
Viscous flow and heat transfer through 
two coaxial porous cylinders

Jacques Hona1,*, Elkana Pemha1 and Elisabeth Ngo Nyobe2

1Applied Mechanics Laboratory, Faculty of Science, 
University of Yaoundé I, P.O. Box 7389 Yaoundé, 

Cameroon, E-mail address: elkanaderbeau@yahoo.fr
2Department of Mathematics and Physical Science, 

National Advance School of Engineering, 
University of Yaoundé I, P.O. Box 8390 Yaoundé, 
Cameroon, E-mail address: nyobe_eli@yahoo.fr

ABSTRACT

In this paper, a flow of a high viscous fluid with temperature-dependent

viscosity through a porous industrial conduct is investigated by means of

similarity transformation technique. The problem is modeled using mass,

momentum and energy conservations. The variation of viscosity as function

of temperature couples the vorticity equation to the energy equation. The

numerical procedure for solving the differential equations of the problem is

detailed. For low values of the main control parameters, the analytical solution

of the problem is yielded. It appears from the numerical results of the problem

that the variations of temperature are stopped in a large area around the

middle of the flow domain. The maxima of thermal gradients are situated at

the walls due to suction. The dominance of flow reversal agrees with the

behavior of the normal pressure gradient inside the annular conduct.
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1. INTRODUCTION
Several investigations of fluid flows are performed by solving the Navier-Stokes equations.
[1–5]. In the studies of flows through channels with thermal effects, the channels usually have
a rectangular configuration or a cylindrical configuration as in the investigation of plane
Poiseuille flows [2] or the study of heat transfer in rectangular ducts or circular tubes [3]. Other
works exist where the effects of temperature on fluid flows are intensively examined [6–8].
When the channel admits porosity or wall motion, the problem is relative to a Berman flow
because the pioneer work of Berman [9] on a laminar flow in a porous rectangular channel
without thermal effects has inspired many other studies [10–12]. In particular those which
extended the Berman analysis for establishing the existence of symmetric and asymmetric
solutions under certain critical values of the Reynolds numbers [13–18]. Many works followed
[19–23] discussing the existence of solutions as function of control parameters. In most cases
where the flows are two-dimensional, a similarity transformation is applied to produce a single
nonlinear ordinary differential equation.
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Flows through porous channels or tubes are on the basis of several applications. These
applications include petroleum industry, filtration, paper manufacturing, membrane
separation processes, transpiration cooling, biological transport processes, solar energy
collectors, and also the control of boundary layer separation with suction or injection.

In the present study, the viscous flow through the porous annulus is governed by the
Navier-Stokes equations relative to velocity components and the energy equation satisfied by
temperature. Equal fluxes of fluid are established at both uniformly porous walls of the
annulus. The behavior of viscosity depends on the temperature difference between the walls.
There exist similarity solutions of the type introduced by Berman, but modified by the
existence of a variable high viscosity. To describe the dependence of viscosity on
temperature, many possible laws exist in the literature. The usual ones are linear, [24, 2]
algebraic [7, 24] or exponential behaviors [2, 5, 6]. The variation of the dynamic viscosity
while other properties of the fluid remain constant couples the Navier-Stokes equations to the
energy equation. If the temperature difference between the walls of the annulus is not high
enough to produce significant changes in the dynamic viscosity, the Navier-Stokes equations
and the energy equation are in partial coupling [25]. In fact, this partial coupling is due to the
correlation in terms of the stream function and thermal gradients through the energy
equation. However, if the viscosity varies with temperature as in the present work, the
equations describing the flow are fully coupled. At this stage, it is relevant to signal that the
novelty in this study is the investigation of the effects of viscosity gradients on the high
viscous flow occurring through a porous annular industrial conduct. Although this viscosity
varies with temperature, it remains high enough, so that inertial terms of the Navier-Stokes
equations are neglected.

