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ABSTRACT

The industries are seeking smarter simulation tools to automatize the

modeling work to alleviate the difficulties of using the numerical simulation

techniques. The present work designs and implements an extensible

framework to facilitate the development and deployment of the smart

application-oriented simulation softwares. The kernel of the framework is the

data management module which treats the various data in a unified

approach.The geometry modeling module, the meshing module, the analysis

module and the visualization module manipulate the data and the graphical

user interface module assists in manipulating and displaying the data

interactively. Two typical applications, i.e., the software for computing and

analyzing the load-carrying capabilities of slew bearings and the software for

designing the transmission tower, are presented for demonstrations.
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1. INTRODUCTION
Numerical simulation is playing an increasing role in both engineering designs and scientific
researches. The 2006 National Science Foundation (NSF) Report on “Simulation-based
Engineering Science” [1] showed the potential of using simulation technology and methods
to revolutionize the engineering science. In recent years, the numerical simulation codes have
advanced significantly in their modeling capabilities and user-interfaces. Nevertheless, using
the general-purpose simulation codes well is still a challenging task: on one hand, the user
must be familiar with the large number of commands and the fine-tuning options of the codes;
one another hand, the user must have a clear understanding in the underling algorithms (for
example, the finite element method) in order to properly model the physical problem.
Sometimes, the user has to strive to feed and debug user-defined subroutines to the bulk code
in order to define complex loadings or to implement new material models.

In order to alleviate the difficulties of using the numerical simulation technique, industry
or application-oriented simulation codes, such as the plastic injection molding design
software [2], the die-casting simulation software [3, 4], the sheet forming simulation software
[5, 6], the turbine blade design software [7] and the composite material design software [8],
have been developed into which knowledge of the industries and optimized modeling
practices are incorporated. These smart codes greatly improve the efficiency and the
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reliability of the modeling work. Although designed for different applications, these smart
codes share many common functionalities, such as geometric modeling, mesh generation and
results visualization just as the general-purpose codes. Considering the huge cost and the
long cycle to develop these codes by using various techniques, an extensible framework with
these common functionalities would obviously speed up the development and deployment of
smart simulation codes with less cost.

In recent years, many industries are seeking even smarter simulation tools to automatize
the tedious modeling work which are prone to errors, such as parametrizing commonly used
components and meshes, updating the the definition of groups of elements from the CAD
data to apply boundary conditions, defining the complex interaction between components in
huge assembled structures and so on [9–11]. Although it is quite challenging to develop these
smarter simulation softwares considering the interoperation between CAD modeling and
subsequent discretization and calculation, a framework of a general-purpose simulation
software and an access to the core functions of the framework (for example, manipulation
of the geometric data and the mesh data, supervision of a computation task) would facilitate
the implementation of the chaining and the coupling between the different modules [12].

The first modular, extensible and general-purpose framework for numerical simulation is
Salomé [13,14], an open-sourced code which itself makes good use of other open-sourced
codes, such as OpenCASCADE [15] for geometry modeling, Netgen [16] for meshing in
addition to its own meshers, Paraview [17] for data visualization and so on. Several
application-oriented simulation platforms have been successfully built upon Salomé, such as
the design platform for superconducting magnets [12] and the platform for nanoscale device
simulation and visualization [18]. The goal of Salomé is to provide a platform for embedding
different simulation codes into a single framework and to achieve this, advanced but complex
programming models (for example, the distributed object model) and rules are adopted.

Motivated by developing smarter simulation softwares and inspired by the success of the
Salomé platform, the present work designed and implemented a simpler but more flexible
framework of which the kernel is the data management module. Other modules, i.e., the
geometry modeling module, the meshing module, the analysis module and the visualization
module manipulate (create, edit, save and load) the data and the graphical user interface
(GUI) module assists in manipulating and displaying the data interactively. Pure object-
oriented programming with C++ was adopted and based on the framework, industry-oriented
applications can be developed within a short cycle. Two typical applications, i.e., the
software for computing and analyzing the load-carrying capabilities of slew bearings and the
software for designing the transmission tower, are presented for demonstrations.

