].

5. BENCHMARK TEST CASE
A commonly used FSI test case is chosen to compare the different approaches described
above. This test case consists of a channel flow around a rigid cylinder with an elastic bar
attached to it. All parameters are set according to the FSI Benchmark by S. Turek et al. [12].
The channel has the dimensions 2.5 x 0.41 m?, with a slightly off symmetric positioned
cylinder at (0.2 m, 0.2 m), radius 0.05 m and a bar attached to the cylinder of size
0.35 x 0.02 m?. Figure 4 shows the configuration, with its fluid and structure domain.
Boundary conditions for the fluid are: A parabolic inflow profile

T
—15% [il[O.M—l], o} , (16)

v =
nlet 0.1681 m m

f

with v =2 m/s, zero-gradient outlet condition, and no-slip on all other surfaces. The structure
is clamped at the cylinder. The fluid field is initialized with constant velocity vp= (v, 0)7, the
structure is initially at rest without any loading.

Y<>——<' Q
X Q

s

Figure 4 Sketch of the fluid and structure domain of FSI 3.
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The fluid is set to be incompressible and Newtonian with density p = 1-103 kg/m? and
dynamic viscosity p, = 1 kg/ms. This leads to a Reynolds number of Re = 200. The structure
is described by the St. Venant Kirchhoff model with density p = 1-103kg/m?, X = 8-10°kg/ms?,
and p, = 2-10°kg/ms?,

6. NUMERICAL RESULTS

The objective of this work is to compare the different extrapolation algorithms with respect to
numerical efficiency. All tests were calculated on the same grid with fixed under-relaxation
parameter and solver parameters. The comparison involves 0.5 seconds of physical time with
three different time step sizes At = 0.001 s, 0.002 s, and 0.005 s. Oth to 3rd order extrapolation
is used for the displacement and force cases. The computational domain is discretized into 64
elements for the structure and 15,856 volumes for the fluid in 2D. The third space dimension
is discretized by 2 elements in the structure and 4 volumes in the fluid. Additional boundary
conditions for the third dimension are zero-gradient for the structure and periodicity for the
fluid. Figure 5 shows a section of the non-matching computational grids after 0.05 and
0.15 seconds. Computations were carried out on an Intel Core 17 (2.8 GHz).

The measurement starts with a fully developed flow field and the bar moving in constant
cycles. The bar tip displacement for time step At = 0.001 s is shown in figure 6. The force
acting on the FSI boundary is shown in figure 7. Their mean values are shown in tables 1 and
2. Comparing the largest time step At = 0.005 to the smallest time step At = 0.001, the
relative error in tip displacement is 0.58% in amplitude and 1.77% in wavelength, the relative
error in drag amplitude is 0.15% and 0.47% in wavelength, and the relative error in lift
amplitude is 0.85% and 2.23% in wavelength.

Figure 5 Section of the fluid and structure grid.
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Figure 6 Bar tip movement with time step size At = 0.001 s.
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Figure 7 Force on I' with time step size At = 0.001 s.

Table 1 Average bar tip displacement

Time step [s] x-displ. [m] x-freq. [1/s] Displ. y [m] y-freq. [1/s]
0.001 -0.0027 = 0.0026 10.72 0.0012 + 0.0335 5.35
0.002 -0.0027 = 0.0026 10.70 0.0012 + 0.0335 5.38
0.005 —-0.0027 = 0.0026 10.53 0.0012 + 0.0333 5.41

Table 2 Average force on acting on I'

Time step [s] Drag [N] Drag freq. [1/s] Lift [N] Lift freq. [1/s]
0.001 463.90 = 24.11 10.72 20.18 + 148.80 5.38
0.002 463.88 = 23.94 10.70 20.05 = 148.78 5.32
0.005 463.80 = 23.46 10.67 19.74 + 147.80 5.26

Figures 8, 9, and 10 show the average CPU times per time step. The native FSI algorithm
coincides with the Oth order displacement extrapolation, as the new time step starts its
calculation on the grid displaced in the last time step.

As expected, all extrapolation algorithms show faster convergence than the native FSI
algorithm. The force case outperforms the displacement case for small orders of extrapolation
independent of the time step size.

For small time step sizes the CPU time needed for the displacement case approaches the
time needed for the force case as the order of extrapolation increases. This behavior reduces
with increasing time step size. The advantage of force over displacement extrapolation is
clearly seen at the largest time step At = 0.005 s. There, the maximum improvement of the
displacement extrapolation is reached at 3rd order. This is more than 2 times slower than the
3rd order force extrapolation.

For At = 0.005 s the 3rd order force extrapolation is more than 2.5 times faster than the
native algorithm.

The maximum improvement for time step At = 0.002 s shows the 2nd order force
extrapolation, which is more than 3 times faster than the native algorithm. The fastest
displacement case is at 3rd order extrapolation.
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Figure 8 Average CPU time for one time step At = 0.001.
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Figure 9 Average CPU time for one time step At = 0.002.
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Figure 10 Average CPU time for one time step At = 0.005.
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For the time step At = 0.001 s the maximum improvement can be seen with the Ist
order force extrapolation, which is more than 3.7 times faster than the native algorithm.
The best convergence for the displacement case can be found with 3rd order
extrapolation.

7. CONCLUSIONS

In this article the extrapolation of forces acting on the structure at the FSI boundary in order
to accelerate unsteady implicit partitioned FSI computations is described and examined. This
is compared to the well known acceleration technique of extrapolating the displacement on
the FSI boundary. Numerical tests based on an FSI Benchmark show the superior performance
of the force extrapolation for different time step sizes. This advancement can be achieved at
minimal computational cost as the same memory blocks and extrapolation procedures as for
the displacement extrapolation can be employed.

In addition, different extrapolation schemes based on the Lagrange interpolation
polynomials are compared. It is shown that the impact of a higher degree of extrapolation is
increasing with the time step size. This leads to more efficient implicit solvers, as greater time
step sizes can be used and less FSI iterations per time step are needed.

As for future prospects, the combination of force extrapolation with other extrapolation
techniques can be studied. Furthermore, this approach can be combined with other
acceleration methods acting within single time steps. As these two kinds of methods are
completely independent a superposition of speedup is expected.
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