The annular pipe has walls at a and a + 2h. Hence, the width of the annulus is 2h as shown
in Fig. 1. The mass withdrawal phenomenon occurs with suction speed V at both uniformly
porous walls of cylinders. The annulus consists of a cold inner cylinder at temperature T0 and
a hot outer cylinder at temperature T1, such that T1 > T0. The value of viscosity at temperature
T0 is μ0 taken as the reference value with respect to the behavior of the variable dynamic
viscosity. Other physical properties of the fluid which remain constant are the specific mass
ρ and the thermal conductivity κ.
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Figure 1: Geometry of the annulus: (a) Half-flow region with a typical axial velocity
profile and suction occurring at walls, (b) Section of the annulus with suction at 
r = a and r = a + 2h



The strategy consists to introduce the stream function in the governing equations of the
problem. A similarity transformation is then applied to obtain two coupled nonlinear ordinary
differential equations satisfied by the stream function and temperature in nondimensional
formulation. Some analyses are performed after finding the solutions of the problem in order
to extend the numerical results to physical significant settings.

2. DYNAMIC MODEL OF THE FLOW
To start, it is important to note that the creeping flow occurs when the fluid is considered
highly viscous so that inertial terms of the momentum equation are neglected compared to
viscous terms [26, 27].

In the problem under study, dimensionless variables are taken in units of length (h),
velocity (V ), temperature (ΔT = T1−T0), pressure (ρV2), and viscosity (μ0), then the Reynolds
number R = ρVh/μ0 and the Péclet number P = ρVh/κ are derived. In all that follows, the
variables are nondimensional.

A cylindrical polar coordinate system (r, f, z) is adopted such that r represents the radial
coordinate, f is the angular coordinate, and z denotes the axial coordinate. The z-axis is the
symmetry axis of the annular tube. Since the flow is assumed to be axisymmetric, the
velocity field has components as (v, 0, w), where v is the radial velocity and w the axial one.
The variables for temperature and pressure are T and p, respectively. The annulus is supposed
to be horizontal with the length in the z-direction tending to infinity in order to neglect the
influences at the ends, while the width 2h holds constant.

The assumption that the flow is axisymmetric enables to define the stream function ϕ with
respect to the two non-vanished velocity components v and w by a well known relation in
order to satisfy mass conservation. The introduction of the stream function is accompanied
by a new temperature function Θ which takes into account the difference of temperatures
between the walls. Functions ϕ and Θ are given as follows:

                                                                                                             

                                                                                                        

(1)

Considering mass, momentum and energy conservations, the stream function ϕ satisfies
the vorticity transport equation while function Θ describes the energy equation by neglecting
dissipation effect which could occur inside the annular tube. These governing equations are:
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(3)

where . The boundary conditions are given by:
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3. METHOD OF SOLUTION
This stage is about the use of a similarity transformation technique suitable to the geometrical
configuration of the annulus. Indeed, we introduce new variables in terms of the nondimensional
stream function, temperature, and viscosity as follows:

                                                       ϕ (r, z) = (δ–1−1 ) zf (x)                                                      

                                                           Q (r) = (1−δ) θ (x)                                                           

                                                          μ(θ) = 1−λ (1−δ)θ                                                     (5)

                                                                                                           

                                                          l = –(∂μ/∂q )/(1−δ)                                                         

                                                                δ = h/(a+h)                                                                

where x is a dimensionless variable which varies between −1 and +1, for r = a/h and 
r = (a+2h)/h, respectively. The geometric parameter δ is defined on the basis of the radii of the
inner cylinder and the outer one, and the valid interval for this parameter is 0 < d < 1 for the annular
viscous flow. The temperature-dependent viscosity undergoes a linear law through the annulus and
its behavior gives rise to the existence of a nondimensional parameter λ, called the sensitivity of
viscosity to thermal variations, which depends on the fluid properties and on the temperature
difference between the walls. Applying the transformations of eqns (5), the differential equations
of the problem and the boundary conditions become

                               

                                                                                       

                                                                            
                                             f (−1) = 1,   f (1) = −(1+δ)(1−δ)−1                                        (6)

                                                     f (1)(−1) = 0,   f (1)(1) = 0

                                                  θ (−1) = 0,   θ (1) = (1−δ)−1

where f (i) = di f /dxi and θ(i) = diθ/dx i. It follows that, by means of the similarity technique,
the axisymmetric viscous flow through the porous annular tube is reduced to a two-point
boundary-value problem with three boundary conditions at each wall. This problem admits
a geometric parameter δ which describes the nonlinear ordinary differential equations and
the boundary conditions. In the case of uniform viscosity (when λ tends to zero) and when
the Péclet number P tends to zero, the vorticity equation and the energy equation are linear
differential equations providing analytical solutions. We find

                                                          

                                                                                              
(7)

where a0, a1, a2, a3, a4 and a5 are the constants of integration given by
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In addition, negative values of λ are related to some gases where viscosity increases as
function of temperature. Positive values of λ correspond to most liquids whose viscosity
decreases with temperature. When λ and P are not close to zero, the differential equations are
nonlinear and require a numerical integration to be solved.

