A Multilevel Investigation into Tip Wake of Wind Turbine Using Sirovich-type Proper Orthogonal Decomposition
Abstract
It is still challenging to study the multi-level flow of complex rotating tip wake and give a reasonable physical explanation. Based on the multi-relaxation time lattice Boltzmann method, a high-fidelity numerical model is established to provide a valid and rational data base. At the same time, a methodology is presented to resolve the complex rotating flow wake based on discrete Sirovich-type proper orthogonal decomposition. Moreover, a critical sub-region with a discrete strategy in the methodology is determined to realize data homology and reduce calculation. The results indicate that the 1st-order flow modes have the macroscopic average flow characteristics of the blade tip wake, corresponding to the zero-frequency peak. The 2nd-order and 3rd-order flow modes are the energy mapping of the tip wake, indicating a remarkable circumferential symmetry. As the order increases, the flow modes first projected by the blade tip wake, followed by the flow modes projected by the attached vortex or X-axial velocity, and then the flow modes projected by deep fusion of the tip wake and the attached vortex or X-axial velocity. The deep fusion reflects the quasi-resonance mechanism of the local wake flow structures of the blade tip vortices, which also corresponds to the energy content and time-frequency characteristics respectively.
References
Singh, A. K., Jyoti, B., Kumar, S., & Lenka, S. K., “Assessment of Global Sustainable Development, Environmental Sustainability, Economic Development and Social Development Index in Selected Economies”, International Journal of Sustainable Development and Planning, 2021, 16(1): p. 123-138. DOI:10.18280/ijsdp.160113
Sanderse, B., Van der Pijl, S. P., & Koren, B., “Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics”, Wind energy, 2011, 14(7): p. 799-819. DOI:10.1002/we.458
Bouhelal, A., Smaili, A., Guerri, O., & Masson, C., “Numerical Investigations on the Fluid Behavior in the Near Wake of an Experimental Wind Turbine Model in the Presence of the Nacelle”, Journal of Applied Fluid Mechanics, 2022, 16(1): p. 21-33. DOI:10.47176/jafm.16.01.1382
He, X., Geng, H., Mu, G., “Modeling of Wind Turbine Generators for Power System Stability Studies: A Review”, Renewable and Sustainable Energy Reviews, 2021, 143(1): p. 110865. DOI:10.1016/j.rser.2021.110865
Maeda, T., Kamada, Y., Murata, J., Yonekura, S., Ito, T., Okawa, A., & Kogaki, T., “Wind Tunnel Study on Wind and Turbulence Intensity Profiles in Wind Turbine Wake”, Journal of Thermal Science, 2011, 20(2): p. 127-132. DOI: 10.1007/s11630-011-0446-9
Talavera, M., & Shu, F., “Experimental Study of Turbulence Intensity Influence on Wind Turbine Performance and Wake Recovery in a Low-speed Wind Tunnel”, Renewable Energy, 2017, 109(1): p. 363-371. DOI:10.1016/j.renene.2017.03.034
Han, Y., Wang, J., Sun, B., Dong, X., Li, X., “Experimental Study on Influence Mechanism of Turbulent Intensity on Velocity Recovery of Horizontal Axis Wind Turbine Wake (In Chinese)”, Acta Energiae Solaris Sinica, 2019, 40(3): p. 649-655. DOI: 10.19912/j.0254-0096.2019.03.008
Vahidi, D., & Porté-Agel, F., “A Physics-based Model for Wind Turbine Wake Expansion in the Atmospheric Boundary Layer”, Journal of Fluid Mechanics, 2022, 943(1): p. A49. DOI:10.1017/jfm.2022.443
Gui, X., Xue, H., Su, S., Hu, Z., & Xu, Y., “Study on Aerodynamic Performance of Mine Air Duct Horizontal Axis Wind Turbine based on Breeze Power Generation”, Energy Science & Engineering, 2022, 10(4): p. 1132-1152. DOI:10.1002/ese3.1081
Hassanpour, M., Azadani, L. N., “Aerodynamic Optimization of the Configuration of a Pair of Vertical Axis Wind Turbines”, Energy Conversion and Management, 2021, 238: p. 114069. DOI:10.1016/j.enconman.2021.114069
Koca, K., Genç, M. S., Bayır, E., Soğuksu, F., “Experimental Study of the Wind Turbine Airfoil with the Local Flexibility at Different Locations for More Energy Output”, Energy, 2022, 239(Part A): p. 121887. DOI:10.1016/j.energy.2021.121887
Su, R., Gao, Z., Chen, Y., Zhang, C., Wang, J., “Large-eddy Simulation of the Influence of Hairpin Vortex on Pressure Coefficient of an Operating Horizontal Axis Wind Turbine”, Energy Conversion and Management, 2022, 267: p. 115864. DOI:10.1016/j.enconman.2022.115864
