A review of passive and active mixing systems in microfluidic devices
DOI:
https://doi.org/10.1260/175095407780130544Abstract
A review of mixing elements and devices for microscale fluidic devices is presented. The application, principles and characterisation of these devices is discussed, and the classifications based on these factors highlighted. A review of published works relating both experimental and simulation profiling of both passive and active mixing systems is presented. Each mixing principle upon which a design is based is discussed with regard to the fundamental physics that governs fluid behaviour. Passive systems covered include multi-lamination, split/recombination, chaotic advection, jet based, recirculation and droplet internal convection. Active systems covered include longitudinal and transverse pulsing, micro-stirrers, electro-kinetic methods, and acoustic/ultrasonic excitation. The review shows that the majority of devices have been designed within the past five years. Furthermore, at present, devices based on the multi-laminate method appear to outperform most other systems.
References
Hessel, V. & Löwe, H., Microchemical Engineering: Components, Plant Concepts User Acceptance - Part I, Chem. Eng. Technol., 2003a, 26, 13-24. https://doi.org/10.1002/ceat.200390060
Hessel, V. & Löwe, H., Microchemical Engineering: Components, Plant Concepts User Acceptance - Part II, Chem. Eng. Technol., 2003b, 26, 391-408. https://doi.org/10.1002/ceat.200390060
Hessel, V. & Löwe, H., Microchemical Engineering: Components, Plant Concepts User Acceptance - Part III, Chem. Eng. Technol., 2003c, 26, 531-544. https://doi.org/10.1002/ceat.200390079
Kestenbaum, H., de Oliveira, A.L., Schmidt, W., Schüth, F., Ehrfeld, W., Gebauer, K., Löwe, H., Richter, T., Lebiedz, D., Untiedt, I. & Züchner, H., Silver-Catalyzed Oxidation of Ethylene to Ethylene Oxide in a Microreaction System, Ind. Eng. Chem. Res., 2002, 41, 710-719. https://doi.org/10.1021/ie010306u
Shah, K., Ouyang, X. & Besser, R.S., Microreaction for Microfuel Processing: Challenges and Prospects, Chem. Eng. Technol., 2005, 28, 303-313. https://doi.org/10.1002/ceat.200407140
Kamholz, A.E., Weigl, B.H., Finlayson, B.A. & Yager, P., Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: The T-Sensor, Anal. Chem., 1999, 71, 5340-5347. https://doi.org/10.1021/ac990504j
Kamholz, A.E., Schilling, E.A. & Yager, P., Optical Measurement of Transverse Molecular Diffusion in a Microchannel, Biophys. J., 2001, 80, 1967-1972. https://doi.org/10.1016/s0006-3495(01)76166-8
Burns, M.A., Johnson, B.N., Brahmasandra, S.N., Hanique, K., Webster, J.R., Krishnan, M., Sammarco, T.S., Man, P.M., Jones, D., Heldsinger, D., Mastrangelo, C.H. & Burke, D.T., An Integrated Nanoliter DNA Analysis Device, Science, 1998, 282, 484-487. https://doi.org/10.1126/science.282.5388.484
Hayes, M.A., Polson, N.A., Phayre, A.N. & Garcia, A.A., Flow-Based Microimmunoassay, Anal. Chem., 2001, 73, 5896-5902. https://doi.org/10.1021/ac0104680
Ko, J.S., Yoon, H.C., Yang, H., Pyo, H.B., Chung, K.H., Kim, S.J. & Kim, Y.T., A polymer-based microfluidic device for immunosensing biochips, Lab on a Chip, 2003, 3, 106-113. https://doi.org/10.1039/b301794j
Srinivasan, V., Pamula, V.K. & Fair, R.B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a Chip, 2004, 4, 310-315. https://doi.org/10.1039/b307628h
Jensen, K.F., Microreaction engineering - is small better?, Chem. Eng. Sci., 2001, 56, 293-303.
McBride, M.T., Gammon, S., Pitesky, M., O'Brien, T.W., Smith, T., Aldrich, J., Langlois, R.G., Colston, B. & Venkateswaran, K.S., Multiplexed Liquid Arrays for Simultaneous Detection of Simulants of Biological Warfare Agents, Anal. Chem., 2003, 75, 1924-1930. https://doi.org/10.1021/ac026379k
Neuman, M.R., Fair, R.B., Mehregany M. & Massoud, H.Z., Microelectromechanical Systems: A New Technology for Biomedical Applications, IEEE, 1993, 1545-1546.