2. THE ARCHITECHTURE OF THE FRAMEWORK
The general architecture of the extensible framework (Fig. 1) is similar to that of the Salomé
platform and consists of a set of generic modules of which the data management module (the
data module hereafter) is the kernel.

Different from other types of codes, the numerical simulation softwares usually have to
manipulate very complex data such as the geometry data, the mesh data, the scalar or vector
field data and various parameters which store the material properties, the boundary conditions
and other informations. The data module treats these different kinds of data in a unified
approach by using a single database (see 3.1). All the data are declared as objects within the
framework of object-oriented programming. One of the prominent advantages of this single-
database approach is that the data can be accessed and operated very conveniently. And in
addition, interrelationships can be defined between different data objects, for example, by
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storing the identification numbers of the dependent objects, to achieve a synchronization in
the data. Automatic update of the whole numerical model from the original CAD data is an
important step toward intelligentizing the simulation codes.

The geometry module provides basic functionalities to create, import (CAD models stored
in standard data exchange formats such as STEP, IGES and BREP), edit and access the
geometric entities. The module also provides some “smart” functionalities to identify and
select desired geometric entities, for example, to recognize bolt holes, to generate middle
surfaces from thin solid CAD models, to select the closest geometric entities of a reference
point and so on. And in addition, standard parts such as bolts and flanges can be defined as
parametric models (Fig. 2). With a full access to the basic functionalities, the advanced
functionalities can be extended continuously and the geometric modeling and operations will
become smarter and smarter.
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Figure 1: The general architecture of the extensible framework

Figure 2: Demonstration of the parametric modeling of bolts (left) and flanges (right)



The mesh modules provides capabilities to discretize geometric entities with primitive
elements such as line segments, triangles, tetrahedrons or hexahedrons. For simple
geometric entities such as blocks, spheres and cylinders, parametric meshing templates are
provided with using the best meshing practices (Fig. 3). Meshes as well as mesh groups can
be defined to be dependent on geometric objects and thus a smart meshing process can be
achieved [10].

The analysis module provides functionalities to define boundary conditions and to create
and supervise analysis jobs. With a full access to the geometric entities and the meshes, some
boundary conditions, especially those prone to errors such as the bolt connections or the
interactions between the parts of a complex assembly [11], can be defined automatically by
following prescribed rules. The materials properties of grouped meshes and some other
supplementary information such as the thicknesses of shell meshes can be assigned
automatically as well. The complete input decks which are fed into the solvers can be
generated based on predefined templates which follow the syntax of the solvers. At present
stage, the analysis module only supervises local analysis jobs. Through some standard
communication interfaces, it would be straightforward to monitor the jobs running on other
computers.

The visualization module provides rendering engines for the different kinds of data, i.e.,
the geometric entities, the meshes, the bulk field data and the analysis reports. A rendering
engine is called a view and multiple views can be created at a time. The concept of ‘view’
here is different from that often used in the conventional document/view programming
architecture [19] where a view refers to a window displaying the data. An equivalent
concept of ‘viewport’ is adopted by the present framework to refer to the graphical
window.
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Figure 3: Meshing templates for spheres and cylinders. Partitioning is performed 
on the shapes to ensure high quality of the generated elements



The GUI module in fact is a complete skeleton of generic simulation softwares which
assists in manipulating and visualizing the various data in an intuitive and interactive way.
The module contains essential GUI elements such as menu, toolbar, status bar, properties
panel, view windows, model trees and so on (Fig. 4). It is a template to develop other smart
application-oriented simulation codes.

3. IMPLEMENTATION
Object-oriented programming with the language C++ was adopted to code the extensile
framework described above. Robust open-sourced packages were exploited where it is
possible.

