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ABSTRACT

In this paper the ability of different semi dynamic subgrid scale models for

large eddy simulation was studied in a challenging test case. The semi

dynamic subgrid scale models were examined in this investigation is

Selective Structure model, Coherent structure model, Wall Adaptive Large

Eddy model. The test case is a simulation of flow over a wall-mounted cube

in a channel. The results of these models were compared to structure

function model, dynamic models and experimental data at Reynolds

number 40000. Results show that these semi dynamic models could

improve the ability of numerical simulation in comparison with other models

which use a constant coefficient for simulation of subgrid scale viscosity. In

addition, these models don’t have the instability problems of dynamic

models. 
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1. INTRODUCTION
In Large-Eddy Simulation, the flow is divided to resolved scales and subgrid scales. The
resolved scales are simulated directly and subgrid scales are modeled. There are several
methods for simulation subgrid scales such as spectral models, physical space models,
deconvolution models and etc. Physical space models, particularly, viscose models are more
practical than other models because of their usage in engineering problems. These models
are based on this hypothesis “The action of the subgrid scales on the resolved scales is
essentially an energetic action, so that the balance of the energy transfers alone between the
two scale ranges is sufficient to describe the action of the subgrid scales. The energy transfer
mechanism from the resolved to the subgrid scales is analogous to the molecular
mechanisms represented by the diffusion term, in which the viscosity appears” [1]. The
Smagorinsky model is one of famous models in this category. In this model the subgrid scale
viscosity is defined as:
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Results show that Cs is not constant in different problems. In addition the constant
coefficient makes the subgrid scale viscosity acts on whole of domain which is not according
to reality, for instance vsgs should be zero in vicinity of wall or in laminar regions. Different
numerical simulations showed that the ability of simulation can improve by adapting subgrid
scale models to local state of flow. Many new models have been introduced for this purpose
in recent years. Dynamic procedures for computing subgrid scale models constant are the
more famous than others. Dynamic models usually are based on Germano [2] identity; in this
procedure constant coefficient is computed locally in space and time by reducing error and
a second filter. Germano dynamic procedure does not change the prior form of model;
therefore it can be used for different models. Lagrangian dynamic procedure [3], the
constrained localized dynamic procedure [4], approximate localized dynamic procedure [5]
are some dynamic models which are based on Germano procedure. It should be noted that
there are some dynamic procedure that are not based on Germano procedure such as
multilevel dynamic procedure by Terracol and Sagaut [6]. Numerical results show that the
dynamic models usually are unstable and need numerical contrivances such as clipping or
averaging in the directions of statistical homogeneity. Consequently, the ability of dynamic
models can be restricted in complex geometries.

Many researchers have been involving to introduce easier model to adapt vsgs to local
state of the flow, for example Selective Structure model (SSF) [7], Coherent structure model
(CSM) [8], Wall Adaptive Large Eddy model [9]. 

The main purpose of this paper is to investigate the ability of different subgrid scale
models which are semi dynamic (the constant coefficient is computed locally in space and
time) in simulation of complex phenomena such as horseshoe vortices, flow separation, arc
vorticity and etc. for turbulent flow over a wall-mounted cube confined in a channel. It
should be mentioned that these phenomena make this test case to a challenging test case for
numerical simulation. There is a vast amount of literature about experiments undertaken for
this geometry [10–14]; among them being the comprehensive work of Martinuzzi and Tropea
[13] at Reynolds number equal 40000. 

2. MATHEMATICAL FORMULATION 
As mentioned in previous section, Large Eddy Simulation is based on this idea that is not
necessary to model the total of cascade of energy (transform of energy from large scale to
small scale) such as RANS models, RSM models and etc. In large eddy simulation, the
resolved scales are simulated directly and subgrid scales (SGS) are modeled. For this
purpose a filter has been introduced. 

(1)

Where f and f ′ are the resolved and subgrid scale components, respectively. G∆ x (xi) is the
filtering function. The famous one of filtering function which is usually used in large eddy
simulation is top hat filter. By applied this filter on Navier-Stokes equations, these equations
can be represented as follow:
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(3)

Where u–t , P
–

and τij are the velocity components, pressure and stress tensor of subgrid scales,
respectively. In above equations the stress tensor of subgrid scales should be modeled. In
Functional modeling for large eddy simulation, one is supposed that the effect of subgrid scales
on resolved scales is same as viscous effect. Therefore the stress tensor of subgrid scales is
computed as follow:

(4)

Where �sgs is the viscosity of subgrid scales and modeled by different subgrid scale
models.

