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ABSTRACT

We demonstrate an explicit numerical method for accurate solving the

eigenvalue problem for some systems of ordinary differential equations, in

particular, those describing electron and hole bound states in

semiconductor quantum wells with polynomial potential profiles. Holes

states are described by the Luttinger Hamiltonian matrix. For solving the

eigenvalue problem we use the recurrent sequences procedure that

makes possible to derive exact analytical expression for the

eigenfunctions,. Hole bound states energies and corresponding wave

functions are calculated in a finite parabolic quantum well as functions of

the lateral quasimomentum component and parameters of the potential.
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1. INTRODUCTION
We consider eigenvalue problem for the equation

(1)

where V(z) is polynomial function at 0 ≤ z ≤ d

(2)

V(z) = V = const ≥ 0 otherwise; â, and ĉ are Hermitian, and b̂- anti-Hermitian piecewise
constant n × n matrices; Ψ(z) is n-component vector of solutions (wave function); E is the
energy. A number of applied problems, in particular the problem of finding energies and
wave functions of bound states of electrons and holes in semiconductor quantum wells
(QW) is reduced to solving eigenvalue problem for Eq. (1). Various approximate
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numerical schemes are used for solving the problem even in the case of the conventional
one-dimensional Schrödinger equation (i.e. when n = 1, b̂ = 0 in Eq. (1)), for example,
multistep potential approximation [1], piecewise-linear potential approximation [2], finite-
element methods, variational method [3], finite differences scheme [4, 5]. In the cases
where a set of basis states is needed to describe a quantum system, for example in the
problem of hole-bound states in a QW, the eigenvalue problem for the system of coupled
differential equations (n ≥ 2 in Eq. (1)) has to be solved. The problem then becomes much
more complicated and usually finite-difference-scheme [4, 5] or numerical integration of
the system of coupled ordinary differential equations (ODE) [6] based methods are used.
In the present paper we demonstrate an explicit numerical method based on the recurrent
sequences procedure [7, 8] for solving the eigenvalue problem for systems of ODE (1) that
makes possible to derive exact analytical expression for the eigenfunctions and calculate
accurately both eigenvalues and corresponding eigenfunctions. The method is used for
calculation of hole bound-states energies and corresponding wave functions in a finite
parabolic semiconductor quantum well as functions of the lateral quasimomentum
component.

2. GENERAL FORMULATION OF THE METHOD
In this section the case of arbitrary but finite n and m in Eq. (1) is considered.

For further study it is convenient to represent Eq. (1) as a first-order equation for a
2n − component function

(3)

(4)

0̂, and 1̂ are the null and identity n × n matrix respectively.
Since V(z) is a polynomial function (2), matrix A(z) in (4) assumes at 0 ≤ z ≤ d the form

(5)

where Ai, (i = 0, 1,…, m) are constant 2n × 2n matrices, and A(z) = A = const at z ≤ 0, z ≥ d.
The following eigenvalue problem for Eq. (4) (corresponding to the one for Eq. (1)) is

considered. It is necessary to find out such descrete values of the parameter E at which the
following conditions for corresponding solutions are satisfied:
1) y(z) → 0 as z → ± ∞
2) y(z) is continuous at z = 0 and z = d.

It is necessary also to calculate corresponding eigenfunctions, i.e. normalized solutions
ΨE(z) of Eq. (1).

Note that more general conditions than 2) should be used in case when magnitudes of
constant matrices â, b̂ and ĉ are different at 0 ≤ z ≤ d, z < 0 and z > d (see e.g. [12]). For
definiteness but without loss of generality let us next consider the case when they are
constant at all values of z and conditions 2) are satisfied.
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We consider the fundamental system of solutions of Eq. (4) seperately at 0 ≤ z ≤ d, z < 0
and z > d.

Since A(z) is polynomial matrix function (5) at 0 ≤ z ≤ d then the following formal power
series for each particular solution satisfying the Eq. (4)

(6)

where yk are constant (z-independant) 2n-components vectors obeying reccurent relations

(7)

converge at z< ∞ and give exact solutions of (4) (immediate corollary of [8, Theorem 4]).
Here y0 is some given 2n-vector that is one of 2n linear-independent 2n-vectors
corresponding to particular solutions of the fundamental system of solutions of Eq. (4).

It is obvious that in actual calculations of the functions y(z) one should truncate
summation in Eq. (6) at sufficiently large value k = kmax.

Since A(z) = A = const at z ≤ 0, z ≥ d we have the following equation:

(8)

Solutions of Eq. (8) satisfying the definite conditions at z → ± ∞ are easy to find since
they are superpositions of 2n-vectors (eigenvectors of the matrix A) multiplied by
exponential functions with generally speaking complex arguments (eigenvalues of the matrix
A). In the case of solving the eigenvalue problem one should consider those values of the
parameter E that eigenvalues of the matrix A have nonzero real parts and one should retain
only those exponentials in solutions which are decaying at z → ± ∞.

Let 2n by 2n matrix A = A(E) has n eigenvalues with positive real parts and n eigenvalues
with negative real parts at some values of E:

(9)

At z ≤ 0 we have, as a matrix of n solutions of Eq. (8) tending to zero as z → –∞, the
following 2n × n matrix function

(10)

Here n-elements vectors u1,..., un are eigenvectors of the matrix A(E) which correspond to
its eigenvalues λ1,…, λn with positive real parts. Using each of n columns of 2n × n constant
matrix F(0) as a vector y0 in (6), (7) we derive a 2n × n matrix function Y (z) which is built
from n particular solutions yi(z) (i = 1,…, n) of Eq. (4) at 0 ≤ z ≤ d
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(11)

At z ≥ d we have, as a matrix of n solutions of Eq. (8) tending to zero as z → +∞, the
following 2n × n matrix function

(12)

where un + 1,..., u2n are eigenvectors of the matrix A(E) which correspond to its eigenvalues
λn+1,…,λ2n with negative real parts.

