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ABSTRACT

Crystallographic grains and defects play an important role in many

fundamental processes, such as grain growth and recrystallization, damage,

and plastic deformation. Due to the importance of these processes, there is

considerable interest in characterizing the crystallographic orientation and

grain boundary distribution of crystalline materials. In this study,

crystallographic defects such as dislocation arrays and grain boundaries and

their orientations were investigated in a commercial polycrystalline copper

sample using electron backscatter diffraction (EBSD) mapping combined

with scanning electron microscopy (SEM). EBSD was used to determine the

local orientations at individual points of a regular grid on a planar surface of a

specimen. From the orientation differences between neighboring points, the

lattice curvature and dislocation density tensor were derived, and the

dislocation density distribution accompanying the crystallographic defects

was significantly dependent on the SEM/EBSD step size associated with the

spatial resolution.
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1. INTRODUCTION
There have been many experimental observations and interesting reports in computational
material science based on recent technological developments in micro- to nano-scale
observations. Electron beam tomography has been used for in-situ three-dimensional observation
of lattice defects in crystallographic metals associated with the elementary processes of
plastic deformation [1, 2]. For the dislocation density tensor associated with the strain-
gradient-dependent crystal plasticity theorem, a technique using white X-ray diffraction for
estimating the geometrically necessary dislocation density were developed [3]. Calculations
of the dislocation density distribution obeying the curvature tensor in the crystal lattice have
been performed on the basis of SEM/EBSD and FIB/EBSD observations [4–6]. The EBSD
scheme used in this study can estimate the curvature tensor using the spatial gradient
associated with each observation point, the crystallographic orientation data, and its
difference. Therefore, any estimation of the curvature tensor should be strongly dependent
on the method used to calculate the spatial gradient and also on the number of observation
points in its region. To our knowledge, the research in this viewpoint has been very little.
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This study, involving the visualization of lattice defects in crystalline metals using
dislocation density tensor maps, explores the effect of number of observation points on the
estimating the curvature and the dislocation density tensor.

2. BASIC RELATION BETWEEN CURVATURE 
AND DISLOCATION DENSITY TENSOR
The orientation of a crystalline lattice is described by the rotation required to reach this
orientation from a chosen reference orientation [7]. This rotation is most frequently
characterized by the Bunge rotation matrix g [8] based on the Euler angles (f1, Φ, f2), as
shown in Eq. (1). When calculating the distortion of crystallographic structures, one can
consider only the rotation component of the lattice strain, because the elastic component
should be negligible. Therefore, using the rotation matrix shown in Eq. (1), one can obtain
the following equation:

  

(1)

                                                                                                                        
(2)

where δij represents the Kronecker delta.
Using Eq. (2), the lattice rotation vector θ can be determined as follows:

                                                                                                                      (3)

where εijk is the Levi-Civita permutation symbol.
From the above, one can obtain the curvature tensor κ from the spatial gradient of the

lattice rotation vector as follows:

                                                                                                                (4)

where Δq and Δx indicate the difference in crystallographic orientation and the distance
between two neighboring points, respectively. Δq, the difference between one orientation
(A) and another orientation (B) can be expressed by the quaternion product [6]:

                                                                            (5)

where qA
–1 denotes the inverse quaternion corresponding to the value of the conjugate

quaternion divided by its norm. Here, the quaternion consists of a scalar q0 and a vector 
q = (q1, q2, q3). One can also obtain the following equation using the Bunge rotation matrix
g given by Eq. (1):

                                                                                          (6)

Therefore, one can obtain the curvature tensor using Eq. (4) along with the
crystallographic orientation data. Then, the dislocation density tensor can be estimated as:

                                                                                                                  (7)
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The dislocation density tensor associated with the above curvature tensor calculation
cannot estimate the spatial gradient in the thickness direction, because the crystallographic
orientation data obtained from SEM/EBSD is surface data, as shown in Figure 1. Hence,
there are six evaluable components of the curvature tensor (κ11, κ21, κ31, κ12, κ22 and κ32)
Consequently, there are five measurable components of the dislocation density tensor, (α12,
α13, α21, α23 and α33) as shown in Eq. (8).

3. OBSERVATION SAMPLE AND ITS CONDITIONS
This study employed oxygen-free copper (C1011) to calculate defect information from the
spatial gradient of the crystallographic orientation. The specimens were 10.0 mm in diameter
and 2.2 mm thick.

To remove the damaged layer and coarsen the grains for easier observation, the specimen
was annealed in a furnace. The inside of the furnace was kept under a high vacuum, and
heated to 900oC. This temperature was maintained for 24 hr, and then the sample was
naturally cooled in the furnace. After annealing, electropolishing was performed under the
conditions listed in Table 1, to obtain an acceptable surface quality. Using this sample, the
crystallographic orientation data were determined using SEM/EBSD under the conditions
shown in Table 2. In order to investigate the effect of the SEM/EBSD step size on the
estimation of the spatial gradient, the crystallographic orientation was determined using
“SQUARE GRID”, which is similar to the finite difference method, for the same region. The
step sizes were 1, 2, and 4 μm, and the sample region was 400 × 400 μm2. Additional
experimental conditions of the SEM/EBSD measurements are shown in Table 2.