By considering the expressions of eqns (1), we derive the components of the velocity field as

                                                  v = −(1−δ)(1+δ2+2δx)−1/2f (x)

                                                            w = (1−δ)zf (1)(x)                                                       (8)

Considering the momentum conservation, the next characteristics to determine are the
normal pressure gradient and the axial pressure gradient per unit length which are given
respectively by the following formulas:

                                   

 (9)

For a given Reynolds number in accordance with the creeping flow, the axial pressure
gradient per unit length is constant in the annular tube, since it is equivalent to the integral
of the left hand side of the similarity vorticity equation. The axial pressure gradient per unit
length is usually constant in space when the flow occurs with variable viscosity as in a
previous study [8].

4. NUMERICAL STRATEGY
To start, we transform the boundary value problem (6) into an initial value one at point 
x = −1. Since only three conditions are provided at point x = −1, such that f (−1) = 1, f (1) (−1) = 0,
θ (−1) = 0, then, to well formulate the initial value problem, it is mandatory to add three
additional arbitrary conditions ( f (2) (−1) = α1, f (3) (−1) = α2, θ (1)(−1) = α3). To solve the initial
value problem applying the fourth-order Runge-Kutta algorithm, we rewrite the ordinary eqns
(6) as a system of six first-order coupled differential equations by setting: f1 = f, f2 =f (1),
f3 = f (2), f4 = f (3), θ1 = θ, θ2 = θ (1). Hence, the six first-order coupled differential equations
and the initial conditions are presented as follows:
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For any arbitrary triplet (α1, α2, α3), and by means of the fourth-order Runge-Kutta
algorithm, the values of functions f, θ and those of their derivatives are calculated. Thus, the
three boundary conditions at the endpoint x = 1, f1(1,α1, α2, α3) = f (1, α1, α2, α3); f2 (1, α1,
α2, α3) = f (1) (1 α1, α2, α3); θ1(1,α1, α2, α3) = θ (1, α1, α2, α3) are also calculated. More
precisely, this means that the solution of the problem depends on α1, α2 and α3.

The best triplet (α1*, α2*, α3*) is the one for which the boundary conditions of the
problem at the endpoint x = 1, f (1, α1, α2, α3) = −(1+δ) (1−δ)−1, f (1) (1,α1, α2, α3) = 0, 
θ (1, α1, α2, α3) = (1−δ)−1 are satisfied. This means that the determination of α1*, α2* and
α3* is an optimization type problem. In other words, in seeking the required values of the
three guesses, we minimize the following function

                             

                                                                                              (11)

For computing the zeros α1*, α2*, α3* of function F, we apply an algorithm based on the
Newton’s generalized technique which enables to update the initial guesses as follows:

                                            (12)

where n denotes the iteration index and [J ]–1 is the inverted Jacobian matrix. The Jacobian
itself is given by:

                                            

(13)

The quantities F1, F2 and F3 are defined as follows:
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differential equations obtained by taking the derivative of the set of eqns (10) with respect to
αj, j =1, 2, 3, knowing that:

                                                                                     

                                                                                

(16)

In this work, the solutions of the problem are interpreted in terms of viscosity, velocity
components, temperature, thermal gradients and pressure gradient.

5. RESULTS AND DISCUSSION
The fluid should have in all circumstances a positive dynamic viscosity. For this reason, the
valid values of the sensitivity of viscosity to thermal variations are such as λ < 1. The data
from the numerical integration reveal that the results are similar with any value of the
geometric parameter in its valid interval 0 < d < 1. In this investigation, the calculations are
made for d = 0.3. The flow is fully influenced by the Péclet number and the sensitivity of
viscosity to thermal variations, instead of the Reynolds number. This is in accordance with
the creeping flows which occur with small or very moderate velocities, this leads to the
following interval for the Péclet number 0 < P < 20. Away from the above precisions about
λ, δ and P, our numerical scheme looses its efficiency. On the other hand, the results are all
the more accurate as the values of the control parameters are taken in their respective valid
intervals.

