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ABSTRACT

The thermosolutal instability of compressible Walters’ (model B') elastico-
viscous rotating fluid permeated with suspended particles (fine dust) in the
presence of vertical magnetic field in porous medium is considered. By
applying normal mode analysis method, the dispersion relation has been
derived and solved analytically. It is observed that the rotation, magnetic
field, suspended particles and viscoelasticity introduce oscillatory modes.
For stationary convection the Walters’ (model B') fluid behaves like an
ordinary Newtonian fluid and it is observed that the rotation and stable
solute gradient has stabilizing effects and suspended particles are found to
have destabilizing effect on the system, whereas the medium permeability
has stabilizihg or destabilizing effect on the system under certain
conditions. The magnetic field has destabilizing effect in the absence of
rotation, whereas in the presence of rotation, magnetic field has stabilizing
or destabilizing effect under certain conditions.

Keywords: Walters’ (model B') fluid, thermosolutal instability, suspended
particles, magnetic field, rotation , porous medium.

1. INTRODUCTION

A detailed account of the thermal instability of a Newtonian fluid, under varying
assumptions of hydrodynamics and hydromagnetics has been given by Chandrasekhar [1].
Chandra [2] observed a contradiction between the theory and experiment for the onset of
convection in fluids heated from below. He performed the experiment in an air layer and
found that the instability depended on the depth of the layer. A Benard-type cellular
convection with the fluid descending at a cell centre was observed when the predicted
gradients were imposed for layers deeper than 10 mm. A convection which was different in
character from that in deeper layers occurred at much lower gradients than predicted if the
layer depth was less than 7 mm, and called this motion, Columnar instability . He added
an aerosol to mark the flow pattern.

Bhatia and Steiner [3] have studied the thermal instability of a Maxwellian visco-elastic
fluid in the presence of magnetic field while the thermal convection in Oldroydian visco-
elastic fluid has been considered by Sharma [4]. Veronis [5] has investigated the problem of
thermohaline convection in a layer of fluid heated from below and subjected to a stable
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salinity gradient. The buoyancy forces can arise not only from density differences due to
variations in solute concentration. Thermosolutal convection problems arise in oceanography,
limnology and engineering.

The medium has been considered to be non-porous in all the above studies. Lapwood [6]
has studied the convective flow in a porous medium using linearized stability theory. The
Rayleigh instability of a thermal boundary layer in flow through a porous medium has been
considered by Wooding [7] whereas Scanlon and Segel [8] have considered the effect of
suspended particles on the onset of Bénard convection and found that the critical Rayleigh
number was reduced solely because the heat capacity of the pure gas was supplemented by
the particles. The suspended particles were thus found to destabilize the layer.

Sharma and Sunil [9] have studied the thermal instability of an Oldroydian viscoelastic
fluid with suspended particles in hydromagnetics in a porous medium. There are many
elastico-viscous fluids that cannot be characterized by Maxwell’s constitutive relations or
Oldroyd’s constitutive relations. One such class of fluids is Walters’ (model B") elastico-
viscous fluid. Walters’ [10] reported that the mixture of polymethyl methacrylate and
pyridine at 25°C containg 30.5 g of polymer per litre with density 0.98 g per litre behaves
very nearly as the Walters (Model B') elastico-viscous fluid. Walters’ (Model B") elastico-
viscous fluid form the basis for the manufacture of many important polymers and useful
products. This and other class of polymers is used in the manufacture of parts of space-crafts,
aeroplanes, tyres, belt conveyers, ropes, cushions, foam, plastics, engineering equipments
etc. Recently, polymers are used in agriculture, communication appliances and biomedical
applications.

