Numerical simulation of the flow around oscillating wind turbine airfoils Part 1: Forced oscillating airfoil
DOI:
https://doi.org/10.1260/1750-9548.2.4.367Abstract
This is the first part of a two part paper on flow around vibrating wind turbine airfoils. In this part 1, the unsteady, incompressible, viscous and laminar flow over a forced oscillating airfoil is computed using a method based on a commercial Computational Fluid Dynamics (CFD) code. Beforehand, the Navier-Stokes equations are solved for the unsteady flow around a NACA 0012 airfoil at a fixed 20° incidence and the low Reynolds numbers of 103 and 104 to check the reliability of the CFD computations. Then the flow around a pitching airfoil is simulated for prescribed values of the reduced frequency. The Navier-Stokes equations are expressed in ALE formulation and solved with moving mesh. The effects of the discretization scheme and the moving mesh technique are investigated. The hysteresis loops of the dynamic stall phenomenon are highlighted.
References
Leishman, J. G., Challenges in modelling the unsteady aerodynamics of wind turbines, AIAA paper N° 2002-0037, 2002.
Robinson, M. C., Hand, M. M., Simms, D. A. and Schreck, S. J., Horizontal Axis Wind Turbine Aerodynamics: Three-Dimensional, Unsteady and separated Flow Influences, NREL report N° NREL/CP-500-26337, 1999. https://doi.org/10.2172/783409
Hansen, M. O. L., Sorensen, J. N., Voutsinas, S. Sorensen, N. and Madsen, H. Aa., State of the art in wind turbines aerodynamics and aeroelasticity, Progress in Aerospace Sciences, 2006, vol. 42, 285-330. https://doi.org/10.1016/j.paerosci.2006.10.002
Lindenburg, C. and Snel, H., Aeroelastic stability analysis tools for large wind turbine rotor blades, ECN report, 2003 (http://www.ecn.nl). http://www.ecn.nl
Chaviaropoulos, P. K., Hansen, M. O. L., Nikolaou, L. G., Aggelis, K. A., Gaunaa, M., Von Geyr, H. F., Hirsch, C., Shun, K., Voutsinas, S. G., Tzabiras, G., Perivolaris, Y. and Dyrmose, S. Z., Viscous and Aeroelastic Effects On Wind Turbine Blades. The VISCEL Project. Part II: Aeroelastic Stability Investigations, Wind Energy, 2003, vol. 6, 387-403. https://doi.org/10.1002/we.101
Rasmussen, F., Hansen, M. H., Thomsen, K., Larsen, T. J., Bertagnolio, F., Johansen, J., Madsen, H. A., Bak, C. and Hansen, A. M., Present Status of Aeroelasticity of Wind Turbines, Wind Energy, 2003, vol. 6, 213-228. https://doi.org/10.1002/we.98
Riziotis, V. A., Voutsinas, S. G., Politis, E. S. and Chaviaropoulos, P. K., Aeroelastic Stability of Wind Turbines: the Problem, the Methods and the Issues, Wind Energy, 2004, vol. 7, 373-392. https://doi.org/10.1002/we.133
Bertagnolio, F., Sorensen, N. N., Johansen, J., Politis, E. S., Nikolaou I. G. and Chaviaropoulos P. K., Wind turbine blade aerodynamics and aeroelasticity (KNOW-BLADE), RISOE report N° RIS-R-1492 (EN), 2004.
Abouri, D., Parry, A., Hamdouni, A. and Longatte E., A stable Fluid - Structure - Interaction algorithm: Application to industrial problems. ASME J. Pressure Vessel Technology, 2006, vol. 128, pp. 516-524. https://doi.org/10.1115/1.2349560
Souli M. and Zolesio J. P., Arbitrary Lagrangian - Eulerian and free surface methods in fluid mechanics, Comput. Methods Appl. Mech. Engrg., 2001, vol. 191, pp. 451-466. https://doi.org/10.1016/s0045-7825(01)00313-9
Baker, T. J., Mesh generation: Art or science?, Progress in Aerospace Sciences, 2005, vol. 41, pp. 29-63.
Issa, R. I., Solution of the implicitly discretised fluid flow equations by operator - splitting, J. Comp. Physics, 1986, vol. 62, 40-65. https://doi.org/10.1016/0021-9991(86)90099-9
Hoarau, Y., Braza, M., Ventikos, Y. and Faghani D., First stages of the transition to turbulence and control in the incompressible detached flow around a NACA 0012 wing, Int. J. of Heat and Fluid Flow, 2006, vol. 27, 878-886. https://doi.org/10.1016/j.ijheatfluidflow.2006.03.026
Sunada, S., Sakaguchi, A., and Kawachi, K., Airfoil section characteristics at a low Reynolds numbers, 1997, J. Fluids Engineering, vol. 119, 129-135. https://doi.org/10.1115/1.2819098
Laitone, E. V., Wind tunnel tests of wings at Reynolds numbers below 70000, Exp. in Fluids, 1997, vol. 23, 405-409. https://doi.org/10.1007/s003480050128
Critzos C. C., Heyson H. H. and Bowswinkle R. W., Aerodynamic characteristics of NACA 0012 airfoil section at angle of attack from 0° to 180°, NACA TN 3361, 1955.
Abbot, I. H. and Von Doenhoff, A. E., Theory of wing sections, fifth ed., 1955, Dover publications, New York.
Lee, T. and Gerontakos P., Investigation of flow over an oscillating airfoil, J. Fluid Mechanics, 2004, vol. 512, 313-341. https://doi.org/10.1017/s0022112004009851
Hoo, E., Do, K. D. and Pan, J., An investigation on the lift force of a wing pitching in dynamic stall for a comfort control vessel, J. Fluids and Structures, 2005, vol. 21, 707-730. https://doi.org/10.1016/j.jfluidstructs.2005.08.009
Akbari, M. H. and Price S. J., Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method, J. Fluids and Structures, 2003, vol. 17, 855-874. https://doi.org/10.1016/s0889-9746(03)00018-5
Yang, S., Luo, S. Liu, F. and Tsai, H. M., Computations of the flows over flapping airfoil by the Euler equations, AIAA 43 rd Aerospace Sciences Meeting, Reno, NV, jan. 2005. https://doi.org/10.2514/6.2005-1404
Brevins, R. D., Flow - induced vibrations, 2nd ed. 1993, Van Nostrand Reinhold, New York (ISBN 1-57524-183-8).
Published
How to Cite
Issue
Section
Copyright (c) 2008 O Guerri, A Hamdouni, A Sakout

This work is licensed under a Creative Commons Attribution 4.0 International License.