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ABSTRACT

In the present paper, we use a monolithic finite element method to simulate

the flutter behavior of two, three and four parallel plates experimentally

studied by Schouveiler and Eloy ( Phys. Fluids 21, 081703(2009)). Different

coupled fluttering modes of the parallel plates are successfully reproduced.

Although the results are preliminary, the essential physics of this strongly

coupled system are successfully captured. No artificial constraints (i.e., the

virtual spring connections between the plates) are needed to predict the in-

phase mode of flutter. To the authors’ best knowledge, this is the first time

that one can capture all the coupled modes of flutter of multiple plates

through direct numerical simulations.

Keywords: Fluid-structure interaction; finite element method; coupled

flutter;

1. INTRODUCTION
As a central topic in the general subject of fluid-structure interaction, the dynamics of
flexible structures (e.g. plates and shells, pipes, filaments, cylindrical tubes) in axial flow has
been the main focus of a large amount of studies, motivated by applications in aerospace and
nuclear engineering [1,2], aeronautics[3], civil engineering [4], biomechanics[5-7], paper
industry[8], energy-harvesting [9] and many other engineering areas. As canonical examples,
the instabilities of a solitary slender cylinder, a thin plate or a single filament immersed in
axial flow have been thoroughly investigated through experimental observations [9-13],
theoretical derivations [12-15] and numerical simulations [16-18]. With the interaction of the
above mentioned simple structures with axial flows being classified as a solved issue [19]
and the exhaustive results well documented by Païdoussis [20], the frontier of the topic has
been advanced to investigating the dynamic behavior of more complex systems containing
arrays of flexible structures such as cylindrical tube bundles and rectangular parallel-plate
assemblies in nuclear reactors or heat exchangers [21]. 

The most notable feature of the dynamic behavior of arrays of flexible structures
interacting with axial flows is the coupling between the motions of the structural elements.
As one element oscillates, the pressure field around all the others is modified and
unbalanced, and hence other elements are induced to oscillate in complex but definite modes
[20].For example, experiments with two flexible filaments in a flowing soap film have been
conducted to model the coupling between one-dimensional plate flutters [11].When placed
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in proximity, the two filaments were observed to flap first in phase and then out of phase with
increasing the inter-plate distance. When placed at a much larger distance, flutters of both the
filaments became independent. The coupling modes between the two flapping filaments
were successfully simulated by using the immersed boundary method [22] and by using the
Arbitrary–Lagrangian–Eulerian (ALE) finite element method [23]. A theoretical
investigation also confirms the coupling modes of two cantilevered flexible plates but virtual
spring connections were assumed when calculating the in-phase mode [24].  

In a recent study, the coupled flutter of an assembly of two, three, and four flexible
parallel cantilevered plates in a uniform axial flow were captured by a high-speed camera
[25]. Depending on the flow velocity, on the inter-plate distance, and on the plate length,
different coupled modes were observed. A linear analysis based on the analytical derivation
due to Jia et al. [26] can capture the main characteristic of the instability of the system.
However, the linear analysis fails to predict the linearly unstable modes and also fails to
predict the transition from one mode to another because the analytical derivation is based on
a perturbation theory [25]. Due to the inherent complexity, it is anticipated to be an even
challenging task to theoretically analyze the flutter behavior of practical assemblies which
usually contain tens or hundreds of structural elements immersed in complex fluids.

The successful analysis of the dynamics of a single slender structure [16-18,27] and two
coupling filaments [22,23] manifests the great advantages of numerical simulations on
investigating such complex problems. Motivated by these works, the major purpose of the
present study is to develop an efficient and robust computational framework to study the
dynamic behavior of assemblies of flexible structures in axial or more general flows. The
governing equations of the flows, the solid structures as well as the fluid-structure interaction
are solved as a whole by using a monolithic finite element procedure proposed by Heil et
al.[27]. Then the coupled modes of two, three and four parallel plates in a uniform axial flow
are calculated and compared with the experimental observations presented in Ref.[25] for the
purpose of verification. It should be mentioned that the current research has not only
originated from theoretical curiosity but also is related to develop a computational tool to
evaluate the design of core elements of nuclear reactors.

2 MATHEMATICAL FORMULATION AND NUMERICAL METHOD
2.1 GOVERNING EQUATIONS
Assuming that all lengths and coordinates are non-dimensionalized on a problem-specific
length scale L, while time is non-dimensionalized on some reference timescale T, and the
fluid velocities are non-dimensionalized on a representative velocity U, the dimensionless
Navier-Stokes equations, which govern the flow of an incompressible Newtonian fluid with
density ρf and viscosity µ, are given by,

(1)

where Re = ρfUL/µ is the Reynolds number, St = L/(UT) is the Strouhal number, and the
pressure p is non-dimensionalised on the viscous scale µU/L. Implemented in the ALE from,
Eq.(1) serves as the basic governing equation of fluids in the present study.