Stommel and Fedorov [11] and Linden [12] have remarked that the length scalar
characteristic of double diffusive convecting layers in the ocean may be sufficiently large
that the Earth s rotation might be important in their formation. Moreover, the rotation of
the Earth distorts the boundaries of a hexagonal convection cell in a fluid through a
porous medium and the distortion plays an important role in the extraction of energy in
the geothermal regions. Brakke [13] explained a double-diffusive instability that occurs
when a solution of a slowly diffusing protein is layered over a denser solution of more
rapidly diffusing sucrose. The problem of thermosolutal convection in fluids in a porous
medium is of importance in geophysics, soil sciences, ground water hydrology and
astrophysics. The scientific importance of the field has also increased because
hydrothermal circulation is the dominant heat transfer mechanism in the development of
young oceanic crust (Lister, [14]). Generally, it is accepted that comets consist of a dusty
snowball of a mixture of frozen gases which in the process of their journey changes
from solid to gas and vice-versa. The physical properties of comets, meteorites and inter-
planetary dust strongly suggest the importance of porosity in the astrophysical context
(McDonnel [15]).

When the fluids are compressible, the equations governing the system become quite
complicated. Spiegel and Veronis [16] simplified the set of equations governing the flow of
compressible fluids under the assumption that the depth of the fluid layer is much smaller
than the scale height as defined by them, and the motions of infinitesimal amplitude are
considered. Thermal instability of compressible finite-Larmor-radius Hall plasma was
studied by Sharma and Sunil [17] in a porous medium.

A porous medium is a solid with holes in it, and is characterized by the manner in which
the holes are imbedded, how they are interconnected and the description of their location,
shape and interconnection. However, the flow of a fluid through a homogeneous and
isotropic porous medium is governed by Darcy s law which states that the usual viscous term
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in the equations of motion of Walters (model B’) fluid is replaced by the resistance term
[— kl( u- M’a—i)] q , where p and u’are the viscosity and viscoelasticity of the compressible
1

Walters” (model B’) fluid, £, is the medium permeability and q is the Darcian (filter) velocity
of the fluid. Such and other polymers are used in the manufacture of space crafts, aero planes,
tyres, ropes, cushions, seats, foam, plastics, engineering equipments, adhesives, contact
lenses etc. Recently, polymers are used in agriculture, communications appliances and in bio
medical applications. Examples of these applications are filtration processes, packed bed
reactors, insulation system, ceramic processing, enhanced oil recovery, chromatography etc.

Sharma and Rana [18] have studied thermal instability of incompressible Walters
(Model B’) elastico-viscous in the presence of variable gravity field and rotation in porous
medium. Sharma and Rana [19] have also studied the thermosolutal instability of
incompressible Walters (Model B’) rotating fluid permeated with suspended particles and
variable gravity field in porous medium.

The Bénard problem (the onset of convection in a horizontal layer uniformly heated from
below) for for incompressible Rivlin-Ericksen rotating fluid permeated with suspended
particles and variable gravity field in porous medium was studied by Rana and Kumar [20].
Recently, Rana and Kango [21] have studied thermal instability of compressible Walters’
(Model B’) elastico-viscous rotating fluid a permitted with suspended dust particles in
porous medium. In the present paper, the study is extended to thermosolutal instability of
compressible Walters” (model B") rotating fluid permeated with suspended particles and
uniform vertical magnetic field in porous medium.

2. MATHEMATICAL MODEL

Consider an infinite horizontal layer of an electrically conducting Walters (model B’)
elastico-viscous fluid of depth d in a porous medium bounded by the planes z=0and z = d
in an isotropic and homogeneous medium of porosity € and permeability k,, which is acted
upon by a uniform rotation (0, 0, €2), uniform vertical magnetic field H(0, 0, H) and
variable gravity g(0, 0, -g). This layer is heated and soluted from below such that a

dr . . ,
d—) and a uniform solute gradient S (=‘%) are

y4

uniform temperature gradient B (=

maintained. The character of equilibrium of this initial static state is determined by supposing
that the system is slightly disturbed and then following its further evolution.

The hydromagnetic equations in porous medium (Chandrasekhar [1], Walters (model B")
[10], Sharma and Rana [19]) relevant to the problem are

1[a—+ (g )]=—in+gL )—ki - ai)wz(qxsz)

(M

(VxH)x H,

m m

V-g=0, )
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Here ¢,(x,f) and N(x.#) denote the velocity and number density of the particles
respectively, Cpr €y , denote respectively, the heat capacity of pure fluid, heat capacity of the
particles and ¢, , ¢, "heat capacities analogous to solute. K’ = 6zmpv , where 1 is particle
radius, is the Stokes drag coefficient, g, = (/, 7, s) and x = (x, y, z). K and K’ denote the thermal
diffusivity and solute diffusivity respectively.

