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ABSTRACT

Some bulk properties of bcc iron were calculated. Structural and elastic

properties such as cohesive energy, bulk modulus, typical elastic constants

and vacancy formation energy were calculated for zero Kelvin

temperature. All obtained results during the study were compared with the

both previous experimental and theoretical results. Obtained results for the

present study show well agreement with literature.
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1. INTRODUCTION
Calculations of the bulk structure and the bulk elastic properties play an important role in the
physics of condensed matter [1-6]. Bulk calculations help us to understand, characterize, and
predict mechanical properties of materials in our surroundings, under extreme conditions, as
in geological formations and setting and for industrial applications [6-8]. Crystalline
materials come in many different structures and in contrast to isotropic materials, the
structure description of crystalline materials may in general need multiple lattice parameters
and an atomic basis.

In this study we discuss how to determine the equilibrium structure of a crystalline
material while, at the same time, directly determining the bulk modulus (B), cohesive energy
(Ecoh), vacany formation energy (EF

V ) and estimating other related physical parameters such
as three independent cubic elastic constants (C11, C12 and C44) [9-11].

A theory determination of the zero-temperature bulk modulus based on either traditional
methods is straightforward when one single structural parameter (e.g., the lattice parameter
a0) defines the crystalline state. This situation applies for monatomic crystals with simple
cubic (sc), face-centered cubic (fcc) and body-centered cubic (bcc) symmetries. All which is
required are theory calculations of total energies for a range of a0 values by minimizing the
energy of the related structures [1, 9].

Furthermore, atomic-scale simulations are nowadays a standard tool in condensed matter
physics, chemistry and materials science. They enable a detailed investigation of material
processes and phenomena with atomic resolution. One of the most efficient atomistic
technique is free energy minimization method with the help molecular dynamics (MD) codes
using interatomic potentials. The main goal of these potentials deals with determining
reasonable results which are consistent with the experimental data [12].

According to simple metals persperctive, bcc iron and its alloys have been extremely used
by many generations since the Iron Age. Their most useful property is high strength over a

*Corresponding author. E-mail: eguler71@gmail.com Tel:903642277000 Fax: 90364277005 



96 A benchmark for some bulk properties of bcc iron

wide range of application temperature and low cost, which makes them the ideal candidates
for both structural and high temperature applications. Indeed, bcc iron alloys are and the
most important structure material because of the abundance of iron ores on earth [13].

The purpose of this study was to clarify some aforementioned bulk physical parameters
of bcc iron by free energy minization by the help of LAMMPS MD code and compare our
present results with the previous experimental and theoretical data obtained from the various
interatomic potentials.

2. METHODS AND CALCULATIONS

2.1. ENERGY MINIMIZATION AND BULK MODULUS
During the present study all energy minimizations have been perfomed by LAMMPS [14–15]
code, with Finnis-Sinclair embedded atom potential [16]. For a bcc lattice and a given

equation of state (EOS), E as a function of lattice parameter a0 or volume , the bulk
modulus B is defined by the equation

evaluated at the minimum.
The position of the minimum of EOS defines the equilibrium lattice parameter and unit

cell volume at zero pressure. The cohesive energy is then the difference between the energy
per atom of the bulk material at equilibrium and the energy of a free atom in its ground state.
To avoid interaction between an atom with its own periodic images, we consider a cubic
simulation cell whose size is much larger than the cut-off radius. The cell dimensions are
10[100], 10[010] and 10[001] along x, y and z directions with a supercell containing
N = 2000 atoms (because each unit cell of a bcc crystal contains 2 atoms). Periodic boundary
conditions (PBC) are applied in all three directions. The experimental value of the
equilibrium lattice constant (a0) for Fe is = 2.87 Å. Therefore, to compute the equilibrium
lattice constant of this potential model, we vary the lattice constant (a0) from 2.6 Å to 3.1 Å,
in steps of 0.1 Å. The potential energy per atom E as a function of a0 is plotted in Fig. 1.
According to literature [12,17] this data can be fitted to a parabola. Thus, we fitted this data
to a third order polynomial.