Based on the variational principle, the governing equation for elastic solids can be written
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in an integral form as [27],

(2)

where the two integrals are performed over the undeformed reference volume and over the
deformed surface of the body, respectively. The second Piola-Kirchhoff stress tensor σij, is
determined by as a function of the Green strain tensor γij through a user-provided constitutive
relationship. The stress tensor σij, the body force b and the surface traction f are all non-
dimensionalized on some characteristic stiffness parameter, S, such as Young’s modulus E.
Now the timescale ratio is given by where is the density of the solid. Rs is 

the normalized position vector and therefore, ∂2Rs/∂t2 is the acceleration of the solid.
The changes in the domain geometry of fluids are induced by the displacements of

structures through the no-slip condition,

on fluid-structure interfaces (3)

The traction that the Newtonian fluid exerts onto the solid is given by,

(4)

where the Nj are the Cartesian components of the outer unit normal on the deformed solid
pointing into the fluid and the FSI parameter Q = µU/(SL) is the ratio of the stress scales used
in the non-dimensionalisation of the solid and fluid equations. The parameter Q indicates the
strength of the fluid-structure interaction in that as Q tends to zero, the fluid stresses exerted
onto the structures become negligible.

2.2 NUMERICAL PROCEDURE
The above governing equations can be solved by various numerical techniques (e.g.  finite
element method or control volume method) either separately or as a whole. In the separated
(segregated) approach, the fluid problem and the solid problem are alternatively solved and
then coupled via fixed point (Picard) iteration. While in the monolithic approach, the
complete system of nonlinear algebraic equations that arises from the coupled discretisation
of the equations of motion in the fluid and solid domains is solved as a whole, typically using
a variant of Newton’s method. Although the segregated approach can treat the separate fluid
and solid solvers as “black-boxes” and therefore can take advantage of existing commercial
codes as demonstrated in Ref.[18], its low efficiency and poor convergence performance for
strongly coupling problems preclude the method from our present research and the
monolithic approach is preferably chosen for its robustness and efficiency.

In the present research, an object-oriented FSI solver adopting monolithic discretisation
is developed on top of the multi-physics finite element library OOMPH-LIB [27]. To ensure
a good modularity and a concise program structure, C++ inheritance and template
programming are routinely used. Interfaces to mesh data generated by third-party meshing
tools are developed and therefore, ‘arbitrary’ fluid and solid domains can be defined by
providing mesh data files. The fluid inlet and the outlet boundaries as well as the fluid-
structure interfaces can be conveniently defined by specifying the node sets defined in the
mesh data files. Taylor-Hood (Q2Q1) elements are adopted to assemble the fluid domain and
conventional Galerkin elements for the solid domain. Mesh deformation in response to wall
deformation is achieved through an algebraic node update strategy and unlike the method
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used in Ref.[16], no shared nodes are required on the fluid-structure interfaces in the present
method. 

3 NUMERICAL SIMULATIONS AND RESULTS
3.1 MODEL SETUP
According to Schouveiler and Eloy’s experiments [25], the plate assembly was confined
between two horizontal plates in order to limit three-dimensional effects. Therefore, the
experimental setup can be approximately described by a two-dimensional model (Fig.1). The
experiment parameters and the simulation parameters are listed in Table I. In the numerical
model, the domain size is truncated and the thickness of the plate is increased (while the
flexural rigidity is maintained) in order to control the computation cost by limiting the total
number of finite elements. The spatial convergence of the present finite element mesh with
an average length of 0.5mm has already been checked by making a comparison with a one
and a half times fine-divided mesh. Good agreements between the present mesh and the finer
mesh solutions of both the flapping frequency and amplitude are obtained. The relative
differences are within the order of 1%.

Table I. Parameters of laboratory experiment [25] and present numerical
simulations

Parameters Experimental values Simulation values
Domain length, DL --- 75cm
Domain width, DW 80cm 25cm
Plate length, L 10~25cm 18cm
Plate thickness 0.28mm 6.0mm
Number of plates 2,3,4 2,3,4
Plate distance, D 1.0∼17.0cm 0.6~6.0cm
Air dynamic viscosity 1.817×10–5Pa-s 1.817×10–5Pa-s
Air density 1.2 Kg/m3 1.2 Kg/m3

Air inflow velocity, V 5.0~30.0m/s 5.0~30.0m/s
Plate flexural rigidity, G 9.7×10–3N.m 3.2×10–3N.m
Plate density 1571.4Kg/m3 1571.4Kg/m3

Gravitational acceleration 9.8m/s2 9.8m/s2
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Figure 1. Sketch of the experimental setup by Schouveiler et al. [25]



In the present simulations, the inflow velocity is ramped up to the specified level within
1s and then fixed throughout the calculations. The outflow condition of the domain is
assumed to be traction free. The plates are cantilevered by their upwinding ends (indicated
by the solid circles in Fig.1) and a gravity force in the flow direction is applied to the plates.
Both the domain geometries and the finite element meshes are generated by an open-source
pre/post-processing software, i.e. Salome [28] and all the boundaries are defined as node
sets.

3.2 SIMULATED COUPLED FLUTTER OF PARALLEL PLATES IN AXIAL
FLOW
Typical snapshots of the simulated flutter behavior of two, three and four parallel plates are
respectively shown in Fig.2, Fig.3 and Fig.4. Consistent with experimental observations,
different coupling modes of flutter can be identified. 