Assuming uniform particle size, spherical shape and small relative velocities between
the fluid and particles, the presence of particles adds an extra force term proportional to the
velocity difference between particles and fluid and appears in the equation of motion (1).
The force exerted by the fluid on the particles is equal and opposite to that exerted by the
particles on the fluid, there must be an extra force term, equal in magnitude but opposite in
sign. The buoyancy force on the particles is neglected. Interparticle reactions are not
considered, since we assume that the distance between the particles are quite large
compared with their diameters.

If mN is the mass of particles per unit volume, then the equations of motion and continuity
for the particles are

6qd

1
N|—L+—(q,-V
" o e(qd 4

=K'N(q-4q,) )
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e%+v-(qu)=o, ®

The state variables pressure, density and temperature are expressed in the form (Spiegel
and Veronis [16])

Sz, = [+ fy(2)+ [1(x,9,2,0), (€))

where f, denotes for constant space distribution /', £, is the variation in the absence of motion,
and f{(x, y, z, ?) is the fluctuation resulting from motion. The basic state of the system is

p=p@), p=pz), T=T(), C=Cz), ¢=(0,0,0) ¢g,=(0,0,0) and N=N, (10)
where

)= P, =9, (P, + Pz,
p() = p,l1-a, (T =T ) +a'(C=C+ K, (p=p,).

T=-Bz+T,, C=-B'z+C,, am=—(%2—§) , (11)
r (1 9p) /la_p\.
oo J "o,

Here p,, and p, denote a constant space distribution of p and p while 7}, and p,, denote
temperature and density of the fluid at the lower boundary.

3. PERTURBATION EQUATIONS
Let q (u, v, w), q,(l, 1, s), 0, v, dp , and Sp denote, respectively, the perturbations in fluid
velocity q(0, 0, 0), the perturbation in particle velocity g,(0, 0, 0), temperature T, solute
concentration C, pressure p and density p.

The change in density dp caused by perturbation 8 and y in temperature and solute
concentration is given by

dp=-p,(af-a'y). (12)
The linearized perturbation equations governing the motion of fluids are

/

lag 1 1 K'N 2 1
= —Vip-g(ab-ay)-— — ZgxQ e
) p-9(ab-a'y) kk Jq+ (4,-4 )+E(q>< )+4sz

Vxh)x H
€0t ( )

m m

(13)

V-q=0, (14)
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[(m 9 )
A | =gq, 15
V2 o )qd q (15)
( \
(1+b€)%=kﬁ—£) (w+ bs)+Kk V20, (16)
c
P
’ 90 ’ ’ 172
(1+b E)E=ﬁ(w+bs)+KVy (17)
V-h=0, (18)
e% =(H-V)q+EnV*H, (19)
mNCpt mNC}’”
where b= , b= — and w, s are the vertical fluid and particles velocity.
PuCy PuCy

4. DISPERSION RELATION
Analyzing the disturbances into normal modes, we assume that the perturbation quantities
have x, y and ¢ dependence of the form

[w.s5.0,7.E.h, .81 = [W(2),5(2),0(z), Z(2),T'(2),

K(z), X(2)] exp (ik x + ikyy + nt), (20)

where k_and k, are the wave numbers in the x and y directions, k = (k)? + kj )/2 is the

resultant wave number and n is the frequency of the harmonic disturbance, which is, in
general, a complex constant. Also

dh, ah
and §=—=-—= is the z-component of current density.