It is not difficult to compute 2n × n matrix functions Y(z) (11) and Γ(z) (12) in the point
z = d at any value of the parameter E. It is obvious that for existence of the eigenfunction
of Eq. (4) it is necessary and sufficient that such non-nil n-dimensional vectors of the
matching Ξ1 = Ξ1(E) and Ξ2 = Ξ2(E ) exist that the following condition is valid

Y (d ) Ξ1 = Γ (d) Ξ2. (13)

This implies that some value E = E0 is the eigenvalue of Eq. (4) if the following equality
is satisfied

det M(E ) = 0, (14)

where M = M(E) is a 2n × 2n matrix

M ≡ (Y(d), − Γ (d )) (15)

Thus the problem of finding eigenvalues of Eq. (4) is reduced to numerical solution of
Eq. (14).

After computation of the eigenvalue E = E0 and n-dimensional vectors Ξ1 and Ξ2 from
Eq. (13), and normalization we derive the following expression for the corresponding
eigenfunction

(16)

Note that Eq. (16) gives exact analytical expression for the eigenfunctions of Eq. (4) and
hence eigenfunctions and their first derivatives of Eq. (1). There are no restrictions on the
properties of matrices â, b̂ and ĉ in Eq. (1).
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3. HOLE STATES IN A FINITE PARABOLIC QUANTUM WELL
The light- and heavy-hole states in semiconductors are described by the 4 × 4 Luttinger
Hamiltonian matrix [9]. We choose z direction to be perpendicular to interfaces in a
quantum-well structure (the direction of crystal growth). The potential V(z) breaks the
translational symmetry along z axis but components of quasi-momentum parallel to the
interfaces (kx, ky) remain good quantum numbers. A unitary transformation [10] block
diagonalizes the Hamiltonian 4 × 4 matrix into two 2 × 2 blocks. Then, in the case of

symmetric quantum wells, after substitution in the Hamiltonian, the

Schrödinger equation is reduced to the Eq. (1) with n = 2, and in the so called spherical
approximation when one neglects the warping of the valence band matrices â, b̂ and ĉ  in
Eq. (1) take on form

(17)

Where kl is the lateral quasi-momentum component (good quantum number): k2
l = k2

x + k2
y ;

µ = (6γ3 + 4γ2) / 5γ1, γ1, γ2, γ3, are the dimensionless Luttinger parameters [9]; energy and
length are measured in units of m0e

4 /2h−2γ1 and h−2γ1/ m0e
2, respectively, m0 is free electron

mass. The realistic range of the parameter under consideration is: 0 ≤ µ < 1. Note that when
µ = 0 equations (1) become decoupled and each of them describes electron in a simple-
conduction-band semiconductor QW [7, 5]. In what follows, we consider the case of a
structure with a symmetric parabolic quantum well: V(z) < 0 at 0 ≤ z ≤ d, and V(z) = 0 at 
z ≤ 0, z ≥ d. Note that when kl = 0 equations (1) become decoupled and are of the form of
two one-dimensional Schrödinger equations describing heavy and light holes

. At kl ≠ 0 Eq. (1) become coupled and we designate hole states

conventionally as a heavy- and light-hole states. After substitution (3) we obtain Eq. (4) with
matrix function A(z): A(z) = A0 + A1z + A2z

2, where A0, A1, A2 are constant 4 × 4 matrices.
Eigenvalues of the matrix A = A0 read as follows:

(18)

We chose corresponding eigenvectors as:
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Thus matrix F(z) from (10) equals

Using its value at z = 0 we find 4 × 2 matrix of solutions of Eq. (4) at z = d, namely

k = 0, 1,…, Y0 = F(0).

The 4 × 2-matrix function of solutions of Eq. (4) at z ≥ d, tending to zero as z → + ∞ is:

Eigenvalues are determined by numerical solution of the equation det M(E ) = 0, where
the 4 × 2 matrix M equals M(E) = (Y(d), − Γ (d)). Eq. (19) and (13) provide an eigenfunction
for a particular value of E = E0. Normalizing of wave functions is performed analytically.

3. RESULTS AND DISCUSSION.
Results of the calculations of the dispersions of all hole bound states in a GaAs symmetric
parabolic quantum well, namely when the potential V(z) is are
represented in Fig. 1. Material parameters used in computations are: µ = 0.753, γ1 = 6.85.
Calculated wave functions are shown in Figs. 2-4. Note, that no oscillatory theorem for the
wave function is valid in the matrix case (i.e. if n >1, in Eq. (1)) owing to admixture of
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Figure 1 Dispersion of hole bound states in a single confined quantum well. d =
100 Å, U0 =. 0,05 eV.



heavy- and light-hole states at kl ≠ 0 (one always obtains a light-hole exponential in
asymptotic of solutions like in the ‘Coulomb’ case [11]). Moreover, it is possible to obtain a
wave-function nil beyond the well (that is apparently seen in Fig. 4).

An explicit method was demonstrated for accurate solving the eigenvalue problem for
some systems of ordinary differential equations. Exact analytical expressions for the
eigenfunctions were derived. Energies and wavefunctions of hole bound states in a
semiconductor finite parabolic quantum well were calculated as functions of a
quasimomentum component parallel to interfaces in a structure.
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Figure 2 Wave function of the hole ground state (hh1) in a parabolic GaAs
quantum well. U0 = 0.05 eV, d = 10 nm, E0 = −36.416 meV.
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