Oki, A., Ogawa, H., Nagai, M., Shinbashi, S., Takai, M., Yokogawa A. & Horiike, Y., Development of healtcare chips checking life-style-related diseases, Mat. Sci. Eng. C, 2004, 24, 837-843. https://doi.org/10.1016/j.msec.2004.08.032
Reyes, D.R., Iossifidis, D., Auroux, P.A. & Manz, A., Micro Total Analysis Systems. 1. Introduction, Theory, and Technology, Anal. Chem., 2002, 74, 2623-2636. https://doi.org/10.1021/ac0202435
Auroux, P.A., Iossifidis, D., Reyes, D.R. & Manz, A., Micro Total Analysis Systems. 2. Analytical Standard Operations & Applications, Anal. Chem., 2002, 74, 2637-2652. https://doi.org/10.1021/ac020239t
Jensen, K., Smaller, faster chemistry, Nature, 1998, 393, 735-737.
Houghton, P., Microfluidics Mixing Laboratory, MEMS Course Notes, University of Hertfordshire, 2004.
Dimotakis, P.E., Turbulent Mixing, Annu. Rev. Fluid Mech., 2005, 37, 329-56.
Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., New York, 1980, 12-13.
Probstein, R.F., Physicochemical Hydrodynamics - An Introduction, 2nd edn., Wiley Interscience, New York, 1994, 116-123.
Chapman, B.K. & Leighton, D.T., Dynamic Viscous Resuspension, Int. J. Multiphase Flow, 1991, 17, 469- 483. https://doi.org/10.1016/0301-9322(91)90043-3
Leighton, D. & Acrivos, A., Viscous Resuspension, Chem. Eng. Sci., 1986, 41, 1377-1384. https://doi.org/10.1016/0009-2509(86)85225-3
Philips, R.J., Armstrong, R.C., & Brown, R.A., A consitutive equation for concentrated suspensions that account for shear-induced particle migration, Phys. Fluids A, 1992, 4, 30-40.
Glasgow, I. & Aubry, N., Enhancement of microfluidic mixing using time pulsing, Lab on a Chip, 2003, 3, 114-120. https://doi.org/10.1039/b302569a
Müller, S.D., Mezic ́, I., Walther, J.H. & Koumoutsakos, P., Transverse momentum micromixer optimization with evolution strategies, Computers & Fluids, 2004, 33, 521-531. https://doi.org/10.1016/j.compfluid.2003.07.004
Tsai, J. & Lin, L., Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump, Sens. Actu. A, 2002, 0, 665-671. https://doi.org/10.1016/s0924-4247(02)00031-6
Baier, T., Drese, K.S., Schönfeld, F. & Schwab, U., A ????-Fluidic Mixing Network, Chem. Eng. Technol., 2005, 28, 362-366. https://doi.org/10.1002/ceat.200407158
Beebe, D.J., Adrian, R.J., Olsen, M.G., Stremler, M.A., Aref H. & Jo, B., Passive mixing in microchannels: Fabrication and flow experiments, Mec. Ind., 2001, 2, 343-348.
Mengeaud, V., Josserand, J. & Girault, H.H., Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study, Anal. Chem., 2002, 74, 4279-4286. https://doi.org/10.1021/ac025642e
Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezic ́, I., Stone H.A. & Whitesides, G.M., Chaotic Mixer for Microchannels, Science, 2002, 295, 647-651. https://doi.org/10.1126/science.1066238
Kim, D.J., Oh, H.J., Park, T.H., Choo, J.B. & Lee, S.H., An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions, Analyst, 2005, 130, 293-298. https://doi.org/10.1039/b414180f
Yamaguchi, Y., Takagi, F., Watari, T., Yamashita, K., Nakamra, H., Shimizu, H. & Maeda, H., Interface configuration of the two layered laminar flow in a curved microchannel, Chem. Eng. J., 2004, 101, 367-372. https://doi.org/10.1016/j.cej.2003.10.018
Sandeep, P. & Bisht, P.B., Concentration sensing based on radiative rate enhancement from a single microcavity, Chem. Phys. Lett., 2005, 415, 15-19. https://doi.org/10.1016/j.cplett.2005.08.047
Ullman, E.F., Kirakossian, H., Switchenko, A.C., Ishkanian, J., Ericson, M., Wartchow, C.A., Pirio, M., Pease, J., Irvin, B.R., Singh, S., Singh, R., Patel, R., Dafforn, A., Davalian, D., Skold, C., Kurn, N. & Wagner, D.B., Luminescent oxygen channelling assay (LOCITM): sensitive, broadly applicable homogeneous immunoassay method, Clin. Chem., 1996, 42, 1518-1526. https://doi.org/10.1073/pnas.91.12.5426
Patel, R., Pollner, R., de Keczer, S., Pease, J., Pirio, M., DeChene, N., Dafforn, A. & Rose, S., Quantification of DNA Using the Luminescent Oxygen Channelling Assay, Clin. Chem., 2000, 46, 1471-1477.