5.1. VISCOSITY
Important variations of viscosity are only observed in the neighborhood of the hot wall
according to Fig. 2(a) because at fixed conductivity, the viscosity is very sensitive to high
temperature. This viscosity decreases with the sensitivity of viscosity to thermal variations
near the hot wall, but under different values of the parameter λ, it tends to be constant in a
large area, from the cold wall to the center of the flow field. For a fixed negative sensitivity
of viscosity to thermal variations, the solution branches of viscosity corresponding to
different conductivities tend to a same constant curve in the above described area as shown
in Fig. 2(b). But with the low values of the Péclet number, the temperature-dependent
viscosity tends to undergo the behavior related to that of the analytical solution of
temperature found in Section 3 by referring to the dotted curve of Fig. 2(b) plotted for 
P = 0.2. Thus, the curves presented in Fig. 2(b) show that the viscosity decreases with the
Péclet number.

When the parameter λ takes a positive fixed value, a large area of inflection appears
through the solution branches computed under different values of the Péclet number as
presented in Fig. 2(c). In this figure, the viscosity decreases near the both walls but is almost
constant in a large area away from the walls in any branch of solution for P > 0.2. A very
rapid decrease is observed in the neighborhood of the hot wall since the viscosity is revealed
very sensitive to high temperature. The temperature-dependent viscosity undergoes different
behaviors as function of the Péclet number due to the sign of the sensitivity of viscosity to
thermal variations because it diminishes with the Péclet number when the parameter λ is
negative according to Fig. 2(b), but it increases with the Péclet number when the parameter
λ is positive by referring to Fig. 2(c). The dotted curve of Fig. 2(c) computed for P = 0.2
highlights the fact that the inflection disappears with the decrease of the Péclet numbers.
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5.2. AXIAL AND NORMAL VELOCITY PROFILES
Almost all values of the axial velocity per unit length are negative as shown in Fig. 3. This
involves the dominance of flow reversal in the annular tube which manifests itself as a
parabolic behavior through the axial velocity. Comparing to previous studies where inertial
terms are not neglected [15, 21, 25], it follows that the high fluid viscosity in the present
work is favorable to flow reversal. However, there are some zones situated at the vicinity of
the hot wall where the axial velocity per unit length exceeds it value at walls. This is most
noticeable for λ = −11.3 and λ = −8.7 at a fixed Péclet number P = 8.1 in Fig. 3(a) and for
P = 7.8, P = 9.8 and P = 12.5 at a fixed negative sensitivity of viscosity to thermal variations
λ = −10.7 in Fig. 3(b). This noticed scenario of the axial velocity exceeding its value at walls
is due to the presence of collision zones in the annulus due to the simultaneous existence of
flow reversal and suction which causes the axial velocity to overflow in the neighborhood of
the hot wall. Those collision zones have been observed in other studies [28, 29]. For a fixed
positive value of the parameter λ the flow is totally reversed under different conductivities
according to Fig. 3(c). In this latter figure, the axial velocity profiles tend to the same
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Figure 2: Temperature-dependent viscosity: (a) at fixed conductivity under different
values of the sensitivity of viscosity to thermal variations, (b) at fixed negative
sensitivity of viscosity to thermal variations under different conductivities (c) at fixed
positive sensitivity of viscosity to thermal variations under different conductivities



constant curve because flow reversal is not sensitive to the difference of conductivities at a
fixed positive sensitivity of viscosity to thermal variations.

The axial velocity per unit length as plotted in Fig. 3(a) presents two areas of different
behaviors inside the annular tube. Indeed, it increases with the parameter λ in the left hand
side of the center of the flow region, but decreases in the right hand side. That is because the
walls of the annular tube are kept at different temperatures. The same scenario is observed
with the Péclet number P at fixed negative sensitivity of viscosity to thermal variations in
Fig. 3(b).

