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ABSTRACT

In this paper, evolution of both free surface elevation and celerity of solitary

wave interacting with submerged breakwater is numerically investigated by

solving one-dimensional extended Boussinesq equations derived by

Madsen and Sorensen. Spatial discretization is done by Galerkin finite

element method (FEM) and for time integration, predictor-corrector

method of Adams-Bashforth-Moulton is used. Propagation of solitary

waves has been simulated over four different seabed slopes and

computed results, compared against published work of Grilli et al. [17],

indicate favorable agreement. Furthermore, a solitary wave with two

different amplitudes is propagated over trapezoidal breakwater and

evolution of free surface elevation is studied and validated. Finally, effects of

side slopes of trapezoidal breakwater on wave characteristics has been

investigated for 6 different slopes. It is clearly indicated that damping of the

free surface elevation and celerity of the wave are strongly affected by the

steepness of the breakwaters.

Keywords: Madsen and Sorensen Extended Boussinesq equations,
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1. INTRODUCTION
In most of the engineering problems, mathematical models cannot be solved analytically and
require a numerical solution. With an increase in computational technologies and because of
the advantages of numerical methods over analytical solutions, many numerical models and
software programs have been developed for various engineering practices. This is in addition
to the fact that, more realistic models of greater complexity, can be investigated using
numerical techniques. This makes it possible to predict the course of an event before it
actually occurs, or to study various aspects of an event mathematically without actually
running expensive and time-consuming experiments.

Simulation of solitary waves using different type of water equations has become the
object of many industrial and scientific projects [1, 2]. Numerical and experimental works
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related to propagation of solitary waves mainly consist of transformation of a solitary wave
over variable seabed topography and sloping beaches or propagating over a shelf, obstacles,
barriers and submerged dikes. As an example, Santfo et al [3] investigated motion of solitary
waves over triangular shapes in the context of shallow water wave approximations.
Cooker et al [4] studied propagation of solitary waves over submerged semicircular
cylinders for different cylinder size and wave heights. Based on the latter, Forbesl et al [5]
investigated free surface flow over semicircular obstructions. Similar to the investigation
of Huang and Dong [6] of the interaction of a solitary wave and a submerged dike, Ohava 
et al [7] modeled propagation of nonlinear waves over submerged dikes. Huang and Dong [8]
have studied vortex generation and wave deformation. Experimental propagation of solitary
waves over a rectangular dike is carried out by Lin et al [9].

In recent years, there has been much attention given to different types of Boussinesq
equations for simulations of free surface problems due to their simplicity and reduced
computational time which is achieved by integrating equations over the depth and
eliminating one dimension in computational domain. Therefore, Boussinesq type equations
would be an efficient alternative to other types of water equations such as incompressible
Navier-Stokes equations. Boussinesq equations are capable of accurately simulating the
water surface evolution due to the presence of different phenomena including shoaling,
diffraction, refraction, and reflection in marine environment.

There have been many attempts to investigate Boussinesq type equations. For example,
Ghadimi et al [10] by using extended Boussinesq equations of Beji and Nadaoka simulated
transformation of periodic wave over sloping beaches. Based on these equations, Liu et al [11]
also studied run up of solitary wave in a cylinder group. In other works Ghadimi et al [12, 13]
studied solitary wave transmission and regular wave propagation over submerged breakwater
using Madsen and Sorensen extended Boussinesq equations. Also, Lin and Man [14] using
Nwogu’s extended Boussinesq equations, modeled sloshing in a closed tank.

Among previous works, there have been extensive efforts in simulating propagation of
water waves over submerged obstacles implementing different types of water equation.
However, studying not only free surface evolution but also celerity of solitary waves over
trapezoidal breakwater in addition to the effect of side slopes of breakwater on these
important characteristics using Boussinesq equations is rarely investigated. Therefore, the
aim of the present work is to conduct this numerical investigation using Boussinesq
equations derived by Madsen and Sorensen. Quality of the numerical approach is verified by
applying the numerical model to a problem for which published numerical solution is known.

