Multiscale-Multiphysics Model for Optimization of Novel Ceramic MIEC Solid Oxide Fuel Cell Electrodes

Authors

  • Philip Marmet, Lorenz Holzer, Thomas Hocker, Holger Bausinger, Jan G. Grolig, Andreas Mai, Joseph M. Brader, Gernot K. Boiger

Abstract

To significantly improve on the unavoidable degradation of state-of-the-art Solid oxide fuel cell (SOFC) anodes like Ni-YSZ, we elaborate on fully ceramic composite electrodes, which are based on mixed ionic and electronic conductors (MIEC) like doped ceria and perovskite materials. Thereby, a Digital Materials Design (DMD) framework is used for the systematic and model-based optimization of MIEC SOFC-electrodes. In our DMD approach we combine experimental methods, stochastic microstructure modeling, virtual testing of 3D microstructures and a multiscale-multiphysics electrode model. The electrode model developed in this contribution captures all the relevant physico-chemical processes involved like the transport of charge carriers in the two MIEC solid phases, transport of the gas species in the pore-phase and the reaction kinetics. A special emphasize is laid to the appropriate description of the microstructure effects, applying the previously reported DMD-methodologies. This model-based performance prediction enables to explore a much larger design space than it would be possible with experimental methods only.

References

Sciazko A, Komatsu Y, Yokoi R, Shimura T, Shikazono N. Effects of mass fraction of La0.9Sr0.1Cr0.5Mn0.5O3-δ and Gd0.1Ce0.9O2-δ composite anodes for nickel free solid oxide fuel cells. J Eur Ceram Soc [Internet]. 2022;42(4):1556–67. Available from: https://doi.org/10.1016/j.jeurceramsoc.2021.11.039

Khan MS, Lee SB, Song RH, Lee JW, Lim TH, Park SJ. Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: A review. Ceram Int [Internet]. 2016;42(1):35–48. Available from: http://dx.doi.org/10.1016/j.ceramint.2015.09.006

Holzer L, Iwanschitz B, Hocker T, Münch B, Prestat M, Wiedenmann D, et al. Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres. J Power Sources [Internet]. 2011;196(3):1279–94. Available from: http://dx.doi.org/10.1016/j.jpowsour.2010.08.017

He H, Hill JM. Carbon deposition on Ni/YSZ composites exposed to humidified methane. Appl Catal A Gen. 2007;317(2):284–92.

Brus G, Nowak R, Szmyd JS, Komatsu Y, Kimijima S. An experimental and theoretical approach for the carbon deposition problem during steam reforming of model biogas. J Theor Appl Mech. 2015;53(2):273–84.

Yu F, Xiao J, Zhang Y, Cai W, Xie Y, Yang N, et al. New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation. Appl Energy [Internet]. 2019;256. Available from: https://doi.org/10.1016/j.apenergy.2019.113910

Matsuzaki Y, Yasuda I. Poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration. Solid State Ionics. 2000;132(3):261–9.

Fouquet D, Müller AC, Weber A, Ivers-Tiffée E. Kinetics of oxidation and reduction of Ni/YSZ cermets. Ionics (Kiel). 2003;9(1–2):103–8.

Shu L, Sunarso J, Hashim SS, Mao J, Zhou W, Liang F. Advanced perovskite anodes for solid oxide fuel cells: A review. Int J Hydrogen Energy [Internet]. 2019;44(59):31275–304. Available from: https://doi.org/10.1016/j.ijhydene.2019.09.220

Burnat D, Nasdaurk G, Holzer L, Kopecki M, Heel A. Lanthanum doped strontium titanate - ceria anodes: deconvolution of impedance spectra and relationship with composition and microstructure. J Power Sources [Internet]. 2018;385(February):62–75. Available from: https://doi.org/10.1016/j.jpowsour.2018.03.024

Price R, Cassidy M, Grolig JG, Mai A, Irvine JTS. Preparation and Testing of Metal/Ce 0.80 Gd 0.20 O 1.90 (Metal: Ni, Pd, Pt, Rh, Ru) Co-Impregnated La 0.20 Sr 0.25 Ca 0.45 TiO 3 Anode Microstructures for Solid Oxide Fuel Cells. J Electrochem Soc. 2019;166(4):F343–9.

