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ABSTRACT

The main objective of this research was to study the pressure waves

propagation generated by a sudden closure of a valve in a straight pipe.

The physical model consisted of a head tank that can be pressurized with

air, and a copper pipe with a fast-closing ball valve on the downstream end

of the line. The cavitation and fluid-structure interaction phenomena were

integrated analytically into the one-dimensional continuity and momentum

equations, by assuming that the fluid density and the flow area vary with

pressure. These equations were solved through a high resolution finite

volume method, in combination with others numerical methods such as

Taylor series expansion, Newton method, Simpson’s Rule and quadratic

interpolation. Due to the complexity of the solution procedure, a

computational code in FORTRAN 95 language was developed in order to

obtain numerical solutions. Several discretizations of the computational grid

were achieved to assess their impact on the solution. The model was

validated with experimental data and analytic results obtained by other

researchers. Several pressure values, in different points of pipe, were

compared, and an excellent agreement was found for both cases.

NOMENCLATURE
A = pipe flow area
Ao = pipe flow area for the unpressurized state
A’ = derivate of A with respect to pressure
a = wave speed through homogeneous fluid contained in pipe
a� = wave speed through homogeneous fluid contained in pipe for initial

conditions
c1 = pipe restrain factor
Do = pipe inside diameter
E = modulus of elasticity for the pipe material
e = pipe wall thickness
F = pressure continuous function
k = bulk modulus of water
L = pipe length
Nz = number of computational cells
n = time level
P = fluid pressure
Psat = saturation condition of pressure
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PT = tank pressure
s = fluid specific entropy
T = fluid temperature
To = initial condition of fluid temperature
t = time
u = homogeneous fluid velocity
V = fluid velocity at valve during closure stroke
υ = fluid specific volume
ν = poisson’s ratio
ρ = fluid density
∆t = time step size
∆z = length of computational cell

1. INTRODUCTION
The pressure waves caused by hydraulic transient in a pipeline, like a sudden closure of a
valve, can become in a stress increase and generated noise, vibrations and damages in the
pipe materials. For these reasons it is consider an undesirable phenomenon in pipelines and
is necessary to know its effects by including them into the design process of any hydraulic
system. It also can cause localized and distributed vaporization which may have a
devastating effect on a pipeline system. A famous example is the Oigawa hydropower
accident in Japan, were a fast valve-closure, due to the draining of an oil control system
during maintenance, caused an extremely high-pressure water hammer wave that split the
penstock open. The resultant release of water generated a low-pressure wave resulting in
substantial column separation that caused crushing (pipe collapse) of a significant portion of
the upstream pipeline due to the external atmospheric pressure [1].

This research studies the pressure waves propagation along a fluid, generated by hydraulic
transient in a straight pipe section. It also includes the phenomena of fluid structure
interaction and cavitation analytically, by considering that the fluid density and the flow area
vary with pressure. The most widely used approach for modeling cavitation in pipelines,
which is not used herein, is the Discrete Vapor Cavity Model (DVCM) [2], in which the
cavity is assumed to occupy the entire cross section of the pipe on specific positions. This
model is usually applied in combination with a Finite Difference Method, being its major
drawback the fact that solutions tend to become artificially spiky as the mesh is refined. This
problem is addressed in this work through the implementation of the MUSCL-Hancock
method, which is a High Resolution Finite Volume Method that gives second-order accuracy
on smooth solutions and integrates a slope limiting technique to work near to the
discontinuities to prevent nonphysical oscillations in the solution [3]. 

Second order accurate methods give a very good accuracy on smooth solutions, but fail
near discontinuities, where oscillations are generated. Upwind Methods have the advantage
of keeping the solution monotonically varying in regions where the solution should be
monotone, even though the accuracy is not very good. The idea with High Resolution
methods is to combine the best features of both methods. Second order of accuracy is
obtained where possible, but without insist on it in regions where the solution is not behaving
smoothly [4].

The application of this method has important advantages: solutions do not develop
artificial spikiness when refined computational meshes are employed, the predicted pressure
amplitudes do not exhibit important overshooting, and since the fluid is treated as
homogeneous, no special considerations are required for the treatment of boundary
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conditions adjacent to dynamic components such as closing valves or pumps [3].
Validation of the mathematical model and the finite-volume solution method is provided

by comparing results against experimental data obtained from the water hammer experiment
of Simpson and Wylie [5], the analytic results obtained by Chaiko [3] and the analytic results
obtained by Da Silva [2].