2. MATHEMATICAL FORMULATION
Boussinesq equations of Madsen and Sorensen [15] consist of continuity and momentum
equations as presented in

                                                                                                                          
(1)

                          

(2)

Equations (1) and (2) are related to continuity and momentum equations, respectively,
where h(x) is still water depth, g is gravity acceleration, d is defined as d = h + S, S being
the water surface level. In this equation, Q is depth-integrated velocity component. Subscript
x denotes partial differentiation with respect to space. B is a dispersion coefficient which,
based on the work by Madsen and Sorensen [15], a value 1/15 is selected.
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3. NUMERICAL METHOD
3.1 FINITE ELEMENT MODELING OF GALERKIN
As stated earlier, spatial discretization of equations is accomplised by Galerkin finite element
method. Solution of a complicated problem can be obtained by dividing the region of interest
into small regions and approximating the solution over each sub-region by a simple function.
Approximation of dependent variables by finite element method is presented in equation 3.

                                                                                                                          (3)

where fi is the nodal value of dependent variables and Ni is the standard basis function.

3.2 SOLUTION FORMULATION
By implementing linear Galerkin method, final forms of the equations are presented in
equations 4 to 6.

                                                                                                                          
(4)

                          

(5)

                                                                                                            
(6)

A detailed description of numerical method dedicated to resolution of an auxiliary
equation for modeling Madsen and Sorensen’s Boussinesq equations, has been presented in
a previous work by the present authors [13].

3.3 SPATIAL DISCRETIZATION
By applying Galerkin method, the element matrix for continuity, momentum and auxiliary
equations becomes

                                                                                                                 (7)

        

(8)

                                                                                                                       
(9)

where

                                                                                                            
(10)

                                                                                                           
(11)

                                                                                                      
(12)

                                                                                           
(13)

                                                                                                 
(14)

Here, Gq denotes boundary of the element with unit normal n. For Dirichlet boundary
conditions, the boundary integrals are eliminated.
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3.4 TIME DISCRETIZATION
To discretize the derivatives in time, the predictor-corrector method of Adams-Bashforth-
Moulton is implemented. The assembled continuity and momentum global equations are
written in matrix form in equation 15.

                                                                [M ]{ f
.
} = E                                                         (15)

At the predictor step, the amount of dependent variables can be obtained using Eq.16.

                                              (16)

Subsequently, fourth-order Adams–Moulton scheme is used to calculate final values of the
variables at the corrector step, which is calculated from the predictor step.

                                  (17)

3.5 WAVE ABSORBING BOUNDARY CONDITIONS
There are several methods for dealing with unbounded domains in numerical simulations.
Boundary conditions are a required component of the mathematical model. Different
boundary conditions may cause quite different simulation results. Improper sets of boundary
conditions may introduce nonphysical influences on the simulation system, while a proper
set of boundary conditions can avoid that. Therefore, arranging the boundary conditions for
different problems becomes very important. Here, a wave absorbing boundary is needed to
ensure that no unwanted reflection occurs at boundaries of the solution domain. Wave
damping can be achieved using several numerical methods which allow waves to exit the
solution domain without reflection. To achieve this goal, damping method of sponge layers
proposed by Larsen and Dancy [16] is adopted. In this method, surface elevation and fluxes
are divided by a coefficient m(x), after each time step. m(x) takes the following form:

                                                        (18)

Here, d is the distance between boundary and the sponge layer, ds is often equal to one or two
wave lengths, Dd is size of the elements, and a is a specified constant. In the present work,
a = 4 is the prescribed value.

4. NUMERICAL SIMULATION
4.1 SOLITARY WAVE SHOALING ON PLANE BEACHES
In this section, shoaling of solitary waves on four different slopes (S = 1:8, 1:15, 1:35 and
1:100) using Madsen and Sorensen’s equations is considered. Initial surface profile and
velocity can be obtained using equations 19–21.

                                                                                      

(19)

                                                                              

(20)

                                                                                                                    
(21)

Here, c is wave celerity and α is wave amplitude.
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The obtained results in various time steps are compared with the results of Grilli et al. [17].
Computational domain and its parameters are illustrated in Figure 1.
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Figure 1: The computational domain

Constant water depth h0 is considered to be 0.44 m. To make comparison easier, computed
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Figure 2: (Continued)

where the slope starts. Here, coefficient d is defined as .