The unified data model consists of the kernel of the present software framework and
each kind of data (various parameters, geometric entities, meshes, field results) is
described by a class which is derived from the same root class, i.e., AObject (Fig. 5). The
root class defines the common members and methods for all the derived classes, i.e., an
identifier to distinguish the subclass and a serialization interface to save and restore the
objects instantiated from the class. Basic types of parameters such as string, float number,
integral number, Boolean number, vector and even color (ternary number) are derived
directly from the root class with additional members to do math operations and type
conversions. Usually these basic types of parameters are not manipulated directly but used
to define the properties of the more advanced objects such as the geometric entities and the
meshes. The advanced objects are managed by a single database (a document) and share
the same parent class, i.e., AElementWithProperties (Fig. 5), where a unique identification
number, a name, a category, a list of parameters of basic types (the properties) and a
pointer to the database are declared. The geometric part is described by the derived class
APartInstance (Fig. 5) where the topological representation of the part is declared and
manipulated through interfacing to the open-sourced 3D modeling engine, i.e.,
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OpenCASCADE [15]. Other properties such as the material, the color, the position and the
orientation are also defined in the class and the parent class. The mesh data is described by
the derived class AMeshInstance (Fig. 5) where the MED data format [20] is used to
manage the nodes and elements of the mesh. In additions, two pointers are declared to
preserve the dependent geometries, one pointing to the geometric part and the other
pointing to the geometry used to generate the mesh (geometric cleaning and healing are
usually needed before mesh generation and therefor the second geometry is often different
from the original one). The result field data is described by the derived class
AResultInstance (Fig. 5) where the MED data format is used again to manage the scalar or
vector fields defined on the mesh.

The geometry module focuses on the advanced manipulation of the geometric data
through interfacing to the OpenCASCADE modeling engine. One the request of practical
applications, several functionalities have been incorporated into the module:

– Manipulation of a linear or a circular group of parts (Fig. 6);
– Parametric modeling of several kinds of standard parts such as bolts, flanges, tubes,

angle steels and roller bearings (Fig. 7);
– Smart recognition of typical topologies of shapes such as holes, cylinders, spheres,

revolved shapes and extruded shapes;
– Searching utilities to identify geometric entities, such as finding the closest hole to a

reference point and finding the closest shape to a specified shape.

These advanced functionalities can be extended continuously and the geometric modeling
and operations will become smarter and smarter.

In the mesh module, all the meshing algorithms are derived from the root class, i.e.,
AMeshAlgo, where the member function to generate the mesh is declared. The pointer to
the database, the identification number of the underlying geometry, the dimension of the
mesh and the name of the meshing algorithm are all passed to the member function by
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Figure 5: Hierarchical structure of the unified data model



the structure data named AMeshContext. Two meshing algorithms have been
implemented:

– Generation of 2D and 3D structured mesh by solving elliptic equations [21, 22];
– Generation of triangles and tetrahedrons by the advancing front method through

interfacing to Netgen [16];
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Figure 7: GUI of the bearing code



A mesh can be created as the following piece of code demonstrates,
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AMeshContext context;

AMeshInstancePtr pMesh;

context.pDocument = pDocument;

context.partId = idPart;

context.type = AFEAElement::FEA_2D;
context.algoName = AMeshAlgo::NETGEN;
pMesh = AMeshAlgo::Create(context);

Utilities to define element groups on selected edges or faces, to combine multiples meshes
and to convert the MED data format to other data formats (for example, the format of
ABAQUS [23]) are also implemented in the class AMeshUtil.

The analysis module defines four kernel classes to create and monitor an analysis task,
i.e., ADataCollector to scan the unified database and collect the different categories of
information (materials, boundary conditions, mesh properties, contact pairs and so on) in the
predefined lists, ASolver to generate input decks for the solver and to set environmental
variables for the solver, AMonitor to monitor the status of the computation and AReporter to
generate an analysis report in the rich text format [24].

In the the visualization modules, viewports for displaying the different kinds of data are
implemented, i.e., A3DViewport for displaying the geometric data, AVTKViewport for
displaying the mesh and the field data through interfacing to the open-sourced visualization
toolkit (VTK) [25] and AReportViewport for displaying the analysis reports. To ensure the
platform-independence of these graphical windows, the cross-platform GUI library, i.e.,
wxWidgets [26] was chosen for its more native looking interface and its wide use in many
sectors.