The normal velocity overflows near the hot wall as shown in Figs. 4(a) and 4(b) on the
same solution branches which present the minimum values of the axial velocity
corresponding to the dominance of flow reversal. In fact, it seems that the mass withdrawal
phenomenon which occurs at walls is accompanied by flow reversal scenario in order to
satisfy mass conservation, such that a fluid particle which leaves the annulus for suction
motion is attempted to be replaced with another particle which occupies the empty space thus
created. This particular behavior of the flow is envisaged due to the high viscosity of the
fluid. The normal velocity as furnished in Fig. 4(a) decreases with the sensitivity of viscosity
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to thermal variations at a fixed Péclet number. Its behavior is similar under different Péclet
numbers at a fixed negative parameter λ as illustrated in Fig. 4(b).

The normal velocity profiles under different conductivities at a fixed positive sensitivity
of viscosity to thermal variations tend to a same constant curve in Fig. 4(c). This behavior
holds because at a fixed positive parameter λ the normal velocity is not very sensitive to the
changes happening with respect to the conductivity.

5.3 TEMPERATURE
The temperature distribution at a fixed Péclet number furnished in Fig. 5(a) presents a large
area of inflection which disappears with the decrease of the sensitivity of viscosity to
thermal variations. This area of inflection is due to the fact that, there is a rapid increase of
temperature only at the vicinity of the walls, but not in the rest of the annulus. Thus, 
Fig. 5(a) shows that the temperature increases with the sensitivity of viscosity to thermal
variations, but with the decrease of the parameter λ it tends to zero in a large zone except
in the neighborhood of the hot wall. The inflection disappears in Fig. 5(b) at a fixed
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negative value of the parameter λ under different conductivities. At this level, the rapid
growth of temperature is only observed near the hot wall for moderate Péclet numbers. In
Fig. 5(b) the temperature decreases with the Péclet number and tends again to zero in a large
region as a same constant curve through the annulus except at the vicinity of the hot wall.
For the low Péclet number P = 0.2, the curve tends to the zero-order analytical solution
found in Section 3.

The described inflection appears again in the case of a fixed positive parameter λ for different
Péclet numbers as shown in Fig. 5(c). But this inflection disappears with the decrease of the
Péclet number. The curves plotted in Figs. 5(b) and 5(c) show that the temperature decreases
with the Péclet number. The role of the inflection through the temperature distribution as
illustrated in Figs. 5(a) and 5(c) is to cancel the growth of temperature around the middle of the
flow region. In Fig. 5, the temperature is always constant around the middle of the flow region
in each branch of solution, because in many circumstances, suction is favorable to thermal
variations at the vicinity of the walls and prevents the variations of temperature around the center
of the flow region.
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5.4. THERMAL GRADIENTS
Since the variations of temperature are stopped in a large area around the middle of the flow
domain, thermal gradients in that area are canceled, except the case of low Péclet numbers
as shown in Fig. 6. These thermal gradients tend to zero and are represented as a same
constant curve from the cold wall to the zone around the center of the domain containing the
fluid in the case of a fixed negative sensitivity of viscosity to thermal variations by referring
to Fig. 6(b). It follows that, when the parameter λ takes negative values, thermal gradients
are not very sensitive to the changes happening with respect to different moderate Péclet
numbers away from the hot wall. Suction causes rapid variations of thermal gradients near
the both walls as shown in Figs. 6(a) and 6(c). Thus, the maxima of thermal gradients are
located at the walls. The increase of the parameter λ is favorable to thermal gradients near
the cold wall, but is adverse to thermal gradients at the vicinity of the hot wall according to
Fig. 6(a). More precisely, a branch of solution with the maximum thermal gradient at the cold
wall is the one with the minimum thermal gradient at the hot wall. This highlights the
antagonistic behavior between the sensitivity of viscosity to thermal variations and thermal
gradients near the walls for the case of fixed conductivity.
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In light of Fig. 6(a), rapid decreases are observed near the cold wall while rapid increases
take place in the neighborhood of the hot wall and the curves are indistinguishable under
different values of the parameter λ around the middle of the flow region. That behavior
which is due to the inflection occurring in the temperature distribution causes the computed
curves of thermal gradients in Fig. 6(a) to present a parabolic structure.