For the two-plate system, experimental measurements [25] ascertain that both the two
possible coupled flutter share the same vibration amplitude as manifested in Fig.2. However,
for the three-plate system (Fig.3) and the four-plate system (Fig.4), both experiments and
simulations show that the flutter amplitude of the inner plates is higher that of the outer plates
except Mode (b) of the three-plate system in which the middle plate does not flutter. 

Both the experiments [25] and the present simulations show that the plates may touch
each other if the inflow velocity is high enough (Fig.5. Once the plates get touched, the
simulations terminate due to severe distortion of the fluid mesh). However, it is declared that
the structures can never touch each other due to the pressure forces in the intervening fluid
[23]. The possible reason is that the structure in [23] is stiffer than the present structure.
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(a) (b)

Figure 2. Typical snapshots of (a) in-phase flutter with D=0.6cm and (b) anti-phase
flutter with D=1.8cm of two parallel plates. For both type of coupled flutter, the air
inflow velocity V=9.0m/s.
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(c)

(a) (b)

Figure 3. Typical snapshots of (a) in-phase flutter with D=0.6cm and V=11.0m/s (b)
anti-phase flutter with D=1.8cm and V=7.0m/s, and (c) hybrid flutter with D=1.8cm,
V=14.0m/s of three parallel plates.
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(c)

(a) (b)

Figure 4. Typical snapshots of (a) in-phase flutter with D=0.6cm and V=11.0m/s (b)
anti-phase flutter with D=1.8cm and V=15.0m/s, and (c) hybrid flutter with D=2.0cm
and V=10.0m/s of four parallel plates. 



Typical pressure fields of the two-plate, the three-plate and the four-plate systems are
shown in Fig.6, Fig.7 and Fig.8, respectively. In all the figures, the red region denotes high
pressure and the blue region denotes low pressure. It is evident that if the in-phase flutter
(Fig.6(a), Fig.7(a) and Fig.8(a)) occurs, the low-pressure region is located at the outermost
side while if the anti-phase or the hybrid flutter occur, the low-pressure region is located in
between the plates.
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Figure 5. Touch of plates due to high inflow velocity.

Figure 6. Typical contours of the pressure field of (a) in-phase flutter and (b) anti-
phase flutter in the two-plate system. 

(a) (b)

Figure 7. Typical contours of the pressure field of (a) in-phase flutter, (b) anti-phase
flutter, and (c) hybrid flutter in the three-plate system. 

(a) (b)

(c)



3.3 EFFECTS OF THE INTRINSIC FSI PARAMETERS 
Although complex, the coupled modes of flutter can be completely determined by solving
the governing equations, i.e. Eqs.(1)-(4). A specific mode of flutter depends only on the
intrinsic parameters, e.g., the Reynolds number, the Strouhal number, the FSI parameter Q
and the timescale Λ. Through varying these important parameters, different coupled mode of
flutter can be achieved. For example, by reducing the timescale, i.e. Λ, through decreasing
the density of structure, the flutter can be effectively suppressed. For a massless or
sufficiently small mass structure, no flutter can be excited or sustained [11,16,17]. This is
easily understood by checking the governing equation of the solids, i.e., Eq.(2). When the
density of the solid approaches to zero, the intrinsic timescale of the solid, i.e. Λ, also
approaches to zero and the governing equation of dynamics reduces to a steady equation. 

The effect of the Reynolds number on the flutter mode has been investigated by
Schouveiler and Eloy through parametric experimental studies [25]. Compared with the
Reynolds number, the FSI parameter, i.e. Q, is more easily tuned through engineering
measures, for example, by changing the rigidity of the flexible structure. Our simulations
show that by solely changing plate flexural rigidity, different coupled modes of flutter can
also be achieved.  

4. SUMMARY AND CONCLUSIONS
In the present paper, we employ an in-house developed FSI solver to simulate the flutter
behavior of two, three and four parallel plates experimentally studied by Schouveiler and Eloy
[25]. A monolithic finite element method is applied to solve the governing equations of the
fluid, the structures and the fluid-structure interactions. Different coupled fluttering modes of
parallel plates are successfully reproduced. Although the results are clearly preliminary, the
essential physics of this strongly coupled system are still successfully captured. Unlike the
method due to Tang et al.[24], no artificial constraints (i.e., the virtual spring connections
between the plates) are needed to predict the in-phase mode of flutter. To the authors’ best
knowledge, this is the first time that one can capture all the coupled modes of flutter of
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Figure 8. Typical contours of the pressure field of (a) in-phase flutter, (b) anti-phase
flutter, and (c) hybrid flutter in the four-plate system. 

(a) (b)

(c)



multiple plates through direct numerical simulations. In addition, it has been shown that the
ALE finite element method introduces less artificial damping than the immersed boundary
method [16]. So we believe that after necessary extensions (e.g., incorporation of turbulence
modeling), the present numerical procedure would be a promising tool to quantitatively
investigate the effects of engineering parameters (e.g., rigidity of structural elements, space
between the structural elements, applied external constraints exerted, inflow velocity) on the
coupled dynamic behavior of arrays of slender structures. 
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