The GUI module integrates the above modules and forms a generic skeleton of generic
simulation softwares. The conventional document/view programming architecture was
adopted and support of multiple analysis was ensured by the multiple document interface
(MDI). Predefined lists and maps (called ‘tables’) are created in each document to store the
different data as the following piece of code demonstrates,

//Member function: OnNewDocument()
ADocument* pDocument = GetDocument();
AUndoSetter disableUndo(pDocument);
pDocument->AddTable(AElementTablePtr(new APartInstanceTable()));

pDocument->AddTable(AElementTablePtr(new AMeshInstanceTable()));
pDocument->AddTable(AElementTablePtr(new AResultInstanceTable()));

The wxWidgets library was used to create the GUI. Besides the conventional GUI
elements, advanced GUI controls such as the ribbon bar, the property grid and the
floating/docking frames can be conveniently integrated. A property grid manager is developed
to automatically link the properties of the selected objects with the property grid.



4. CASES OF APPLICATIONS
Two applications have been successfully built upon the above modular and extensible
framework. The first one is a computation tool to analyze the load-carrying capabilities of
slew bearings (Fig. 7, the bearing code hereafter) and the second is a smart CAE software to
analyze the mechanical behavior of transmission towers by using the finite element method
(Fig. 8, the tower code hereafter).

The bearing code uses an efficient semi-analytical method to solve the complex problem
of contact mechanics [27]. Neither geometry modeling nor subsequent meshing is needed
and therefore, only the GUI module, the data module, the analysis module and the
visualization module are integrated into the code. A slew bearing is declared to be an object
instantiated from the class APartInstance and the geometric parameters such as the diameter
of the bearing, the number of rollers and the radius of the grooves, are defined as the
properties of the object. The end-user inputs the geometric parameters, the load levels and
the analysis options either by following a step-by-step wizard or through the property grids
(Fig. 9). These parameters and options are directly fed into the in-house developed solver and
an analysis job immediately begins. When the computation completes, the static loading
cure, the dynamic loading curve, and the bolts loading curves are displayed in a viewport
(Fig. 7). According to a predefined template, an analysis report is automatically generated
and displayed in another viewport (AReportViewport) which supports printing and editing of
the report.

The tower code is a typical industry-oriented simulation software. It is quite tedious to
set up a finite element model to calculate the mechanical response of transmission towers
considering the complex bolt connections, the complex weldments and the complex part
interactions have to be properly modeled. Therefore, the industry has long been seeking
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Figure 9: The step-by-step wizard (upper) and the property grid (lower)



a smart CAE software to automatize the modeling and analyzing process. The tower code
integrates all the modules and additional functionalities specific to transmission towers
have been developed. All the functionalities are grouped by the ribbon bar (Fig. 8). The
preliminary three dimensional model of a joint can be automatically generated by reading
the structural parameters from a one dimensional line model (Fig. 10). Bolts, flanges,
tubes, angle steels and additional connecting plates can be created by parametric
modeling (Fig. 2). The properties of the parts are listed in the property grids and can be
edited in an interactive way (Fig. 8). For each kind of the parts, a parametric meshing
algorithm is derived from the root class AMeshAlgo and the common meshing strategy is
overridden by an improved one which is more suitable with the topology of the part. 
By iterating over all the parts, the mesh of the assembly can be generated by one click 
(Fig. 11). Within the analysis module, a subclass, i.e., ACodeAsterSolver is derived from
the class ASolver and generates input decks for the finite element solver, i.e., Code-Aster
[28] based on predefined templates. A piece of the generated input file is demonstrated in
Fig. 12. Environmental variables for the solver are set through a dialog. When the
computation complete, the result file can be imported and displayed in a viewport
(AVTKViewport, Fig. 13).
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Figure 11: The generated shell mesh of an assembled joint of a transmission tower

Figure 12: A piece of the generated input file



5. PRESPECTIVES AND FUTURE DEVELOPMENTS
Benefiting much from open-sourced resources, the extensile framework will be released as
another open-sourced code in the future when the documentation is compiled and the
application programming interfaces (APIs) are further standardized. We believe an open-
source strategy will speed up the development and deployment of the framework in the
community of numerical simulations.

The request for smart simulation software is evolving rapidly and many new
developments are planned for the near future: advanced boundary-layer capabilities for
computational fluid dynamics (CFD) applications, parallel meshing, more advanced feature
recognition, remote job monitoring—to name a few. In virtue of the good modularity of the
framework, these new functionalities can be integrated into the framework straightforwardly.
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