Graves C, Martinez L, Sudireddy BR. High Performance Nano-Ceria Electrodes for Solid Oxide Cells. ECS Trans. 2016;72(7):183–92.

Nenning A, Holzmann M, Fleig J, Opitz AK. Excellent kinetics of single-phase Gd-doped ceria fuel electrodes in solid oxide cells. Mater Adv. 2021;2(16):5422–31.

Savaniu CD, Irvine JTS. La-doped SrTiO3 as anode material for IT-SOFC. Solid State Ionics. 2011;192(1):491–3.

Verbraeken MC, Iwanschitz B, Mai A, Irvine JTS. Evaluation of Ca Doped La 0.2 Sr 0.7 TiO 3 as an Alternative Material for Use in SOFC Anodes. J Electrochem Soc. 2012;159(11):F757–62.

Ramos T, Veltzé S, Sudireddy BR, Jørgensen PS, Theil Kuhn L, Holtappels P. Effect of Ru/CGO versus Ni/CGO co-infiltration on the performance and stability of STN-based SOFCs. Fuel Cells. 2014;14(6):1062–5.

Price R, Weissen U, Grolig JG, Cassidy M, Mai A, Irvine JTS. Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes: identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures. J Mater Chem A [Internet]. 2021;9(16):10404–18. Available from: http://dx.doi.org/10.1039/D1TA00416F

Futamura S, Muramoto A, Tachikawa Y, Matsuda J, Lyth SM, Shiratori Y, et al. SOFC anodes impregnated with noble metal catalyst nanoparticles for high fuel utilization. Int J Hydrogen Energy [Internet]. 2019;44(16):8502–18. Available from: https://doi.org/10.1016/j.ijhydene.2019.01.223

Marmet P. Digital Materials Design of Solid Oxide Fuel Cell Anodes [Internet]. University of Fribourg, Switzerland, URL: https://doi.org/10.21256/zhaw-28430; 2023. Available from: https://doi.org/10.21256/zhaw-28430

Marmet P, Holzer L, Hocker T, Muser V, Boiger GK, Fingerle M, et al. Stochastic microstructure modeling of SOC electrodes based on a pluri-Gaussian method. Energy Adv [Internet]. 2023;2(11):1942–67. Available from: https://doi.org/10.1039/D3YA00332A

Marmet P, Holzer L, Hocker T, Muser V, Boiger GK, Fingerle M, et al. Python app for stochastic microstructure modeling of SOC electrodes based on a pluri-Gaussian method. Zenodo [Internet]. 2023; Available from: https://doi.org/10.5281/zenodo.7744110

Marmet P, Holzer L, Hocker T, Boiger GK, Bausinger H, Mai A, et al. Standardized microstructure characterization of SOC electrodes as a key element for Digital Materials Design. Energy Adv. 2023;2(7):980–1013.

Marmet P, Holzer L, Hocker T, Boiger GK, Bausinger H, Mai A, et al. Characterization-app: Standardized microstructure characterization of SOC electrodes as a key element for Digital Materials Design [Internet]. Zenodo; 2023. Available from: https://doi.org/10.5281/zenodo.7741305

Krishna R, Wesselingh JA. The Maxwell-Stefan approach to mass transfer. Chem Eng Sci. 1997;52(6):861–911.

Liu S, Kong W, Lin Z. Three-dimensional modeling of planar solid oxide fuel cells and the rib design optimization. J Power Sources. 2009;194(2):854–63.

Bertei A, Nicolella C. Common inconsistencies in modeling gas transport in porous electrodes: The dusty-gas model and the Fick law. J Power Sources [Internet]. 2015;279:133–7. Available from: http://dx.doi.org/10.1016/j.jpowsour.2015.01.007

Kishimoto M, Lomberg M, Ruiz-Trejo E, Brandon NP. Numerical modeling of nickel-infiltrated gadolinium-doped ceria electrodes reconstructed with focused ion beam tomography. Electrochim Acta [Internet]. 2016;190:178–85. Available from: http://dx.doi.org/10.1016/j.electacta.2015.12.044

Marmet P, Holzer L, Grolig JG, Bausinger H, Mai A, Brader JM, et al. Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes. Phys Chem Chem Phys. 2021;23(40):23042–74.