2.1. SELECTIVE STRUCTURE FUNCTION MODEL 
M′etais and Lesieur [15] introduced Structure Function Model (SF) by transferring their
constant effective viscosity model into the physical space. They supposed that the energy at
cutoff can be estimated by the second-order velocity structure function. In this model, the
eddy viscosity is evaluated according to;

(5)

Where ∆c = (∆x1 × ∆x2 × ∆x3)
1 ⁄3 is the geometric mean of the meshes in the three spatial

directions. Ck is Kolmogrov constant and F2 is the local structure function constructed with
the filtered velocity field u–(x, t):

(6) 

Results show that this model is very dissipative. In order to improve the prediction of
SF and remove its shortcomings, Selective Structure Function (SSF) was introduced and
developed by David [16]. SSF switches off the subgrid scales eddy viscosity when the
flow is not sufficiently three-dimensional. The criterion is the angle (α) between the
vorticity at a given grid point and the average vorticity at the six closest neighboring
points. When α less than 20, the flow is supposed laminar and calculating eddy viscosity
is not necessary.
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Where Φ20° (x, t) is the indicating function based on the value of (�):

(8)

Suksangpanomrung et al. [17] used a smoothly varying function rather than an abrupt cut-
off, Φ′20° (x, t) instead of Φ20° (x, t), which is evaluated using a smoothly varying function
defined as:

Ackermann and Metais [18] proposed Modified Selective Structure Function. The used a
function for critical angle based on the ratio of the cut-off wave number and the spectrum
peaks. The results of MSSF were found to be very close to those obtained with
Smagorinsky’s dynamic model of Germano. It should be mentioned that the utilization of
MSSF is difficult for complex geometries. Farhadi and Rahnama [19–20] studied different
SSF models for turbulent flow over obstacles. They represented that the SSF model with
smooth Function [17] can achieve better results than others. Therefore, this model was used
in this study. 

2.2. WALL-ADAPTIVE LOCAL EDDY VISCOSITY (WALE)
Nicoud and Ducros [9] stated that a better model can be obtained by using both strain and
rotation rates in computing the subgrid scale viscosity. However, this requirement is included
in some models such as SF but another major problem in LES subgrid scale modeling is
behavior in vicinity of the solid walls. Most subgrid viscosity model (SM, SF and etc) do not
exhibit the correct behavior in the vicinity of solid walls. Results show that the behavior of
�sgs should be O(y+3). SM gives non-zero value in vicinity of wall and SF behaves O(1) in
this region. A common way for solving this problem is using damping function. But these
damping function usually don’t exhibit correct behavior in vicinity of wall, for example Van
Driest [21] damping function which is used widely for this purpose varies O(y2) instead of
O(y+3). Moreover these functions usually require to the distance to the wall and the skin
friction as input parameters, consequently their application are limited in complex
geometries. Nicoud and Ducros [9] tried to find a combination of resolved velocity spatial
derivatives that use both of strain and rotation rates and exhibits the correct behavior in
vicinity of wall. They introduced Wall Adaptive Large Eddy model (WALE). In this model,
the viscosity of subgrid scale is defined as [9]:
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(10)

Where Sij is the strain-rate tensor:

(11)

Is the traceless symmetric part of the tensor, and 
Cw = 0.55 − 0.60.

2.3. COHERENT STRUCTURE MODEL (CSM)
Kobayashi [8] proposed an adaptive model based on the coherent structures. The model
parameter is composed of a fixed model-parameter and a coherent structure function.
Consequently the SGS model coefficient is calculated locally. Moreover Kobayashi [22]
applied this model to complex geometry such as diffuser, jet and hill and showed that the
result of CSM is same as dynamic model. The CSM is an eddy viscosity model that the
coefficient of model is not constant and calculated locally as follow [8]: 

(12) 
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Where CCSM is a fixed model constant, FCS is the coherent structure function defined as
the second invariant normalized by the magnitude of a velocity gradient tensor E, FΩ is the
energy-decay suppression function and Wij is the vorticity tensor in a resolved flow field.
Moreover, FCS and FΩ have definite upper and lower limits:

(17)

Kobayashi [22] mentioned that the CCSM has smaller variance than the model parameter
of the Dynamic Smagorinsky Model without averaging and the numerical simulation with
the CSM is more stable.

3. COMPUTATIONAL METHOD AND BOUNDARY CONDITION 
In this investigation, the computational domain, grid spacing and the average time were
selected based on Farhadi et al. [19] (Figure. 1). The minimum grid spacing used for this test
case was 0.03 H in x, y and z directions with grid expansion ratio of 1.06. The number of
grid points is 113 × 51 × 100. The average time in the simulation was 150 H/Uinlet where H
is the cube height and Uinlet is the velocity at the inlet.