Xu, B., Feng, J., Wang, T., Yuan, Y., Zhao, Z., “Application of a Turbulent Vortex Core Model in the Free Vortex Wake Scheme to Predict Wind Turbine Aerodynamics”, Journal of Renewable and Sustainable Energy, 2018, 10(2): p. 023303. DOI:10.1063/1.5020200
Xu, B., Liu, B., Feng, J., Lu, Z., “Influence of Vortex Core Size on Aerodynamic Calculation of Wind Turbine in Free Vortex Wake Method”, Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): p. 1530-1537. DOI:10.6052/0459-1879-18-440
Marten, D., Paschereit, C. O., Huang, X., Meinke, M., Schröder, W., Müller, J., “Oberleithner, K. Predicting Wind Turbine Wake Breakdown Using a Free Vortex Wake Code”, AIAA Journal, 2020, 58(11): p. 4672-4685. DOI:10.2514/1.J058308
Rezaeiha, A., Montazeri, H., Blocken B., “CFD Analysis of Dynamic Stall on Vertical Axis Wind Turbines Using Scale-Adaptive Simulation (SAS): Comparison against URANS and Hybrid RANS/LES”, Energy Conversion and Management, 2019, 196: p. 1282-1298. DOI:10.1016/j.enconman.2019.06.081
De Cillis, G., Cherubini, S., Semeraro, O., Leonardi, S., & De Palma, P., “POD‐based analysis of a wind turbine wake under the influence of tower and nacelle”, Wind Energy, 2021, 24(6): p. 609-633. https://doi.org/10.1002/we.2592
De Cillis, G., Cherubini, S., Semeraro, O., Leonardi, S., & De Palma, P., “Stability and optimal forcing analysis of a wind turbine wake: Comparison with POD”, Renewable Energy, 2022, 181: p. 765-785. https://doi.org/10.1016/j.renene.2021.09.025
Hamilton, N., Viggiano, B., Calaf, M., Tutkun, M., & Cal, R. B., “A generalized framework for reduced-order modeling of a wind turbine wake”, Wind Energy, 2018, 21(6): p. 373-390,. https://doi.org/10.1002/we.2167
Wood, D. H., & Hammam, M. M., “Optimal performance of actuator disc models for horizontal-axis turbines”, Frontiers in Energy Research, 2022, 10: p. 971177. https://doi.org/10.3389/fenrg.2022.971177
Versteeg, H. K., and Malalasekera, W., An Introduction to computational fluid dynamics: The finite volume method, second edition, 2007.
Kutz, J N., “Deep Learning in Fluid Dynamics”, Journal of Fluid Mechanics, 2017, 814: p. 1-4. DOI:10.1017/jfm.2016.803
Ling, J., Kurzawski, A., Templeton, J., “Reynolds Averaged Turbulence Modelling Using Deep Neural Networks with Embedded Invariance”, Journal of Fluid Mechanics, 2016, 807: p. 155-166. DOI:10.1017/jfm.2016.615
Sirovich, L., “Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures”, Quarterly of applied mathematics, 1987, 45(3): p. 561-571. DOI:10.1090/qam/910462
Sirovich, L., “Turbulence and the dynamics of coherent structures. I-Coherent structures. II-Symmetries and transformations”, III-Dynamics and scaling. Quarterly of Applied Mathematics, 1987, 45(3): p. 561-571.
Lucia, D. J., Beran, P. S., Silva, W. A., “Reduced-order Modeling: New Approaches for Computational Physics”, Progress in Aerospace Sciences, 2004, 40(1-2): p. 51-117. DOI:10.1016/j.paerosci.2003.12.001
Rahman, A., Redwan, D. A., Thohura, S., Kamrujjaman, M., Molla, M. M., “Natural Convection and Entropy Generation of Non-Newtonian Nanofluids with Different Angles of External Magnetic Field using GPU Accelerated MRT-LBM”, Case Studies in Thermal Engineering, 2022, 30: p. 101769. DOI:10.1016/j.csite.2022.101769
Bai, J., Hu, X., Tao, Y. H., Ji, W., “Investigation of Non-Newtonian Power-law Free Convection Affected by a Magnetic Field in an Inclined Quarter-circle Chamber Containing the Lozenge-shaped Obstacle via MRT-LBM of First and Second laws of Thermodynamics”, Engineering Analysis with Boundary Elements, 2022, 145: p. 335-351. DOI:10.1016/j.enganabound.2022.09.022
Chávez-Modena, M., Ferrer, E., Rubio, G., “Improving the Stability of Multiple-relaxation Lattice Boltzmann Methods with Central Moments”, Computers & Fluids, 2018, 172: p. 397-409. DOI:10.1016/j.compfluid.2018.03.084
Buffa, E., Jacob, J., Sagaut, P., “Lattice-Boltzmann-based Large-eddy Simulation of High-rise Building Aerodynamics with Inlet Turbulence Reconstruction”, Journal of Wind Engineering and Industrial Aerodynamics, 2021, 212: p. 104560. DOI:10.1016/j.jweia.2021.104560
Dai, S., Tang, D., Younis, B. A., “Extended Wall-adapting Local Eddy-viscosity Model for the Large-eddy Simulations of Multiscale Flows”, Physics of Fluids, 2022, 34(5): p. 055117. DOI:10.1063/5.0088656