Figure 2 shows the comparison of obtained results for nonbreaking solitary wave with the
results of Grilli et al [17] for four different seabed slopes at three different wave heights (d).
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Figure 2: Comparison of obtained wave profiles by the present work against the
work by Grilli et al. [17] for slopes of 1:8, 1:15, 1:35 and 1:100 shown in plots a, b, c
and d, respectively. Wave heights are =0.2 in a, c, and d and = 0.3 in b



Based on the computed results of propagation of the solitary wave, one can see the
increase of nonlinearity and asymmetry of the solitary wave due to its shoaling. Although
slight under prediction of free surface profile is observed, the reported results seem to have
good agreement with the work of Grilli et al for all slopes in different time steps.

4.2 PROPAGATION OF SOLITARY WAVE OVER A SUBMERGED
BREAKWATER
In this section, propagation of solitary waves over submerged trapezoidal breakwaters is
considered using one dimensional Boussinesq equations derived by Madsen and Sorensen.

Free surface elevations are compared with those by Grilli et al. [18] which are based on
fully nonlinear potential flow equations. Computational domain is illustrated in Figure 3.
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Figure 3: Computational domain

For this particular test case, numerical domain is 40.0 m long and is discretized into 400
elements with a mesh size of Δx = 0.1m. With respect to the work of Grilli et al. [18], the
water depth (h) is 1.0m and two incident waves of 0.06m and 0.1m heights are considered.
The time step is fixed and equal to 0.005s. Slope of both sides of the breakwater (with 0.8m
height), is 1:2. Slopes are symmetrical toward 0 and the corners of left slope are at x’1= –2.0m
and x’2 = – 0.4m. Also, sponge layer is considered at the right side of the computational 

domain. Results of computations are presented at at which time the wave crest 

is located at .

Figures 4 and 5 show the numerical results of propagation of solitary waves over a submerged
trapezoidal breakwater using Madsen and Sorensen Boussinesq equations and the work by Grilli
et al [18] for different time steps. By comparing the obtained results, no major differences can be
observed in evolution of free surface profile and all figures show high agreement of the results.

In Figures 4 and 5, first curve shows the wave profile before reaching the breakwater in a
constant depth, which maintains its initial shape. The second curve is the crest of solitary wave
which is starts to increase due to shoaling effect and reaches the maximum height in the third curve.
Over the breakwater, crest exchange takes place and wave profile decomposes into two waves (as
shown by the fourth curve). Eventually, in the last three curves, the transmitted wave continues its
propagation down the beach and the reflected wave propagates backward. At the right side of the
computational domain, the transmitted waves are well damped by the sponge layer.
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Figure 4: Computed results for solitary wave transmission over submerged
trapezoidal breakwater at x’ = 0.0, with A =0.06

Figure 5: Computed results for solitary wave transmition over submerged
trapezoidal breakwater at x’ = 0.0, with A = 0.1 continued over
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4.3 EFFECT OF BREAKWATER’S SIDE SLOPE ON DEFORMATION OF
FREE SURFACE ELEVATION AND WAVE CELERITY
In this test case, effect of breakwater’s side slope on deformation of the free surface elevation
is investigated. All wave and computational domain characteristics are set as in test case
(4.2). The analysed slopes of the four different breakwaters are S = 1:1, 1:2, 1:4, 1:8 and
1:16. The geometry of these breakwaters are displayed in Figure 6.

An initial wave amplitude of A = 0.06 has been chosen. For all cases, the maximum wave
crest heights (h) and its position (x) in different time steps, shown in Figures 4 and 5, have
been computed and presented in Table 1.

As seen in Table 1, in each time probe, not only the elevation but also the position of the
maximum wave crest is affected by side slope of the breakwater. Therefore, one can easily
deduce that celerity of the wave crest is changed with respect to the breakwater slope. In
Table 2, the average wave crest celerity is calculated and presented for each time interval.