The governing equations presented in the preceding section were discretized using a
finite volume method with the staggered grid. The convective terms were discretized
using QUICK scheme. As described by Farhadi and Rahnama. [19 and 20], However the
QUICK scheme has some deficiencies, such as large numerical dissipation, as compared
with the Central Difference (CD) scheme, but QUICK scheme could be better in
simulation of turbulent flow over obstacles. In addition instability problem decreases by
using QUICK scheme instead of central difference scheme. A third order Runge-Kutta

− ≤ ≤ ≤ ≤1 1 0 2F FCS , Ω

Y
z
X

3 H

6 H

3 H

H

Figure 1 a) Geometry of problem for flow over wall-mounted cube. b)general
pattern of flow over wall-mounted cube.
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algorithm is used for the time integration in conjunction with the classical correction
method at each sub-step. The semi-implicit fractional step method used which provides
an approach that does not use pressure in the predictor step as in the pressure corrector
method (such as the well-known SIMPLE family of algorithms). The no-slip boundary
condition was used for all the walls and surfaces of obstacles. Outlet boundary condition
was of convective type given by:

(18)

Where Uc is mean velocity or bulk velocity of inflow. At inlet a fully developed turbulent
flow was considered.

4. RESULTS
Large eddy simulation was employed for the complex problem of flow over a wall-
mounted cube. The study was conducted for three adaptive and a non-adaptive subgrid
scale models. The results were compared with Martinuzzi and Tropea [13] experimental
data at Re = 40000. The time and space averaged streamwise velocity at plane z = 0 is
presented for different models in Figure 2. By computing the subgrid scale viscosity
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Figure 2 The time and space averaged streamwise velocity at plane z = 0.
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SF SSF

WALE CSM

A C

B

D

R

D

N12

N14

S1

S2

0 1
x/H LDKM model (25)

Figure 3 Time-averaged computations of streamlines plots in vicinity of the
channel floor for different models and experimental data [13].

locally, discrepancy between numerical results and experimental data decrease. In fact the
semi dynamic models could predict the horse shoe vortex and separation regions around
and behind the wall mounted cube better than SF model. Figures 3 and 4 show the
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streamlines in vicinity of channel floor and at plane z = 0 for different models used in the
present simulations and other experiments, respectively. As shown in these Figures, the
SSF and CSM models predicted largest and smallest recirculation zone behind of
obstacle, respectively. Moreover, all semi dynamic models show a horseshoe vortex
around the cube and the separation regions on the roof, lateral sides and behind of cube.
The main point about horseshoe vortex is its converging-diverging behavior which is
shown in the simulation of these semi dynamic models correctly. 

The flow pattern for upstream of obstacle was very similar for different semi-dynamic
models (Figure 4). As discussed by Martinuzzi and Tropea [13], two recirculation regions
exist upstream of the cube. All simulations predicted the primary recirculation. The size of
this recirculation zone is very small for these semi dynamic models. The verity of velocity
at the vicinity of channel floor among the channel reveals this recirculation zone (Figure 5).
It is noted that the saddle point in front of obstacle was calculated same as experimental data
by these semi dynamic models (Xf 2 ≅ 0.6h). No author has detected the secondary
recirculation zone, which is very small and close to the front side of cube, through numerical
computation except DNS [23]. 

The effect of discretizing scheme for convective term in momentum equations was
studied for a low Reynolds number too. The streamlines for Re = 3200 represented in
Figure (6). Both QUICK and Central schemes could simulate the general pattern of flow
over obstacle same as experimental data. However, QUICK scheme displayed some
discrepancy in the prediction of the wake center behind the obstacle and recirculation zone
above the obstacle.

Generally, by computing model’s coefficient locally in space and times better results were
achieved. For instance, the SF model estimated is far distance for the center of recirculation
zone behind of obstacle, but the results of other dynamic and these semi dynamic models are

SF SSF

CSM WALE

−2 −1 0 1 2 3 4

−2 −1 0 1 2 3 4

1 2 3 4 5 6 7

−2 −1 0 1 2 3 4

−2 −1 0 1 2 3 4

Figure 4 Comparison of time-average streamlines plots at plane z = 0 obtained
from different models and experimental results [13].
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(a) (b)

(c) (d)

Figure 6 Time-averaged computations of streamlines plots at plane z = 0 (a) SSF
with CD (b) SSF with QUICK and vicinity of channel floor (c) SSF with CD and (d) SSF
with QUICK.
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0

−0.2
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−2 −1 0 1 2 3 4 5 6

X
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Figure 5 Variation of streamwise velocity in vicinity of floor among channel for LES
simulation with SSF.
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Table1 Comparison Results of Different LES Subgrid Scale Modeling from this
study and other authors. 