Koch, M., Witt, H., Evans A.G.R. & Brunnschweiler, A., Improved characterization technique for micromixers, J. Micromech. Microeng., 1999, 9, 156-158. https://doi.org/10.1088/0960-1317/9/2/312
Bökenkamp, D., Desai, A., Yang, X., Tai, Y.C., Marzluff, E.M. & Mayo, S.L., Microfabricated Silicon Mixers for Submillisecond Quench-Flow Analysis, Anal. Chem., 1998, 70, 232-236. https://doi.org/10.1021/ac9708250
Liu, Y.Z., Kim, B.J. & Sung, H.J., Two-fluid mixing in a microchannel, Int. J. Heat & Fluid Flow, 2004, 25, 986-995. https://doi.org/10.1016/j.ijheatfluidflow.2004.03.006
Chung, Y., Hsu, Y., Jen, C., Lu, M. & Lin, Y., Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber, Lab on a Chip, 2004, 4, 70-77. https://doi.org/10.1039/b310848c
Ottino, J.M., Ranz, W.E. & Macosko, C.W., A lamellar model for analysis of liquid-liquid mixing, Chem. Eng. Sci., 1979, 34, 877-890. https://doi.org/10.1016/0009-2509(79)85145-3
Ottino, J.M., Lamellar mixing models for structured chemical reactions and their relationship to statistical models; macro and micromixing and the problem of averages, Chem. Eng. Sci., 1980, 35, 1377-1391. https://doi.org/10.1016/0009-2509(80)85131-1
Bessoth, F.G., deMello, A.J., & Manz, A., Microstructure for efficient continuous flow mixing, Anal. Commun., 1999, 36, 213-215. https://doi.org/10.1039/a902237f
Koch, M., Schabmueller, C.G.J., Evans, A.G.R. & Brunnschweiler, A., Micromachined chemical reaction system, Sens. Actu. A, 1999, 74, 207-210. https://doi.org/10.1016/s0924-4247(98)00318-5
Freitas, S., Walz, A., Merkle, H.P. & Gander, B., Solvent extraction employing a static micromixer: a simple, robust and versatile technology for the microencapsulation of proteins, J. Microencapsulation, 2003, 20, 67- 85. https://doi.org/10.3109/02652040309178050
Löb, P., Pennemann, H. & Hessel, V., g/l-Dispersion in interdigital micromixers with different mixing chamber geometries, Chem. Eng. J., 2004, 101, 75-85. https://doi.org/10.1016/j.cej.2003.11.032
Engler, M., Kockmann, N., Kiefer, T. & Woias, P., Numerical and experimental investigations on liquid mixing in static micromixers, Chem. Eng. J., 2004, 101, 315-322. https://doi.org/10.1016/j.cej.2003.10.017
Haeberle, S., Brenner, T., Schlosser, H.P., Zengerle, R. & Ducrée, J., Centrifugal Micromixer, Chem. Eng. Technol., 2005, 28, 613-616. https://doi.org/10.1002/ceat.200407138
Holden, M.A., Kumar, S., Beskok, A. & Cremer, P.S., Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow, J. Micromech. Microeng., 2003, 13, 412-418. https://doi.org/10.1088/0960-1317/13/3/309
Blood, P.J., Denyer, J.P., Azzopardi, B.J., Poliakoff, M. & Lester, E., A versatile flow visualisation technique for quantifying mixing in a binary system: application to continuous supercritical water hydrothermal synthesis (SWHS), Chem. Eng. Sci, 2004, 59, 2853-2861. https://doi.org/10.1016/j.ces.2004.04.021
Wong, S.H., Bryant, P., Ward, M. & Wharton, C., Micro T-mixer as a rapid mixing micromixer, Sens. Actu. B, 2004, 100, 359-379. https://doi.org/10.1016/j.snb.2004.02.008
Gobby, D., Angeli, P. & Gavriilidis, A., Mixing characteristics of T-type microfluidic mixers, J. Micromech. Microeng., 2001, 11, 126-132. https://doi.org/10.1088/0960-1317/11/2/307
Johnson, T.J., Ross, D. & Locascio, L.E., Radpid Microfluidic Mixing, Anal. Chem., 2002, 74, 45-51.