Figure 5: continued

Figure 6: The geometry of the breakwaters with different slopes



For a better observation of the effect of breakwater slope on the wave, wave crest
elevation is illustrated versus time in Figure 7.

It is easily observed from Figure 7 that, up to time probe C, where the crest of wave
reaches the breakwater top, the effects of different slopes on the wave are nearly similar.
However, as wave crest passes above the breakwater, elevation of the wave crest is clearly
better damped by the breakwaters with steeper slopes. Therefore, best option for cancelling
solitary waves elevation among the tested breakwaters is the steepest one (slope 1:1). The
celerity of the crest of the waves can also be ploted against time to show the phase changes
caused by different breakwater slopes. This plot is shown in Figure 8.

As observed, there is almost no celerity differences between slopes before the crest
reaches the top of breakwater. When crest passes the breakwater, celerity of the wave is
strongly affected by the slope of the breakwater, and as clearly observed in Figure 8, the
steeper breakwater gives higher celerity to the wave crest, causing it to pass more rapidly
over the breakwater. One can deduce the fact that amplitude of the wave is damped by a
conversion of energy which results in a higher celerity.
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Table 2: Average wave crest celerity over different time intervals for various side slopes

Table 1: Maximum crest elevation and position for various side slopes at different
probe times

t (s) x (m)  (m) x (m)  (m) x (m)  (m) x (m)  (m) x (m)  (m)

A –0.75 –6.90 0.061 –6.90 0.061 –6.80 0.062 –6.80 0.066 –7.30 0.068

B 1.42 –4.50 0.064 –4.70 0.064 –4.40 0.067 –4.60 0.070 –5.40 0.071

C 5.07 –1.30 0.076 –1.30 0.077 –1.40 0.078 –1.70 0.077 –2.50 0.076

D 7.56 –0.90 0.052 –1.00 0.055 –0.80 0.060 –0.80 0.070 –1.00 0.077

E 9.54 3.10 0.056 2.80 0.056 2.50 0.056 1.70 0.062 0.70 0.070

F 12.99 6.60 0.056 6.30 0.057 5.50 0.058 4.60 0.062 3.30 0.071

G 16.17 14.00 0.056 9.30 0.056 13.00 0.058 11.40 0.063 5.50 0.072

Pr
ob

e 
T

im
es

S lopes

1:1 1:2 1:161:81:4

1:1 1:2 1:4 1:8 1:16

A-B 1.11 1.01 1.11 1.01 0.88

B-C 0.88 0.93 0.82 0.79 0.79

C-D 0.16 0.12 0.24 0.36 0.60

D-E 2.02 1.92 1.67 1.26 0.86

E-F 1.01 1.01 0.87 0.84 0.75

F-G 2.33 0.94 2.36 2.14 0.69

Pr
ob

e T
im

es

S lopes



4. CONCLUSIONS
In this study, numerical simulation of nonlinear and dispersive Boussinesq type equations of
Madsen and Sorensen was considered. By using linear Galerkin finite element method,
spatial domain has been discretized by subdivision of the continuum into non-overlapping
elements. Time integration has been performed using Adams–Bashforth–Moulton predictor–
corrector method. In order to absorb the outgoing waves, a sponge layer is considered at the
right side of all computational domains. In the first test case, propagation of solitary waves
over four different seabed slopes has been investigated and results have been compared with
published results presented by Grilli et al. It was shown that the obtained results have good
agreement for all slopes in different time steps compared to the mentioned numerical work.
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Figure 8: Wave crest celerity variation for different side slopes

Figure 7: Comparaison of crest elevation at different time probes for different
side slopes



In another test case, a solitary wave with two different amplitudes is propagated over
trapezoidal breakwater and evolution of free surface elevation is studied and validated.
Finally, effects of breakwater’s side slope on wave characteristics has been investigated for
6 different slopes. It has been demonstrated that steeper breakwater causes a better damping
on the elevation of the wave. It is further shown that wave celerity is strongly affected by the
slope of the breakwater and steeper breakwaters cause more increase in celerity of the wave.
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