For the case of a fixed negative sensitivity of viscosity to thermal variations, as the effects
of different moderate Péclet numbers are only distinguishable near the hot wall as illustrated
in Fig. 6(b), one can understand that, thermal gradients increase with the Péclet number near
the hot wall. The same behavior is updated in Fig. 6(c) for the case of a fixed positive
parameter λ. However, at the cold wall, Fig. 6(c) shows that, those thermal gradients
decrease with the Péclet number. In other words, the effects of negative and positive
parameter λ on thermal gradients are similar at the hot wall as the Péclet number increases.
In all cases, the minima of thermal gradients are located at the center of the flow region while
the maxima are situated at the walls.

5.5. PRESSURE GRADIENTS
A fixed value of the Reynolds number is required in order to present the results about
pressure gradients. In accordance with the creeping flow, the results are achieved for R = 1.
The attention is focused on the normal pressure gradient since the axial pressure gradient per
unit length is constant at a given Reynolds number.

The normal pressure gradient exhibited in Fig. 7(a) at a fixed conductivity and for various
sensitivities of viscosity to thermal variations shows the great changes near the hot wall,
because the normal pressure is very sensitive to high temperature. Noticeable changes are
also observed with respect to the sign of the parameter λ since different behaviors take place
with negative and positive values of the sensitivity of viscosity to thermal variations. Indeed,
function p(1)(x) plotted in Fig. 7(a) tends to a same constant curve from the cold wall to the
neighborhood of the hot wall for λ = −11.3, λ = −8.7, λ = −5.2 and λ = −2.4. However, for
λ = +0.1 and λ = + 0.88 the above described behavior disappears such that the branch of
solution corresponding to λ = +0.1 presents a constant line from the cold wall to the hot wall.
When λ = + 0.88 the curve presents two concavities which highlight the presence of a large
area of inflection.

According to Fig. 7(b), moderate Péclet numbers cancel the normal pressure gradients
away from the hot wall at a fixed negative sensitivity of viscosity to thermal variations.
Significant variations are only observed in the whole annulus for P = 0.2. In other words,
away from the hot wall, the normal pressure gradient is not sensitive to the changes
happening with moderate Péclet numbers as it tends to zero as a same constant curve under
different conductivities.

At a fixed positive sensitivity of viscosity to thermal variations, the normal pressure
gradient decreases with the Péclet number as shown in Fig. 7(c). At this stage, the assumption
that the inflection tends to occur in Fig. 7(a) for positive parameters λ is confirmed in Fig.
7(c) under various moderate values of the Péclet number. In fact, function p(1)(x) increases
rapidly near the two walls, but is constant away from the walls in each branch of solution
computed for P = 7.8, P = 9.8, P = 12.5 and P = 15.2. On the other hand, in Fig. 7(c), function
p(1)(x) is always negative. This behavior agrees with the dominance of the reverse flow
described in Fig. 3(c) with the same values of parameters. Hence, the normal pressure
gradient is negative in many circumstances due to the dominance of flow reversal on suction
through the annulus.
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6. CONCLUSION
In seeking the similarity solutions for a viscous flow through a porous annulus, the geometric
parameter δ is introduced considering the radii of the two coaxial cylinders. The sensitivity of
viscosity to thermal variations λ and the Péclet number P govern the analysis of numerical results.

The zero-order analytical solution is produced when the sensitivity of viscosity to thermal
variations and the Péclet number tend to zero. When these parameters are not close to zero,
the problem is nonlinear and a numerical integration applying the shooting technique
combined with the rapidly converging fourth-order Runge-Kutta algorithm is used to solve
the differential equations. The results from the numerical integration enable to confirm that
when λ is negative, the temperature-dependent viscosity increases with temperature, but it
decreases for positive values of λ. The axial velocity per unit length reveals the dominance
of the reverse flow as it presents a parabolic behavior under different values of control
parameters. Due to certain values of control parameters, the temperature evolution presents
a large area of inflection inside the annulus because suction causes important variations of
temperature at the vicinity of the walls while there are not enough variations away from the
walls. Thus, the maxima of thermal gradients are located at the walls. The dominance of flow
reversal takes place because the normal pressure gradient is in many circumstances negative.
The results about the normal pressure gradient agree with those of velocity components.
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