Jx d
y

Using expression (20), equations (13) — (19) in non dimensional form, become
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where we have put
_n2 _m _wM_mN G_(Cp\ ) )
a = kd, U‘T’T_?’Tl_?’ —p—m, —LgJﬁ, E=1+b€&E’'=1+0b €,
v’ k. . . . . v
B=b+1, B =1+b F=—, P =— is the dimensionless medium permeability, p, = —,
s dza 1 K

r U . . U . .
is the thermal Prandtl number, 2 = 7’ is the Schmidt number, P, = Z , is the magnetic

. d
Prandtl number D™ = d A and the superscript * is suppressed.
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Applying the operator (D? — a*> - p,0) to the equation (22) to eliminate X between
equations (22) and (23), we get

|

of M \ 1-Fo
EL+1+rloJ+ B

2
(Dz—az—p20)+QD2 w = 224
v

< (D* -a* - p,o)DW.

@27
Eliminating K, © and Z between equations (21) — (27), we obtain

0/1 M \ 1-Fo

EL +1+rlaJ+ I

(D* - a*)(D* - a* - E,p,o)(D* - a* - p,o)(D* - a* -

2/ﬁ\(B+rla\

E p,o)W - Ra D> -a* - E p o) D*-d* - p,o)W +
1P ) k G )L1+‘L’IO’)( 1P X P, )
B +1,0 »
Sa* (B +70) (D’ -a* - E;p,o)(D* -a* - p,o)W + 2(D2 -a’)\D* -da* - E po)(D* -
l+1,0 €
T ’ !
—A(Dz -a*- Elplo)(D2 -a*- E, plo)(D2 -a*- p20)2
a’ - E,po)W + / \ D*W =0
AT M +ﬂ (D* - d* —p20)+QD2
EL 1+ rlaJ B S
(28)
gapd* .
where R = , is the thermal Rayleigh number,
UK
11 74
S = M, is the analogous solute Rayleigh number,
UK
u H*d?
= ——, is the Chandrasekhar number
0=-=5 is the Chandrasekh b
4mup,m
m
(204%\
and T, = L ) , 1s the Taylor number.

Here we assume that the temperature at the boundaries is kept fixed, the fluid layer is
confined between two boundaries and adjoining medium is electrically non-conducting. The
boundary conditions appropriate to the problem are (Chandrasekhar, [1]; Veronis, [5].

W=DW=DZ=T=0=0atz=0and 1 (29)

and the components of % are continuous. Since the components of the magnetic field are
continuous and the tangential components are zero outside the fluid, we have

DK =0, (30)
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on the boundaries. Using the boundary conditions (29) and (30), we can show that all the
even order derivatives of W must vanish for z = 0 and z = 1 and hence, the proper solution
of equation (28) characterizing the lowest mode is

W = W,sin mz; W, is a constant. 31

Substituting equation (31) in (28), we obtain the dispersion relation

(G

io, [ \ 1- Frlio
Rx= O, M
lG-1)

( 1+rln2iol \
+ —_—
€ L 1+rln2iol) P

L (1+x)(1+x+E1p1iol)L

B+ rln2i01

SxA(l+x+ Epjio,) [ B +t7tio, ) L9 (x4 x+ Eppiioy) [ 1+, ) .

ro 2. . 2.
(D*-d*-E/po) \ B+trio ) € 1+ x4+ p,io, B+t mio

T,
A4 ;
(I+x+ £ pio)) ( 1+‘L'1712iol \

s

io, /1 M \ l—Ffrzio1 B+rlﬂ2i01
—| 1+ +
EL 1+1:1ﬂzi01 P
(32)
R S T 2 o
where R1=—4, S1=—4, T, =—i, x=a—2, i01=—2, P=n2Pl, Q1=%.
T 4 L 1 T T T

Equation (32) is required dispersion relation accounting for the effect of suspended
particles, stable solute gradient, magnetic field, medium permeability, compressibility,
rotation on thermosolutal instability of compressible Walters (model B’) elastico-viscous
fluid in porous medium. There is an analogous dispersion relation for thermal instability in
Walters (Model B’) elastico-viscous rotating fluid permitted with suspended dust particles
in porous medium in the absence of magnetic field and stable solute gradient as derived by
Rana and Kango [21].