Wong, S.H., Bryant, P., Ward, M. & Wharton, C., Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies, Sens. Actu. B, 2003, 95, 414-424. https://doi.org/10.1016/s0925-4005(03)00447-7
Branebjerg, J., Gravesen, P., Krog J.P. & Nielsen, C.R., Fast mixing by lamination, IEEE, 1996, 441-446.
Schönfeld, F., Hessel, V. & Hoffmann, C., An optimised split-and-recombine micro-mixer with uniform 'chaotic' mixing, Lab on a Chip, 2004, 4, 65-69. https://doi.org/10.1039/b310802c
Bertsch, A., Heimgartner, S., Cousseau, P. & Renaud, P., 3D Micromixers - Downscaling Large Scale Industrial Static Mixers, IEEE, 2001, 507-510. https://doi.org/10.1109/memsys.2001.906590
Kim, D.S., Lee, S.H., Kwon, T.H. & Ahn, C.H., A serpentine laminating micromixer combining slitting/recombination and advection, Lab on a Chip, 2005, 5, 739-747. https://doi.org/10.1039/b418314b
Neils, C., Tyree, Z., Finlayson, B. & Folch, A., Combinatorial mixing of microfluidic streams, Lab on a Chip, 2004, 4, 342-350. https://doi.org/10.1039/b314962e
Jiang, F., Drese, K.S., Hardt, S., Küpper, M. & Schönfeld, F., Helical flows and Chaotic Mixing in Curved Micro Channels, AIChE Journal, 2004, 50, 2297-2305. https://doi.org/10.1002/aic.10188
Xia, H.M., Wan, S.Y.M., Shu, C. & Chew, Y.T., Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers, Lab on a Chip, 2005, 5, 748-755. https://doi.org/10.1039/b502031j
Stroock, A.D., Dertinger, S.K., Whitesides, G.M. & Ajdari, A., Patterning Flows Using Grooved Surfaces, Anal. Chem., 2002, 74, 5306-312. https://doi.org/10.1021/ac0257389
Kang, T.G. & Kwon, T.H., Colored particle tracking method for mixing analysis of chaotic micromixers, J. Micromech. Microeng., 2004, 14, 891-899. https://doi.org/10.1088/0960-1317/14/7/008
Howell, P.B., Mott, D.R., Fertig, S., Kaplan, C.R., Golden, J.P., Oran, E.S. & Ligler, F.S., A microfluidic mixer with grooves placed on the top and bottom of the channel, Lab on a Chip, 2005, 5, 524-530. https://doi.org/10.1039/b418243j
Aubin, J., Fletcher, D.F. & Xuereb, C., Design of micromixers using CFD modelling, Chem. Eng. Sci., 2005, 60, 2503-2516. https://doi.org/10.1016/j.ces.2004.11.043
Veenstra, T.T., Lammerink, T.S.J., Elwenspoek, M.C., & van den Berg, A., Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems, J. Micromech. Microeng., 1999, 9, 199-202. https://doi.org/10.1088/0960-1317/9/2/323
Drese, K.S., Optimization of interdigital micromixers via analytical modeling - exemplified with SuperFocus mixer, Chem. Eng. J., 2004, 101, 403-407. https://doi.org/10.1016/j.cej.2003.10.023
Dussan,V E.B. & Davis, S.H., On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech, 1974, 65, 71-95. https://doi.org/10.1017/s0022112074001261
Huh, C. & Scriven, L.E., Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Coll. Int. Sci, 1971, 37, 196-207.
Duda, J.L. & Vrentas, J.S., Steady Flow in the Region of Closed Streamlines II Cylindrical Cavity, J. Fluid Mech, 1971, 45, 247-260. https://doi.org/10.1017/s002211207100003x
Fowler, J., Moon, H. & Kim, C., Enhancement of Mixing by Droplet-Based Microfluidics, IEEE, 2002, 97- 100.