2. PHYSICAL MODEL
The physical model for this analytical study is defined by the experimental apparatus used
by Simpson and Wylie [5] to study liquid-column separation on the upstream side of a
suddenly closed valve. The pipeline is considered to be horizontal. The system consists of a
head tank that can be pressurized with air, and a copper pipe with a fast-closing ball valve
on the downstream end of the line. The pipe inside diameter is 19.05 mm and the wall
thickness is 1.588 mm. Pipe length from the head tank to the valve is 36 m. Water
temperature was maintained at approximately 24°C. The wave speed for the liquid filled line
is determined 1298 m/s. The initial fluid velocity is 0.332 m/s and the reservoir pressure head
is 23.41 m. A simplified schematic of the physical model is shown in Figure 1.

Figure 1. Simplified schematic of the physical model

3. MATHEMATICAL MODEL 
The mathematical model is based on a one dimensional, homogeneous-fluid continuity and
momentum equations

(1)

(2)

where P(z,t) is the pressure, ρ(P) is the fluid density, u(z,t) is the fluid velocity , A(P) is the
pipe flow area, t is the time, z is the axial distance along the pipe and A’=dA/dP (which must
be constant for Eqn. (2) to applies). For the integration of the fluid-structure interaction
phenomena, the flow area can vary with fluid pressure due to the next stress-strain relation [6]

(3)

where Do and Ao denote the inside diameter and the pipe flow area or the unpressurized state,
e is the thickness of the pipe, E is the modulus of elasticity for the pipe material (for copper
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is 120GPa) and c1 is the piping restrain factor for a pipe anchored against longitudinal
movements

(4)

where v is the Poisson’s ratio, which is 0.35 for the copper pipe [7].
The density variations depend only on the pressure and are assumed to occur at constant

entropy. For the sub-cooled liquid region, where P is greater than Psat

(5)

where To is the initial temperature of the fluid, k is the bulk modulus of the fluid (2.07GPa for
water at ordinary temperatures [24]). For the saturated region, where P is less or equal to Psat:

(6)

where υ is the fluid specific volume, the subscripts f y g refers to saturated liquid and vapor,
respectively, and X is the quality of the mixture.

3.1 BOUNDARY CONDITIONS 
Once the transient begins, caused by the sudden closure of the valve, the pressure is
considered to remain constant at the upstream end of the pipe (z=0), therefore, in this
position the pressure is constant and equal to the tank pressure PT

(7)

On the downstream end (z=L), the fluid velocity is an specific function of time during the
valve closure stroke and zero for the remaining part of the transient.

(8)

where t1 is the time interval during which the data are applied as a boundary condition
(closure time of the valve) and  is a specific velocity boundary condition derived from the
experimental data [5] by curve fitting (Figure 2) resulting for t < 0.02s:

(9)

For 0.02375 s < t ≥ 0.02 s:

(10)
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Figure 2. Curve Fitting for fluid velocity on valve neighbor from experimental data.

4. ANALYTICAL MODEL
The governing continuity and momentum equations are solved by the MUSCL-Hancock
method, which is a high-resolution finite volume method and prevent numerical oscillations
by using slope limiting. The solution domain is divided into Nz computational cells of equal
length ∆z. To ensure the numerical stability of the method, ∆t is calculated according to the
CFL condition

(12)

4.1 EQUATIONS INTEGRATION
The governing equations in their conservation form are numerically integrated on the finite
volume grid. Central differences in both space and time are used to obtain the next finite
difference formulas

(13)

(14)

where n represents the time level.

4.2 DATA RECONSTRUCTION
The first step for applying this method is the linear reconstruction of the data. The variables
values ρA and ρuA are found in the cells neighbor for the current time level n. For interior
cells (j = 2,…, Nz-1), slope limiting is accomplished through the application of the minmod
slope limiter. The slope m of ρA and ρuA respectively, on interior cells at time n is
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(16)

where the definition of the minmod function is

(17)

For the first and last cells (j=1 y j=Nz), slope limiting is not used since they only have one
neighbor cell. Inward sloping difference formulas are employed to obtain their slopes

(18)

(19)

(20)

(21)

Using the previous calculated slopes, the quantities ρA and ρuA are obtained on the left
and right side, respectively, of each cell boundary according to
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4.3 TAYLOR SERIES EXPANSION
The second step of the solution method is the Taylor Series Expansion of the linear
reconstructed data on n time level 

(26)

(27)

(28)

(29)

where the slopes obtained in the previous step are used again. The fluid velocity u is
calculated in tn+1/2 with the quantities ρA and ρuA. In the subcooled liquid region, direct
calculation of pressure is accomplished by the solution of a quadratic equation. In the
saturated two-phase region, an iterative numerical procedure is used to calculate the pressure.
A guess is made for the pressure, and then the flow area and density are computed from Eqn.
(3) and the known value of the product ρA. Newton’s method is applied to Eqn. (6) in order
to recalculate pressure from the density. The calculated pressure is then compared against the
guessed value to determine if convergence has been achieved, or if another iteration is
required [3].