5. STABILITY OF THE SYSTEM AND OSCILLATORY MODES
Here we examine the possibility of oscillatory modes, if any, in Walters (model B’)
elastico-viscous fluid due to the presence of suspended particles, stable solute gradient,
rotation, magnetic field, viscoelasticity and variable gravity field. Multiply equation (21) by
W the complex conjugate of ¥, integrating over the range of z and making use of equations
(22)—26) with the help of boundary conditions (29) and (30), we obtain

. (1+70") 2 [1+7,0" )
g(“ M \ 1-Fo [l_MeE?? 17 ([2+p20*13)_aag1</ G\ 7, +
E( 1+T10} g v py | B+1,0 vp LG—lJ B+10
x _Fo* d* [ 1+7,0" )
E1p10*15)+d2 9 1+ M \+1 Fo I6+Meen 1 C| (L + py0* L)+
S l+70 B 4mv o, | B+ 7,0

(33)
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where 1, = fol (IDWF +a* W[ )dz,
I - fol (D*KP +a* |KP +24* DKz,
I = fol (DK +a* |K[*)dz,
I, =f01(|D@\2 +a’ |6 )dz,
I =f01|@|2 dz,
I, = f; 12 dz,
I = fol (DX +a* | X [*)dz,
Iy =f01|X|2dz,
I, =f01| DI} +a* T )dz,
I, =f01 Irf dz.

The integral part I, are all positive definite. Putting 0 = io; in equation (33), where o,
is real and equating the imaginary parts, we obtain

1/ M )\ F B u, &1 ( 7,(B-1) \1 N B+'5120.2

o.d=| 1+ +—| (1, -d*1) —p |+

EL 1+171201.2J BT Y 4w, (B2+17120i2 : B 41’0’ 2

ad’gk [ G |l 7,(B-1) \] . B+t’0’ Epl|-

v \G-1) | B +1,%0,° ) B +1%0,° e

a’azgrc/ ( 7,(B'-1) \[ N B’+r120i2 £yl ueE‘nd2 ( 7,(B-1) \[ . B+1120i2 ol |20

v (| B?+1,%0, ? B?+1%0 O 4 B 1’0’ ¢ B +1%0’ 7e
(34)

Equation (34) implies that 0; = 0 or ;> 0 which mean that modes may be non oscillatory
or oscillatory. The oscillatory modes introduced due to presence of rotation, stable solute
gradient, magnetic field, suspended particles and viscoelasticity. This result is an agreement
with the result derived by Rana and Kumar [20] in the absence of compressibility, magnetic
field and stable solute gradient.
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6. THE STATIONARY CONVECTION
For stationary convection putting ¢ = 0 in equation (32) reduces it to

[ G \|[1+x|1+x 0 r,(+x)pP S,B'
= +—

R + +
Cle-i) | P T € eq+n+oPrie|” B

: (35)

which expresses the modified Rayleigh number R, as a function of the dimensionless wave
number x and the parameters 7' 4 B, P, Q, and Walters (model B’) rotating fluid behave like
an ordinary Newtonian fluid since elastico-viscous parameter / vanishes with o.

Let the non-dimensional number G accounting for compressibility effect is kept as fixed,
then we get

R, = (%J R, (36)

where R and R, denote, respectively, the critical number in the presence and absence of
compressibility. Thus, the effect of compressibility is to postpone the instability on the onset
of thermosolutal instability of Walters (model B’) fluid in porous medium. The cases G = 1
and G < 1 correspond to infinite and negative values of Rayleigh numbers due to
compressibility which are not relevant to the present study.
To study the effects of suspended particles, rotation and medium permeability, we
) ) dR, dR dR, dR
examine the behavior of —,— —L —1
dB alTA1 dg, ds,

a % lyticall
an —— analytcally.
P ytically

Equation (35) yields

dR, [ G \|lex|l+x O T, (+x)P L
aB - \G-1)\2| P € (€i+n+oPiE| B

) 37

which is negative implying thereby that the effect of suspended particles is to destabilize the
system when G > 1. This stabilizing effect is an agreement with the earlier work of Scanlon
and Segel [8], Rana and Kumar [20].