Modeling Method Grid point %Er XF XR %Er

Ref. [13], Experiment — — — 1.04 1.61 —

Ref. [14], Experiment — — — 1.04 1.67 —

Dy2. mixed model [24] 192 × 64 × 96 0.006 0.006 0.006 0.9% 1.050 1.650 1.2%

LDKM [25] 162 × 66 × 98 0.023 0.014 0.029 4.8% 1.090 1.544 4.1%

Dy. Smag. model [26] 165 × 65 × 97 0.0125 0.0125 0.0125 4% 0.998 1.432 11.%

SF 113 × 51 × 100 0.03 0.03 0.03 68.5% 0.33 1.75 8.7%

SSF 113 × 51 × 100 0.03 0.03 0.03 68.5% 0.33 1.75 8.7%

CSM 113 × 51 × 100 0.03 0.03 0.03 71.15% 0.3 1.43 11.2%

WALE 113 × 51 × 100 0.03 0.03 0.03 71.15% 0.3 1.64 1.9%

∆∆zmin∆∆ymin∆∆xmin

approximately same as experimental data. Table 1 compares various lengths of separation
regions defined in Figure 4 and 5. 

It is observed that none of the used models could predict both upstream and
downstream recirculation lengths correctly. Time-averaged resolved velocities and
turbulent statistics are computed and compared with the experiments in Figure 7. The
locations are selected from x = H = 0:5 to 4.0 at z = 0. All presented variables in this
Figure are in non-dimensional form. The obtained Results for locations upstream of the
cube were not shown, because no significant flow feature exists in that region except for
a small recirculation region.

The computed mean velocity for this region shows reasonable correspondence with the
experiment, in spite of the differences that exist in the upstream recirculation length, as
mentioned in the preceding discussion. All semi-dynamic models results follows the trend
of experimental variable correctly; however there are some discrepancies with the
experimental data and these discrepancies become less along the channel. Variables
distribution near the top surface of the cube shows discrepancies with the experimental
data for most of the region between the top side of the cube and the channel wall. The
main reason for such a prediction could be a result of low grid resolution and the QUICK
scheme used for the discretization of convective terms. SSF model shows better
agreement with experimental data especially for cross and streamwise velocity and
maximum point of turbulent statistics. The results of WALE and CSM are very similar to
each other. 

Verity of turbulent kinetic energy at plane z = 0 is illustrated in Figure 8. The
maximum points in these graphs represent the center of recirculation zone behind the
obstacle. As shown in this figure the SSF model have minimum kinetic energy in this
region. In fact this model dissipated the momentum of fluid more than other models in
this area.

2Dynamic
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For comparison the behavior of different models to denotation the turbulent regions in the

domain, the instant contour of C (Eq. 12), and selective sensor (Φ)

for CSM, WALE and SSF models was presented in Figure (9), respectively. As shown in this
figure, the regions should be modeled by CSM and WALE similar to each other
approximately. This is the reason that the results of these models are similar to each other.
The sensor of SSF model affected on more regions in comparison to other models and most
part of domain were modeled for SSF simulation. Second conclusion which can be achieved
from this figure is that CSM and WALE models are more sensitive to grid resolution than
SSF model because most regions in these models were simulated directly and no model
effect on this parts. Our computation for simulation of a fully develop turbulent flow in a
channel showed this one. The WALE and CSM simulations diverged for a coarse grid (∆z+

> 40) but SSF simulation converged for this coarse grid.
It should be mentioned that the time step computed dynamically in our simulations.

Results show that CSM and WALE models need to small time step rater that SSF model and
the simulation time for these models is more than SSF model.

5. CONCLUSION
In this investigation the ability of Selective Structure model, Coherent structure model, Wall
Adaptive Large Eddy model for large eddy simulation of flow over a wall-mounted cube
confined in a channel was studied and compared to other numerical results and experimental
data [13, 14]. Results show that by computing model’s coefficient locally in space and times
better results were achieved. In addition, it was observed that the results of CSM and WALE
models were very similar to each other and these models were more sensitive to grid
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Figure 8 Verity of average turbulent kinetic energy at plane z = 0 for WALE, CSM
and SSF.



resolution than SSF model because most regions in these models were simulated directly. As
a result, the CSM and WALE need to small time step rater that SSF model and the simulation
time for these models is more than SSF model.
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SSF

CSM

WALE

Figure 9 Contour of turbulent region which defined by different models. The blue
region is laminar.
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NOMENCLATURE
F2 Local structure function
Ck Kolmogorov constant  
G∆x(xi) Filter function
H Square cylinder height
P Pressure
Re Reynolds number based on the height of the square cylinder and bulk velocity at

inlet
t Time step
Uc Convective mean velocity
ui Instantaneous velocity components  
xi Cartesian coordinate, x1, x2, x3
x Position vector 
Sij Strain-rate tensor

Greek Symbols
α Angle 
∆xi Grid spacing 
�t or vsgs Turbulent eddy-viscosity of subgrid scales
� Kinematic viscosity   
τij Subgrid scale (SGS) stress tensor

Abbreviation
CSM Coherent Structure Model
SGS Subgrid scale
SF Structure Function Model
SSF Selective Structure Function Model
SM Smagorinsky Model
WALE Wall Adaptive Large Eddy Viscosity Model
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