2.2. ELASTIC CONSTANTS
The procedure to calculate elastic constants were directly applied as in Lammps manual
which can be provided within the Lammps web site in Ref [14,15]. By using the definitions
and comments from the Lammps software package we have calculated the elastic constants
of Fe at zero Kelvin which this temperature directly stands for the ground state properties of
the related element.

2.3. VACANCY FORMATION ENERGY
A vacancy is created when an atom within a perfect lattice is removed [18-19]. So, we firstly
constructed a bcc perfect lattice with 2000 atoms at zero K. However, when an atom is
removed from a crystal, the surrounding atoms will readjust their atomic positions to lower
the potential energy. To obtain such a relaxed vacancy configuration one may use energy
minimization techniques. Secondly, we removed one atom from the perfect crystal by using
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conjugate gradient (CG) algorithm [20] for energy minimization with a NVT enseble [21].
For determination of the EF

V we used the following relation [22]:

where E1 is the perfect crystal energy with N atoms and E2 is the relaxed energy of the system
containing the vacancy with N –1 atoms.

3. RESULTS AND DISCUSSION
Figure 1 shows the energy change w.r.t lattice paramater for iron obtained from LAMMPS. The
energy per atom at a0 is the cohesive energy is found to be as Ecoh = −4.12 eV. The curvature
of parabolic curve at a0 gives an estimate of the bulk modulus, B = 178 GPa. When comparing
with the experimental values, the cohesive energy result shows a good agreement with the
earlier literature values. Futhermore, the bulk modulus (B), which is an important parameter to
characterize the mechanical behaviour of a material generally exhibits a good consistency with
former results. As a defect formation energy in bcc iron, the vacancy formation energy (EF

V ),
is found to be as 1.6 eV which this value also appears in the experimental range. On the other
hand, Figure 2 indicates the change of elatics constants w.r.t. varying lattice constants of bcc
iron. As it is obvious from Figure 2. C11 exhibits a linear increase where bulk modulus, C12 and
C44 display a linear decrease with the increasing lattice parameter.

According to mechanical (dynamical) stability: C11–C12> 0, C11 > 0, C11 + 2C12 > 0 and
cubic stability conditions i.e C12 < B < C11 must be satisfied [23-24].

Finally, Figure 3 represents the comparison of present and prior findings on the cubic
elatic constants of bcc iron through various interatomic potentials. It is clear from Fig. 3 that
the results of Müller atomic bond order potential [9] provides much better values closer to
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Figure 1 Lattice parameter versus energy.



experimental findings. Additionally application of FS potential in the present study shows a
similar result range with Simonelli et al results [26] and Dudarev and Derlet results [27]. All
calculated parameters from molecular dynamics during the present study were given in Table 1.
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Figure 3 Comparison of present and previous results.



Also a considerable comparison can be seen with the former available experimental and
previous theoretecal literature data for various interatomic potentials can be seen in Table 1.

4. CONCLUSION
We performed calculations to study the some structural and elastic properties of bcc iron for
zero K temperature. The following conclusions have been drawn from present study:
• Bcc iron elastic constants are in good agreement with the prior available experimental

and theoretically calculated literature values.
• Calculated elastic constants obey the structural stability conditions (C11–C12 > 0, C11

> 0, C44 > 0,C11 + 2C12 > 0) which gives credence to our calculated values.
• Experimentally it is expensive and diffucult to obtain vacancy properties. Beacuse

measurement of these experiments requires very pure samples and small
concentrations of thermal vacancies for reliable results [25]. Therefore, with the
appropriate interatomic potential present type of calculations provide good reults for
vacancy defect calculations.
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Table 1 Some calculated and experimental physical parameters of bcc iron.

Müller(c) This
Parameter Exp Simonelli(a) Dudarev(b) ABOP Study

a0 (Å) 2.87(c) 2.86 2.86 2.86 2.86

Ec (eV) 4.28(c) 4.28 4.12 4.28 4.12

EF
V (eV) 1.5-1.8(c) 1.6 1.8 1.5 1.6

C11 (GPa) 226(c) 242 243 225 244
C12 (GPa) 140(c) 146 138 142 145

C44 (GPa) 116(c) 112 122 126 116

B (GPa) 169(c) 178 173 169 178
(a)Ref.26, (b)Ref.27, (c)Ref.28.
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