Price R, Cassidy M, Schuler JA, Mai A, Irvine JTS. Development and Testing of Impregnated La 0.20 Sr 0.25 Ca 0.45 TiO 3 Anode Microstructures for Solid Oxide Fuel Cells. ECS Trans. 2017;78(1385).

Price R, Cassidy M, Schuler JA, Mai A, Irvine JTS. Screen Printed Porous La 0.20 Sr 0.25 Ca 0.45 TiO 3 Fuel Electrode Scaffold Microstructures: Optimisation of Interaction with Impregnated Catalysts for More Durable Performance. ECS Trans. 2015;68(1499).

Burnat D, Kontic R, Holzer L, Steiger P, Ferri D, Heel A. Smart material concept: Reversible microstructural self-regeneration for catalytic applications. J Mater Chem A. 2016;4(30):11939–48.

Holzer L, Marmet P, Fingerle M, Wiegmann A, Neumann M, Schmidt V. Tortuosity and microstructure effects in porous media: classical theories, empirical data and modern methods [Internet]. 1st ed. Springer Cham, ISBN: 978-3-031-30477-4; 2023. Available from: https://link.springer.com/book/10.1007/978-3-031-30477-4

GeoDict simulation software Release 2023 (Revision 61624), by Math2Market GmbH, Germany, DOI: 10.30423/release.geodict2023.

Kaleidosim Technologies AG. Kaleidosim-Cloud [Internet]. Zurich; 2022. Available from: https://kaleidosim.com

Dierickx S, Joos J, Weber A, Ivers-Tiffée E. Advanced impedance modelling of Ni/8YSZ cermet anodes. Electrochim Acta. 2018;265:736–50.

Monaco F, Effori E, Hubert M, Siebert E, Geneste G, Morel B, et al. Electrode kinetics of porous Ni-3YSZ cermet operated in fuel cell and electrolysis modes for solid oxide cell application. Electrochim Acta [Internet]. 2021;389(138765). Available from: https://doi.org/10.1016/j.electacta.2021.138765

COMSOL AB. COMSOL Multiphysics® V. 5.5 [Internet]. Stockholm, Sweden: COMSOL AB, Stockholm, Sweden; 2019. Available from: www.comsol.com

Fuller EN, Schettler PD, Giddings JC. A new method for prediction of binary gas-phase diffusion coefficients. Ind Eng Chem. 1966;58(5):18–27.

Becker J, Wieser C, Fell S, Steiner K. A multi-scale approach to material modeling of fuel cell diffusion media. Int J Heat Mass Transf. 2011;54(7–8):1360–8.

Zhou X, Yan N, Chuang KT, Luo J. Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv. 2014;4(1):118–31.

Steele BCH. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500. Solid State Ionics. 2000;129(1):95–110.

Todd B, Young JB. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling. J Power Sources. 2002;110(1):186–200.

Sciazko A, Miyahara K, Komatsu Y, Shimura T, Jiao Z, Shikazono N. Influence of Initial Powder Morphology on Polarization Characteristics of Nickel/Gadolinium-Doped-Ceria Solid Oxide Fuel Cells Electrode. J Electrochem Soc. 2019;166(2):F44–52.

Nakamura T, Yashiro K, Kaimai A, Otake T, Sato K, Kawada T, et al. Determination of the Reaction Zone in Gadolinia-Doped Ceria Anode for Solid Oxide Fuel Cell. J Electrochem Soc. 2008;155(12):B1244–50.

Published

2024-06-14

How to Cite

Marmet, P. . (2024). Multiscale-Multiphysics Model for Optimization of Novel Ceramic MIEC Solid Oxide Fuel Cell Electrodes. The International Journal of Multiphysics, 18(2s), 58 - 83. Retrieved from https://www.themultiphysicsjournal.com/index.php/ijm/article/view/953

Issue

Section

Articles

Most read articles by the same author(s)