The crystallographic orientation and the coordinates of each observation point were
obtained using a postprocessor (OIM Analysis Ver. 4.6 ®TSL). Text-format data were also
obtained for all of the observation points. Thus, calculations of Eqs. (4) and (7) could be
performed. In this study, data with a CI (confidence index) value of less than 0.1 were
discarded. Table 3 lists the number of data points with CI values above and below 0.1 for
each step size examined.
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Figure 1: A sketch of the sample coordinate system used for EBSD. The curvature
tensor with respect to point “i” is determined by the central difference at each of
the cross arranged in a square lattice on the surface of the specimen



4. EXPERIMENTAL RESULTS
4.1 CRYSTALLOGRAPHIC ORIENTATION OF THE SPECIMEN
The orientations were determined by SEM/EBSD at points on a regular “SQUARE GRID”,
with a mutual spacing of 1μm. Figures 2(a) and (b) show the obtained grain boundary map
and inverse polar figure, respectively. The former shows the differences in crystallographic
orientation between neighboring observation points. The green line indicates a low-angle
boundary, with a 5–15 degree difference in crystallographic orientation. The blue line
indicates a greater than 15 degree boundary, such as grain boundary. In this figure, a grain
boundary clearly divides the left portion of the observation area from the right. Furthermore,
the left and right regions had individual crystallographic orientations, as shown in Fig. 2(b).

4.2 LATTICE DEFECTS OBSERVATION USING A DISLOCATION 
DENSITY MAP
The obtainable components of the dislocation density tensor are illustrated in Fig. 3. To show
the characteristic distribution of the dislocation density tensor, the range of the dislocation
density tensors ranged from –1.0 × 106 to 1.0 × 106 m–1. The higher-valued dislocation density
tensors, α12, α13 and α23, were distributed in neighboring grain and Right Grain near the grain
boundary. Furthermore, α21 and α33 were significantly distributed in Left Grain. The α33
component of the dislocation density tensor has a larger magnitude than the other components,
because it contains the summations α11 and α22, as shown in equation (8).
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Table 1: Electropolishing conditions

Solution                     H3PO4 : H2O = 1 : 1
Temperature               R.T.
Cathode                      Copper
Voltage                       2.0 V
Current                       0.70 A
Time                           120 sec

Table 2: Experimental conditions for SEM/EBSD

Acceleration voltage         Vacc = 25 kV
Working Distance               15.0 mm
Step Size, μm                     1.0 2.0 4.0
Exposure area                     400 × 400 μm2

Exposure time                     0.03 sec
Binning                               4 × 4
Grid                                     SQUARE

Table 3: The number of data points

                                              Num. Points
Step size, μm           CI ≥ 0.1                   CI < 0.1
1.0                             160358                     443
2.0                             40329                       72
4.0                             10186                       15



Next, the average dislocation density ρ*, also called the “apparent” dislocation density [5, 6],
can be estimated by:

                                                                              (9)

where b is the Burger’s vector associated with the copper lattice constant, a = 0.3615 nm [7].
Therefore, the magnitude of the Burger’s vector |b| is 0.2556 nm.

Figure 4 shows a dislocation density map illustrating the “apparent” dislocation density.
Comparing Figs. 4 and 2, the magnitude of the dislocation density at the grain boundary is
remarkably larger than that in the grain interior. This is because of an increase in the
quaternion Δq used to calculate the curvature tensor due to the magnitude of the

ρ α α α α α( )= + + + +
1

b
*
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Figure 2: Crystallographic orientation maps of the copper specimen
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Figure 3: The five obtainable components of the dislocation density tensor, αij



misorientation at near the grain boundary. Consequently, the value of the dislocation density
related to the curvature tensor increases. In contrast, at Right Grain, a high dislocation
density distribution was observed within the grain, but this cannot be confirmed from the
inverse pole figure shown in Fig. 2. This suggests that the local defect distribution can be
determined by calculating the curvature tensor from SEM/EBSD measurements.

4.3 STEP-SIZE DEPENDENCE OF DISLOCATION DENSITY
CALCULATIONS
To clarify the effect of step size on the calculated dislocation density maps, we performed each
step of 2 and 4 μm for getting the EBSD data at same square region, 400 × 400 μm2. Figure
5 shows dislocation density maps for step sizes of 1, 2, and 4 μm. The dislocation densities
ranged from 0 to 4.5 × 1015 m–2. Regardless of the step size, we can see that there are the grain
boundary divided by Left/Right Grain, the distribution and its localization of crystallographic
defect. In contrast, the dislocation density decreased as the step size increased. In this study,
we assumed the average dislocation density is estimated as dividing the sum of the dislocation
density at observation point by its numbers. Figure 6 shows a double logarithmic graph
relating the average dislocation density to the step sizes listed in Table 3. As a result, the
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Figure 5: Dislocation density maps for several SEM/EBSD step sizes



average dislocation density at any step size can be predicted. For example, the average
dislocation density would be approximately 7.0x1015 m–2 for a 0.5 μm step size. Meanwhile,
it is well known that the spatial resolution of EBSD is 102 to 103 times as large as the atomic
order [7]. Therefore, the average dislocation density will be predictable if the crystallographic
orientation data can be obtained using a high-resolution step size on the 10–1 order.

5. CONCLUSION
To visualize crystallographic defects using SEM/EBSD, the curvature and dislocation
density tensor associated with spatial gradient were calculated. Dislocation density maps
corresponding to the crystallographic defects were obtainable using EBSD. The following
results were obtained in this study:

 One can visualize dislocation density maps related to crystalline defects. These
dislocation density maps show not only the obvious grain boundaries, but also show the
local distribution of crystalline defects in the individual grains.

 To clarify the step size dependence of this SEM/EBSD scheme, experiments were performed
using different step sizes. The EBSD step size and the average dislocation density had an
double logarithmic relationship. The dislocation density decreased as the step size increased,
suggesting that the average dislocation density is predictable, if high-resolution
crystallographic orientation data can be obtained, with a step size on the 10–1 order.
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Figure 6: The log-log relationship between the average dislocation density and the
SEM/EBSD step size
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