Hosokawa, K., Fujii, T. & Endo, I., Handling of Picoliter Liquid Samples in a Poly(dimethylsiloxane)_Based Microfluidic Device, Anal. Chem., 1999, 71, 4781-4785. https://doi.org/10.1021/ac990571d
Prins, M.W.J., Welters, W.J.J. & Weekamp, J.W., Fluid Control in Multichannel Structures by Electrocapillary Pressure, Science, 2001, 291, 277-280. https://doi.org/10.1126/science.291.5502.277
Pollack, M.G., Shenderov, A.D. & Fair, R.B., Electrowetting-based actuation of droplets for integrated microfluidics, Lab on a Chip, 2002, 2, 96-101. https://doi.org/10.1039/b110474h
Zeng, J. & Korsmeyer, T., Principles of droplet electrohydrodynamics for lab-on-a-chip, Lab on a Chip, 2004, 4, 265-277. https://doi.org/10.1039/b403082f
Paik, P., Pamula, V.K., Pollack, M.G. & Fair, R.B., Electrowetting-based droplet mixers for microfluidic systems, Lab on a Chip, 2003a, 3, 28-33. https://doi.org/10.1039/b307628h
Paik, P., Pamula, V.K. & Fair, R.B., Rapid droplet mixers for digital microfluidic systems, Lab on a Chip, 2003b, 3, 253-259. https://doi.org/10.1039/b307628h
Handique, K. & Burns, M.A., Mathematical modeling of drop mixing in a slit-type microchannel, J. Micromech. Microeng., 2001, 11, 548-554. https://doi.org/10.1088/0960-1317/11/5/316
Ariyapadi, S., McMillan, J., Zhou, D., Berruti, F., Briens, C. & Chan, E., Modeling the mixing of a gas-liquid spray jet injected in a gas-solid fluidized bed: The effect of the draft tube, Chem. Eng. Sci., 2005, 60, 5738- 5750. https://doi.org/10.1016/j.ces.2005.04.059
Kouakou, E., Salmon, T., Toye, D., Marchot, P. & Crine, M., Gas-liquid mass transfer in a circulating jet- loop nitrifying MBR, Chem. Eng. Sci., 2005, 60, 6346-6353. https://doi.org/10.1016/j.ces.2005.04.025
Miyake, R., Lammerink, T.S.J., Elwenspoek, M. & Fluitman, J.H.J., Micro Mixer with Fast Diffusion, IEEE, 1993, 248-253. https://doi.org/10.1109/memsys.1993.296914
Ehlers, St., Elgeti, K., Menzel, T. & Wießmeier, G., Mixing in the offstream of a microchannel system, Chem. Eng. Processing, 2000, 39, 291-298. https://doi.org/10.1016/s0255-2701(99)00078-1
Cherepanov, A.V., & de Vries, S., Microsecond freeze-hyperquenching: development of a new ultrafast micro-mixing and sampling technology and application to enzyme catalysis, Biochimica & Biophysica, 2004, 1656, 1-31. https://doi.org/10.1016/j.bbabio.2004.02.006
Hong, C., Choi, J. & Ahn, C.H., A novel in-plane passive microfluidic mixer with modified Tesla structures, Lab on a Chip, 2004, 4, 109-113. https://doi.org/10.1039/b305892a
Kuksenok, O., Yeomans, J.M. & Balazs, A.C., Using patterned substrates to promote mixing in microchannels, Phys. Rev. E., 2002, 65, 031502. https://doi.org/10.1103/physreve.65.031502
Lu, L.H., Ryu, K.S. & Liu, C., A Magnetic Microstirrer and Array for Microfluidic Mixing, J. MEMS, 2002, 11, 462-469. https://doi.org/10.1109/jmems.2002.802899
Ryu, K.S., Shaikh, K., Goluch, E., Fan, Z. & Liu, C., Micro magnetic stir-bar mixer integrated with parylene microfluidic systems, Lab on a Chip, 2004, 4, 608-613. https://doi.org/10.1039/b403305a
Niu, X. & Lee, Y.K., Efficient spatial-temporal chaotic mixing in microchannels, J. Micromech. Microeng., 2003, 13, 454-462. https://doi.org/10.1088/0960-1317/13/3/316
Dodge, A., Jullien, M., Lee, Y., Niu, X., Okkels, F. & Tabeling, P., An example of a chaotic micromixer: the cross-channel micromixer, C. R. Physique, 2004, 5, 557-563. https://doi.org/10.1016/j.crhy.2004.03.003
Lee, Y., Deval, J., Tabeling, P. & Ho, C., Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows, Proc. 14th IEEE MEMS, 2001, 483-486. https://doi.org/10.1109/memsys.2001.906584
Karniadakis, G.E. & Beskok, A., Micro Flows - Fundamentals and Simulation, Springer-Verlag, New York, 2002, 215-221.