4.4 RIEMANN PROBLEM
With the quantities of u and P on every side of the cell boundary, the Riemann problem is
solved to have only one value of each variable in each cell boundary. In the subcooled liquid
region, where P is greater than Psat(To), the weak dependency of density and wave speed
pressure for F(P) is neglected to obtain [3]

(30)

For interior cell boundary (j = 2,…,Nz-1), where rightward and leftward propagation
characteristics intersect [3]
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condition along with the compatibility equation leads

(33)

Similarily, the velocity of the fluid on the boundary z = L is specify by Eqn. (8), and the
fluid pressure is given implicitly by the relation

(34)

5. RESULTS
When the transient begins with the closure of the valve, it causes a high pressure wave which
propagates to the upstream of the pipe. Initially the pressure at the valve gradually increases
to its maximum value, just when the valve is completely closed to 0.03 s. Then, the pressure
remains constant until the first pressure wave is reflected back from the tank to produce the
first pressure drop. From that moment the pressure begins to drop sharply until reaching the
saturation conditions of the liquid and produce the appearance of the first steam cavities at
about 0.077 s.

Due to the constant entropy condition implemented in the model, once it reaches the
saturation conditions, the pressure continues decreasing to a certain point and then begins to
increase again until reaching the saturation pressure. This variation is so small that cannot be
appreciated in Figure 3, which suggests that the vapor fraction in the mixture is quite small.
This behavior matches the physical description of the cavitation phenomenon; therefore, it is
considered that the proposed model provides satisfactory results in this regard.

Figure 3. Comparison of finite-volume calculation of pressure at the valve (z = L= 36 m)
using 40 computational cells against experimental data [5] and Chaiko’s results [3].

Figure 3 compares calculated pressure at the valve (z = L = 36 m) against those obtained by
Chaiko [3] and the experimental data of Simpson and Wylie [5]. It is done using 40
computational cells. At this point of the pipeline, the most severe condition of cavitation is
expected. The results show very good agreement with both comparisons. The mathematical
model used does not consider the slope of the pipeline of the physical model, and that’s the
reason why the values of pressure obtained are lightly higher than the experimental ones,
especially in the initial time intervals. 
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As time increases, results are getting away from the ones obtained by Chaiko [3], who
incorporates friction in his one-dimensional model. Therefore, he gets values of pressure that
slightly decrease as time increases, due to the dissipative effect of friction. For this reason,
his results are closer to the experimental ones for higher times.

Figure 4. Comparison of finite-volume calculation of pressure at z = 9 m using 60
computational cells against experimental data and Chaiko’s results [3].

Figure 4 compares calculated pressure at z = 9 m, near from the tank, using 60 computational
cells. Again, it shows an excellent agreement with the experimental data. Initially, pressure
remains constant from initial value until 0.02s approximately, when the first high pressure
wave arrives to this point and causes pressure increase. Evidently, the effect of cavitation is
less severe in this position of the pipeline than it is in the valve. The saturation state is reach
by short period of time.

Figure 5. Comparison of finite-volume calculation of pressure at the valve (z = L =
36 m) using 80 computational cells against DVCM [2].

Comparing the results using the finite-volume method and the ones obtained by Da Silva [2]
using DVCM, as shown in Figure 5, total agreement is achieved between them until 0.15 s.
From this point, several waves start to propagate at the same time in the system, which
increases the discontinuities and produces numerical oscillations for the DVCM.
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Figure 6. FVM calculation of pressure at (L = z = 27 m) using 20 computational cells.

For shorter lengths of pipe, more time the pressure waves spread for the same time level, as
shown in Figures 6, 7 and 8. This is because the length of the line is shorter, which suggest
that a shorter time is also required for the wave traveling towards one end of the pipe and
returns. This turns in a decrease of the cavitation severity, by not allowing the vapor fraction
in the mixture to increase. The fluid reaches the saturation pressure, however, does not
remain in that state for a long time, when the high pressure wave coming back reaches again.

Figure 7. FVM calculation of pressure at (L = z = 18 m) using 20 computational cells.

6. CONCLUSIONS
The finite volume method implemented, which incorporated slope limiters, allowed to obtain
a stable solution and also with a low computational cost. The solutions for all the cases
studied were obtained in seconds and all of them showed a very good agreement with the
experimental data, even with as few as 20 computational cells. The most severe conditions
of cavitation were found at the valve. The friction effect on the pressure consider by Chaiko
[3] is not significant for shorts periods of time. 
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Figure 8. FVM calculation of pressure at (L = z = 9 m) using 20 computational cells.
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