From equation (35), we get

dr,  (1+x\( G ) (1+x)P

ar, ~\ss )\G-1)i€ar o+ gprre

(38)

which shows that rotation has stabilizing effect on the system. This stabilizing effect is an
agreement of the earlier work of Sharma and Rana [19].
From equation (35), we get

AR _1ex( G \[1 T (+0P
do, ~ w8 \G-1) e (E1+x)+ QP E| ©9)
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which implies that magnetic field stabilizes the system, if
{E1+x)+QPY >T, (1+x)P?,
1

and destabilizes the system, if

{E1+x)+0Q Py <T, (s x)P2.

In the absence of rotation, magnetic field has stabilizing effect on the system which is
identical with the result as derived by Rana and Kango. [21]. Thus rotation plays an
important role on the system.

From equation (35), we get

dR, _B'( G )
as, Bla-1) (40)
which is positive implying thereby that the stable solute gradient has a stabilizing effect.
This stabilizing effect is an agreement of the earlier work of Sharma and Rana [19], Rana
and Kango [21].
It is evident from equation (35) that

R, __(+x( G V[ 1 T+ @)
AP B \G-1)| P2 €trn+0 PP |

From equation (41), we observe that medium permeability has destabilizing effect when
{€(1 +x) + Q,P}* < T, (1+ x)P? and medium permeability has a stabilizing effect when
{EQ+x)+ 0P} > T, (1+x)P

In the absence of rotation, ﬁ is always negative implying thereby the destabilizing
dpP

effect of medium permeability which is identical with the result as derived by Rana and
Kango [21].

7. CONCLUSIONS
The thermosolutal instability of compressible Walters (model B’) rotating fluid permeated
with suspended particles (fine dust) in the presence of vertical magnetic field in porous
medium has been investigated. The main conclusions are as follow:
(i) For the case of stationary convection, Walters (model B’) elastico-viscous fluid
behaves like an ordinary Newtonian fluid as elastico-viscous parameter F vanishes
with o.
(i) It is clear from equation (36) that the effect of compressibility is to postpone the
onset of thermal instability.

(iii) The expressions for ﬂ’ﬂ’ﬂ’ﬂandﬂ are examined analytically
ds, alTAl dB " dg, dp

and it has been found that the stable solute gradient and rotation have

stabilizing effect on the system. The suspended particles are found to

have destabilizing effect on the system whereas the medium permeability has a

stabilizing / destabilizing effect on the system for {€(1 + x) + Q,P}? < Ty,
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(1 +x)P*/ {€(1 +x) + Q,P}* > T, (1+ x)P?. The magnetic field has stabilizing /
destabilizing effect on the system for {€(1 + x) + O,P}* > T, (1 + x)P*/
{EQ+x)+ OP}? < T, (1 +x)P

(iv) The presence of rotation, compressibility, medium permeability, suspended particles

stable solute gradient, magnetic field and viscoelasticity introduce oscillatory
modes.
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NOMENCLATURE

q Velocity of fluid

qd Velocity of suspended particles

p Pressure

g Gravitational acceleration vector

g Gravitational acceleration

k, Medium permeability

T Temperature

t Time coordinate

Cf Heat capacity of fluid

Cpt Heat capacity of particles

mN Mass of the particle per unit volume
k Wave number of disturbance

k, ky Wave numbers in x and y directions
)2 Thermal Prandtl number

P, Dimensionless medium permeability

Greek Symbols

Medium porosity

Fluid density

Fluid viscosity

Fluid viscoelasticity

Kinematic viscosity

Kinematic viscoelasticity

Particle radius

Thermal diffusitivity

Solute diffusivity

Thermal coefficient of expansion
Solvent coefficient of expansion
Adverse temperature gradient
Solute gradient

Perturbation in temperature

Growth rate of the disturbance
Perturbation in respective physical quantity
z-component of vorticity
z-component of current density
Rotation vector having components (0, 0, £2)
Perturbation in solute concentration
Magnetic permeability
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