Pribyl, M., Snita, D., Hasal, P. & Marek, M., Modeling of electric-field driven transport processes in microdevices for immunoassay, Chem. Eng. J., 2004, 101, 303-314. https://doi.org/10.1016/j.cej.2003.10.013
West, J., Karamata, B., Lillis, B., Gleeson, J.P., Alderman, J., Collins, J.K., Lane, W., Mathewson, A. & Berney, H., Application of magnetohydrodynamic actuation to continuous flow chemistry, Lab on a Chip, 2002, 2, 224-230. https://doi.org/10.1039/b206756k
Solomon, T.H. & Mezi_, I., Uniform resonant chaotic mixing in fluid flows, Nature, 2003, 425, 376-380. https://doi.org/10.1038/nature01993
Guenat, O.T., Ghiglione, D., Morf, W.E. & de Rooij, N.F., Partial electroosmotic pumping in complex capillary systems - Part 2: Fabrication and application of a micro total analysis system (_TAS) suited for continuous volumetric nanotitrations, Sens. Actu. B, 2001, 72, 273-282. https://doi.org/10.1016/s0925-4005(00)00674-2
Fu, L.M., Yang, R.J. & Lee, G.B., Electrokinetic Focusing Injection Methods on Microfluidic Devices, Anal. Chem., 2003, 75, 1905-1910. https://doi.org/10.1021/ac020741d
Wu, H. & Liu, C., A novel electrokinetic micromixer, Sens. Actu. A, 2005, 118, 107-115.
Lin, J.L., Lee, K.H. & Lee, G.B., Active micro-mixers utilizing a gradient zeta potential induced by inclined buried shielding electrodes, J. Micromech. Microeng., 2006, 16, 757-768. https://doi.org/10.1088/0960-1317/16/4/012
Vivek, V., Zeng, Y. & Kim, E.S., Novel Acoustic-Wave Micromixer, Proc. IEEE, 2000, 668-673.
Liu, R.H., Yang, J., Pindera, M.Z., Athavale, M. & Grodzinski, P., Bubble-induced acoustic micromixing, Lab on a Chip, 2002, 2, 151-157. https://doi.org/10.1039/b201952c
Liu, R.H., Lenigk, R., Druyor-Sanchez, R.L., Yang, J. & Grodzinski, P., Hybridization Enhancement Using Cavitation Microstreaming, Anal. Chem., 2003, 75, 1911-1917. https://doi.org/10.1021/ac026267t
Rife, J.C., Bell, M.I., Horwitz, J.S., Kabler, M.N., Auyeung, R.C.Y. & Kim, W.J., Miniature valveless ultrasonic pumps and mixers, Sens. Actu. A, 2000, 86, 135-140. https://doi.org/10.1016/s0924-4247(00)00433-7
Yang, Z., Goto, H., Matsumoto, M. & Maeda, R., Ultrasonic micromixer for microfluidic systems, IEEE, 2000, 80-85.
Yang, Z., Matsumoto, S., Goto, H., Matsumoto, M. & Maeda, R., Ultrasonic micromixer for microfluidic systems, Sens. Actu. A, 2001, 93, 266-272. https://doi.org/10.1016/s0924-4247(01)00654-9
Schneider, M.A., Maeder, T., Ryser, P. & Stoessel, F., A microreactor-based system for the study of fast exothermic reactions in liquid phase: characterisation of the system, Chem. Eng. J., 2004, 101, 241-250. https://doi.org/10.1016/j.cej.2003.11.005
Shan, X.C., Wang, Z.F., Jin, Y.F., Wu, M., Hua, J., Wong, C.K. & Maeda, R., Studies on a micro combustor for gas turbine engines, J. Micromech. Microeng., 2005, 15, 215-221. https://doi.org/10.1088/0960-1317/15/9/s07
Published
How to Cite
Issue
Section
Copyright (c) 2007 J Green, A Holdø, A Khan

This work is licensed under a Creative Commons Attribution 4.0 International License.